On the boundedness of varieties of general type

Christopher Hacon

University of Utah

June, 2015

Christopher Hacon On the boundedness of varieties of general type

() < </p>

э

Introduction

- One of the main goals in Algebraic Geometry is to classify algebraic complex projective varieties X ⊂ P^N_C.
- Assume (for now) that X is smooth.
- Since $H^0(X, \mathcal{O}_X) \cong \mathbb{C}$, we study X via sections of an appropriate line bundle.
- There is essentially only one choice choice, the canonical line bundle ω_X = O(K_X), defined by ω_X = Λⁿ T[∨]_X = Ωⁿ_X where n = dim X.
- In dimension 1, X is topologically determined by its genus
 g = h⁰(ω_X) := dim H⁰(ω_X).
- If g = 0, then $X \cong \mathbb{P}^1$ and $\omega_X = \mathcal{O}_{\mathbb{P}^1}(-2)$,
- if g = 1, then X ≅ C/Lattice is an elliptic curve so ω_X ≅ O_X and there is a one parameter family of these,
- if $g \ge 2$ then deg $\omega_X = 2g 2 > 0$, $\omega_X^{\otimes 3}$ is very ample and there is a 3g 3 dimensional moduli space M_g .

Kodaira dimension

- Note that ω_X is particularly useful if $h^0(\omega_X^{\otimes m})$ has sections.
- Let $R(\omega_X) = R(K_X) = \bigoplus_{m \ge 0} H^0(\omega_X^{\otimes m})$ be the canonical ring and define the Kodaira dimension

 $\kappa(X) = tr.deg._{\mathbb{C}}R(K_X) - 1 \in \{-1, 0, 1, \ldots, \dim X\}.$

- If $\phi_{mK_X} : X \dashrightarrow \mathbb{P}H^0(\omega_X^{\otimes m})$ is the *m*-th canonical map then $\kappa(X) = \max\{\dim \phi_{mK_X}(X) | m > 0\}.$
- We say that X has general type if κ(X) = dim X. This is the analog of curves of genus g ≥ 2.
- Note that X is of general type iff φ_{mKx} is birational for m ≫ 0 iff K_X ~_Q A + E with A ample and E ≥ 0 iff vol(K_X) > 0 where

$$\operatorname{vol}(\mathcal{K}_X) = \lim \frac{h^0(\mathcal{O}_X(m\mathcal{K}_X))}{m^n/n!}.$$

• If
$$n = 1$$
 then $\operatorname{vol}(K_X) = 2g - 2$.

・ロン ・回 ・ ・ ヨ ・ ・ ヨ ・

Stable curves

- The moduli spaces M_g are not proper, but there exists a geometrically meaningful compactification \overline{M}_g whose points correspond to stable curves.
- By definition a stable curve is a (possibly reducible) curve that has only nodal singularities such that ω_X is ample.
- If $\nu : \bigcup X_i \to X$ is the normalization, then $\nu_i^* K_X = K_{X_i} + B_i$ where B_i is the double locus. $K_{X_i} + B_i$ is ample $\forall i$.
- Goal: generalize this picture to all dimensions.
- Define the right class of objects; find discrete invariants ν such for each value of ν we have a projective moduli space (proper and finite type).

・ロン ・四 と ・ ヨ と ・ ヨ と

Higher dimensions

- In higher dimensions there are many difficulties.
- Eg. if dim X = 2 then by blowing up a given surface we obtain infinitely many surfaces with different invariants (B₂(X)) which must belong to different components of the moduli space.
- In dimension \geq 3 it is unclear what invariants one can use to differentiate between these components.
- Another important issue is that the corresponding moduli spaces are usually not separated.
- Consider X → B a family of surfaces over a curve B with 3 sections S₁, S₂, S₃ which meet as transversely as possible in one point p lying over O ∈ B.
- Blowing up the (proper transforms) of these sections in different order, we obtain two families X' → B and X'' → B which are isomorphic over B \ O but with non-isomorphic fibers X'_O ≇ X''_O.

Canonical models

- The solution to this problem is to work with varieties up to birational isomorphism: X ~ X' iff they have isomorphic open subsets iff C(X) ≅ C(X').
- Even better, we can choose a distinguished representative of each birational equivalence class.
- $X_{can} := \operatorname{Proj} R(K_X)$ where $R(K_X) = \bigoplus_{m \ge 0} H^0(mK_X)$ is finitely generated by BCHM and Siu.
- Note that X_{can} has mild (canonical and hence rational) singularities, K_{X_{can}} is Q-Cartier and ample.
- If $f : X' \to X_{can}$ is a resolution, $K_{X'} = f^* K_{X_{can}} + E$ where $E \ge 0$ (and $f_* K_{X'} = K_{X_{can}}$).
- Since canonical models are unique, this will give separated (but not proper) moduli spaces.

(日) (종) (종) (종) (종)

Semi-log canonical models - SLC models

- Since canonical models naturally degenerate to non-normal varieties, in order to compactify the moduli spaces, one must allow the semi-log canonical models i.e. the higher dimensional analogs of stable curves.
- X is a semi-log canonical model, if X is SNC in codimension 1, S_2 (depth $\mathcal{O}_{X,x} \ge 2$), K_X is Q-Cartier and ample.
- Let $f : X' \to X$ be a resolution of the normalization of X, then we can write $K_{X'} = f^* K_X + \sum a_i E_i$ where $a_i \ge -1$.
- These singularities may not be rational but they are still mild (in particular Du Bois).
- If $\nu : X^{\nu} \to X$ is the normalization and $\nu_i : Y_i \to X$ is the restriction of ν to the individual irreducible components, then $\nu_i^* K_X = K_{Y_i} + \Delta_i$ is a LCM (log canonical model). Note that $Y_i \cong \operatorname{Proj} R(K_{Y_i} + \Delta_i)$.
- By work of Kollár we can recover X by glueing the {(Y_i, Δ_i)} along the double locus.

Properness

- Once we allow SLCM, properness will follow from semistable reduction and the MMP.
- Consider $(\mathcal{X}^0, \mathcal{B}^0) \to C^0$ a family of SLCM over the curve $C^0 = C \setminus O$.
- After compactifying, resolving and base changing, we may assume that if $(\mathcal{X}', \mathcal{B}') \to C$ denotes the compactified family, then $\mathcal{B}' + \mathcal{X}'_O$ has simple normal crossings support (in particular $(\mathcal{X}', \mathcal{B}' + \mathcal{X}'_O)$ is SLC).
- Let $(\mathcal{X}, \mathcal{B}) := \operatorname{Proj}_{C} R(K_{\mathcal{X}'} + \mathcal{B}') \to C$ be the relative SLC model, then $(\mathcal{X}, \mathcal{B}) \to C$ is a family of SLCM over C which agrees with $(\mathcal{X}^{0}, \mathcal{B}^{0}) \to C^{0}$ over C^{0} .

Constructing the moduli space

- In order to construct the moduli space, we first fix an integer m and a Hilbert polynomial H(t) and consider the SLC models X such that mK_X is very ample and H(t) = h⁰(tmK_X) for all t > 0.
- Consider the embedding $\phi : X \hookrightarrow \mathbb{P}^N = |mK_X|$, $\mathcal{O}_X(mK_X) = \phi^* \mathcal{O}_{\mathbb{P}^N}(1).$
- And the moduli space $SLC_{H(t),m} = S_{H(t),m}/Aut(\mathbb{P}^N)$ where $S_{H(t),m} \subset Hilb_{H(t)}(\mathbb{P}^N)$ is an appropriate locally closed subset.
- S_{H(t),m}/Aut(ℙ^N) is a separated algebraic space which is locally of finite type.
- To get a proper coarse moduli space of finite type $SLC_{H(t)} = \bigcup_{m>0} SLC_{H(t),m}$ we need a fixed integer m (depending on H(t)) such that mK_X is very ample.
- Projectivity is then established by Fujino, Kovács-Patakfalvi.

Boundedness of log pairs

Theorem (Hacon-M^cKernan-Xu)

Fix $n \in \mathbb{N}$, c > 0, C a DCC set (eg. $C = \{1 - \frac{1}{r} \mid r \in \mathbb{N}\})$, then the set

$$SLC(c, n, C) = \{ (X, B = \sum b_i B_i) | SLC - models, \dim X = n, \\ (K_X + B)^n = c, h_i \in C \}$$

has finitely many deformation types, i.e. there is a projective family $(\mathcal{X}, \mathcal{B}) \to S$ of finite type such that

- for any $s \in S$ we have $(\mathcal{X}_s, \mathcal{B}_s) \in SLC(c, n, \mathcal{C})$ and
- for any $(X, B) \in SLC(c, n, C)$ there is an $s \in S$ with $(X, B) \cong (\mathcal{X}_s, \mathcal{B}_s)$.

In dimension 2, this is due to Alexeev and Alexee-Mori.

Boundedness of log pairs

- The introduction of the coefficient set C is necessary because of induction on the dimension (adjunction).
- Note that instead of fixing the Hilbert polynomial, we simply fix the dimension and the volume $c = (K_X + B)^n$.
- The existence of an m such that mK_X is very ample follows by a semicontinuity argument.
- Note also, that it follows that the set of all volumes V(C, n) = {(K_X + B)ⁿ} (where (X, B) is a SLC-model of dimension n and b_i ∈ C) satisfies the DCC (any non-increasing sequence is eventually constant) and so V(C, n) ∩ ℝ_{>0} has a minimum v(C, n) > 0.
- This is important because if $f : \bigcup_{i \in I} Y_i \to X$ is the normalization and $K_{Y_i} + \Delta_i = (K_X + B)|_{Y_i}$, then $c_i := (K_{Y_i} + \Delta_i)^n \in V(\mathcal{C}, n)$ so that $|I| \le c/v(\mathcal{C}, n)$ and there are finitely many possibilities for the c_i .

Boundedness of the moduli functor

- In fact the volumes of canonical models are discrete (but the volumes of log canonical models with 0 boundary are not discrete).
- There are several technical issues, but the above result seems to be sufficient to settle the boundedness of the corresponding moduli functor.
- This should imply that the moduli functor of SLC models with Hilbert polynomial H, \mathcal{M}_{H}^{SLC} is bounded.
- By definition M^{SLC}_H(S) is the set of flat projective morphisms *X* → S whose fibers are SLC models with Hilbert polynomial *H*, ω_X is flat over S and commutes with base change.
- Disclaimer: There is a huge body of work that goes in to the construction of M^{SLC}_H(S) (Alexeev, Shepherd-Baron, Kollár, Kovács, Viehweg and others). I do not discuss this, but focus on the boundedness of log pairs stated above.

Curves

- The easiest case is of course the case of dimension 1:
 Claim. If g ≥ 2, then mK_X is very ample for all m ≥ 3.
- We must show that |mK_X| separates points and tangent directions i.e. that H⁰(mK_X) → H⁰(mK_X/I_Z) ≅ C² is surjective for any scheme Z ⊂ X of length 2.
- There is a short exact sequence

$$0
ightarrow \mathcal{O}(mK_X - Z)
ightarrow \mathcal{O}(mK_X)
ightarrow \mathcal{O}(mK_X)/I_Z
ightarrow 0.$$

- By the corresponding long exact sequence in cohomology, we must check that $H^1(\mathcal{O}(mK_X Z)) = 0$.
- By Serre duality this is equivalent to $H^0(\mathcal{O}(Z - (m-1)K_X)) = 0$. This is obvious since $\deg(Z - (m-1)K_X) < 0$ for $g \ge 2$ and $m \ge 3$.

Log curves

- Consider $C = \{(C, B = \sum b_i B_i\}$ where C is a curve, $b_i \in \{1 - \frac{1}{k} | k \in \mathbb{N}\}$ and $\deg(K_C + B) = 2g - 2 + \sum b_i > 0$.
- Then $\min\{\deg(K_C + B) = \frac{1}{42}\}.$
- Proof: we may assume g = 0 (else for $g \ge 2$ we have $2g 2 \ge 2 > 1/42$ and for g = 1, 2g 2 = 0 so $b_1 \ne 0$ and $b_1 = 1 1/k \ge 1/2 > 1/42$).
- Since $1 \ge b_i \ge 1/2$, then $|I| \in \{3, 4\}$. But $b_1 + \ldots + b_4 \ge 1/2 + 1/2 + 1/2 + 2/3 = 2 + 1/6$, so |I| = 3.
- $2 \le k_1 \le k_2 \le k_3$. It is easy to see that $b_2 > 1/2$ and $b_1 < 3/4$. An easy case by case analysis yields that the minimum is achieved by 1/2 + 2/3 + 6/7 = 2 + 1/42.
- Corollary: If C is of general type, then $|Aut(C)| \le 84(g-1)$.
- Proof: $K_C = f^*(K_{\bar{C}} + B)$ where $\bar{C} = C/Aut(C)$ and B is the ramification. Then

$$2g-2 = |Aut(C)| \deg(K_{\overline{C}} + B) \geq |Aut(C)|/42.$$

★ E ► < E ► E</p>

Surfaces

• If K_X is nef and big, then $\chi(\mathcal{O}_X) > 0$ and for $m \ge 2$,

$$h^0(mK_X) = \chi(mK_X) = \frac{m(m-1)}{2}K_X^2 + \chi(\mathcal{O}_X)$$

so that $h^0(2K_X) \geq 2$.

- Let $X \rightarrow C$ be the Stein factorization of the map induced by a general pencil. Assume for simplicity that this is base point free and denote by F, F_i general fibers so that $F_i \in |2K_X|$.
- Let x_1, x_2 be two general points in X and consider the following short exact sequences.
- $0 \rightarrow 3K_X \rightarrow 3K_X + B \rightarrow K_B + (2K_X)|_B \rightarrow 0$ and $0 \rightarrow 2K_X \rightarrow 2K_X + B_1 + B_2 \rightarrow \oplus (K_{B_i} + (K_X)|_{B_i} \rightarrow 0$
- Since H¹(mK_X) = 0 for i > 0 and H⁰(K_B + (mK_X)|_B) is non-empty and in fact very ample for m ≥ 2, it follows that 6K_X defines a birational map.

Higher dimensional difficulties

- Some difficulties that occour in higher dimensions are:
- I_Z is not locally free (need theory of multiplier ideal sheaves).
- It is harder to show that $H^1(\mathcal{O}(mK_X) \otimes I_Z) = 0$ (need Kawamata-Viehweg-Nadel vanishing).
- X is singular so must understand the singularities of the MMP.
- vol(K_X) could be very small (eg. 1/420 for threefolds). So many arguments are non-effective and rely on Noetherian induction.
- We will need to understand how $vol(K_X)$ varies in families (deformation invariance of plurigenera; Siu and others).

・ロン ・四 と ・ ヨ と ・ ヨ と

- Let X be a normal variety, U the big open subset of smooth points, then ω_U is a line bundle locally generated by $dz_1 \wedge \ldots \wedge dz_n$ where z_1, \ldots, z_n are local coordinates.
- The **canonical sheaf** is defined by $\omega_X = i_* \omega_U$ where $i: U \to X$.
- A canonical divisor K_X is any divisor such that $\mathcal{O}_X(K_X) \cong \omega_X$ (K_X is not unique).
- A log pair (X, B) consists of a normal variety X and a \mathbb{R} -divisor $B = \sum b_i B_i$ such that $K_X + B$ is \mathbb{R} -Cartier.
- A log resolution of a log pair (X, B) is a proper birational morphism f : Y → X such that the exceptional locus Ex(f) is a divisor and Ex(f) + f_{*}⁻¹B has simple normal crossings support.

• Eg. Compute a log resolution of $(\mathbb{C}^2, \{y^2 - x^3 = 0\}).$

- We may write $K_Y = f^*(K_X + B) + A_Y(X, B)$ where $f_*K_Y = K_X$ and $f_*A_Y(X, B) = -B$.
- A_Y(X, B) is the discrepancy divisor (and A(X, B) is the discrepancy b-divisor defined by A(X, B)_Y = A_Y(X, B)).
- If we write A_Y(X, B) = ∑ a_P(X, B)P where P are the prime divisors on Y, then a_P(X, B) are the discrepancies of (X, B) along P.
- It is convenient to write $A_Y(X, B) = E_Y(X, B) L_Y(X, B)$ where $E_Y, L_Y \ge 0$ and $E_Y \land L_Y = 0$ (i.e. E_Y and L_Y have no common components).
- We have $K_Y + L_Y = f^*(K_X + B) + E_Y$.
- note that if $F \ge 0$ is f-exceptional, then $H^0(m(K_Y + L_Y + F)) = H^0(f^*(m(K_X + B)) + m(F + E_Y)) \cong$ $H^0(m(K_X + B)).$
- The corresponding b-divisors are denoted by L and E.

• The total discrepancy of (X, B) is

tot. discrep $(X, B) = \inf\{a_P(X, B) | P \text{ ex. prime div. over } X\}.$

• The **discrepancy** of (X, B) is

 $\operatorname{discrep}(X,B) = \inf\{a_P(X,B) | P \text{ prime div. over } X\}.$

- Eg, if f : Y → X is the blow up of a smooth divisor of codimension k with exceptional divisor E, then a_E(X, B) = k − 1 − ∑_{Z⊂B_i} b_i.
- Intuition: Smaller discrepancies = more singular varieties. Eg. X the cone over a curve of genus g, and Y → X the blow up at the vertex p with exceptional divisor E, then a_P(X, B) ∈ {> −1, 0, < −1} if g ∈ {0, 1, ≥ 2}.

• Lemma: If the total discrepancy is < -1 then it is $-\infty$ (dim $X \ge 2$).

• Proof: There is $f: Y \to X$ with a divisor E of discrepancy $a_E(X, B) < -1 - e$ for some e > 0. Blow up a general codim 1 point on this divisor to get a divisor E' of discrepancy $a_{E'}(X, B) < --e$. Blow up the point given by the intersection of the strict transform of E and E' to get a divisor of discrepancy < -2e. repeat *n*-times to get divisors E^n of discrepancy < -ne.

- We say that (X, B) is log canonical / LC and Kawamata log terminal / klt if the total discrepancies are ≥ -1 and > -1. We say that (X, B) is terminal, canonical if the discrepancies are > -1, ≥ 0.
- The log canonical and klt conditions can be checked on one (any) log resolution.
- Some authors work with **log discrepancies** which are the discrepancies plus one i.e. $a_P + 1$.
- KLT singularities are rational (Rⁱf_{*}O_Y = 0 for i > 0) and LC singularities are Du Bois.
- In dimension 2 terminal singularities are smooth and canonical ones are du Val (rational double points).
- If a_P(X, B) ≤ 1 (resp. < 1), then we say that P is a NKLT place (resp. a NLC place) and its image f(P) is a center of NKLT singularities.

- If $f: Y \to X$ is the blow up at the vertex of a cone over a rational curve of degree n with exceptional curve E, then $E^2 = -n$ and by adjunction $-2 = (K_Y + E) \cdot E = (\nu^*(K_X) + (a_E + 1)E) \cdot E = -n(a_E + 1)$ so that $a_E = -1 + \frac{2}{n}$.
- The same computation shows that if the curve is elliptic, then $a_E = -1$ and if the curve has genus $g \ge 2$, then $a_E < -1$.
- If (X, B) is LC and G ≥ 0 is an ℝ-Cartier divisor, then the log canonical threshold is

$$\operatorname{lct}(X, B; G) = \sup\{c > 0 | (X, D + cG) \text{ is LC}\}.$$

One can compute log canonical thresholds on a single log resolution (eg, lct(C², 0; {y² = x³}) = 5/6).

・ロン ・四 と ・ ヨ と ・ ヨ と

Canonical models

Theorem (BCHM + Siu)

Let (X, B) be a klt pair, $f : X \to Z$ a projective morphism such that $K_X + B$ is Q-Cartier, then $R_Z(K_X + B) := \bigoplus_{m>0} f_* \mathcal{O}_X(m(K_X + B))$ is finitely generated (over \mathcal{O}_Z). Eg. if Z = Spec(k), then $\bigoplus H^0(\mathcal{O}_X(m(K_X + B)))$ is finitely generated.

- This conjecturally also holds for LC pairs (very hard but some special cases are known).
- If K_X + B is big, then φ : X → X_{can} := Proj(R(K_X + B)) has klt singularities (if B = 0 and X has canonical singularities, then X_{can} has canonical sings).
- $K_{X_{can}} + \phi_* B$ is ample and $R(K_{X_{can}} + \phi_* B) \cong R(K_X + B)$.
- In fact if $p: W \to X$ and $q: W \to X_{can}$ resolve ϕ , then $p^*(K_X + B) q^*(K_{X_{can}} + \phi_*B) \ge 0.$

Canonical models

- We say that X is a **canonical model** if X has canonical singularities and K_X is ample eg. $\operatorname{Proj}(R(K_X))$ where X has canonical sings and K_X is big.
- We say that (X, B) is a log canonical model if it has log canonical singularities and K_X + B is ample eg.
 Proj(R(K_X + B)) where (X, B) has klt (conjecturally even LC) sings and K_X + B is big.
- We say that a canonical model (resp. log canonical model) X_{can} (resp. (X_{can}, B_{can})) is a canonical model of X (resp. a log canonical model of (X, B)) if given $p : W \to X$ and $q : W \to X_{can}$, then $p^*(K_X + B) - q^*(K_{X_{can}} + \phi_*B) \ge 0$.
- It follows easily that then $R(K_X + B) \cong R(K_{X_{can}} + \phi_*B)$.

(ロ) (同) (E) (E) (E)

Minimal models

- If X is a smooth projective surface of general type, then by Castenuovo's criterion we may contract any -1 curve (i.e. any rational curve E ⊂ X with K_X cot E = E² = -1) to a smooth point say X → X₁.
- Since $B_2(X) = B_2(X_1) + 1$ we can repeat this at most finitely many times $X \to X_1 \to \ldots \to X_N$. The output $X_N = X_{\min}$ is the minimal model and $K_{X_{\min}}$ is nef.
- There is a morphism $K_{X_{min}} \rightarrow K_{X_{can}}$ given by contracting *K*-trivial curves (i.e. $E \cdot K_X = 0$).
- In higher dimensions, the minimal model has terminal sings and it can be obtained by a sequence of finitely many flips and divisorial contractions X --→ X_{min}.
- $K_{X_{min}}$ is semiample and induces a morphism $X_{min} \rightarrow X_{can}$ which contracts K-trivial curves. (X_{can} has canonical sings.).

イロト イポト イヨト イヨト 三国

Semi log canonical models

If X is an S₂ variety with simple normal crossing singularities in codimension 1 and B is a ℝ-divisor on X whose support contains no component of Sing(X) and K_X + B is ℝ-Cartier then (X, B) has SLC singularities if given v : Y → X the normalization and K_Y + B_Y = v*(K_X + B), then (Y, B) is log canonical (i.e. its components are LC). If moreover X is projective and K_X + B is ample, then we say that (X, B) is a SLC model.

Vanishing

- The main tool of the MMP is Kawamata-Viehweg vanishing, a far reaching generalization of the better known Kodaira vanishing:
- Kodaira vanishing: Let X be a smooth projective variety and A an ample divisor, then $H^i(\mathcal{O}_X(K_X + A)) = 0$ for i > 0.
- Kawamata Viehweg vanishing: Let (X, B) be a KLT pair and L be a Cartier divisor such that L - (K_X + B) is big and nef, then Hⁱ(O_X(L)) = 0 for all i > 0.
- Recall, *L* is **nef** if $L \cdot C > 0$ for any curve $C \subset X$.

A (1) > A (2) > A (2) >

Vanishing

- The relative version of KV vanishing also holds: If f : X → Y is a projective morphism L − (K_X + B) is f-nef and f-big, then Rⁱf_{*}O_X(L) = 0 for i > 0.
- *M* is *f*-nef (*f*-big) if *M* + *f***A* is nef (big) for a sufficiently ample divisor *A* on *Y*.
- Relative KV vanishing follows easily from KV vanishing by a spectral sequence argument.
- An easy but important consequence is the Kollár-Shokurov connectedness lemma.

Theorem

 $f: X \to Z$ proper of normal vars with connected fibers such that $-(K_X + B)$ is f-nef and f-big, any divisor with negative coefficient in B is f-exceptional, then $Nklt(X, B) \cap f^{-1}(z)$ is connected for any $z \in Z$.

Vanishing

- Replacing (X, B) by a log resolution, we may assume that X is smooth and B has SNC. Nklt(X, B) = Supp(B^{≥1}).
- we have a s.e.s.

$$0 \to \mathcal{O}_X(\lceil -B \rceil) \to \mathcal{O}_X(\lceil -B^{<1} \rceil) \to \mathcal{O}_S(\lceil -B^{<1} \rceil) \to 0$$

where $S = \lfloor B^{\geq 1} \rfloor$.
• as $\lceil -B \rceil = K_X + \lceil -(K_X + B) \rceil = K_X - (K + B) + \{K_X + B\}$,
then by KV vanishing $R^i f_* \mathcal{O}_X(\lceil -B \rceil) = 0$ so that there is a
surjection

$$f_*\mathcal{O}_X(\lceil -B^{<1} \rceil) \to f_*\mathcal{O}_S(\lceil -B^{<1} \rceil).$$

• $\lceil -B^{<1} \rceil \geq 0$ so

$$f_*\mathcal{O}_S \subset f_*\mathcal{O}_S(\lceil -B^{<1} \rceil)$$

and hence $\mathcal{O}_Z \to \mathcal{O}_{f(S)} \to f_*\mathcal{O}_S$ and so $S \to f(S)$ has connected fibers.

Calculus of Nklt centers

- If (X, B) is LC and (X, B₀) is klt and W_i are Nklt centers of (X, B), then so is any irreducible component of W₁ ∩ W₂.
- So at every point there is (locally) a unique minimal center on Nklt singularities for (*X*, *B*).
- Minimal Nklt centers are normal and satisfy sub-adjunction.
- If (X, B + S) has SNC and S is prime of coefficient one in S + B, then $(K_X + S)|_S = K_S + B|_S$.
- If (X, B + S) is LC and S is a minimal LC center, then (K_X + S + B)|_S = K_S + Diff_S(B), where if B is ℝ-Cartier in codimension 2, Diff_S(B) = Diff_S(0) + B|_S and the coefficients of Diff_S(0) are standard (of the form {1 - ¹/_k|k ∈ ℕ}).

・ロン ・四 と ・ ヨ と ・ ヨ と

Calculus of Nklt centers

- Note that if $\tau = lct(X, B)$, then $(X, \tau B)$ is log canonical.
- if W is a minimal Nklt center of a LC pair (X, B), then pick A a sufficiently ample divisor and $L \in |A \otimes I_W|$ general. If $\tau = lct(X, B + \epsilon L)$, then W is the unique Nklt center for $(X, \tau(B + \epsilon L))$ and there is a unique Nklt place.

Subadjunction

- Example: Let (X, S) be the cone over a rational curve of degree n and a line through the vertex $v \in S \subset X$. If $f: Y \to X$ is the blow up of the vertex with exceptional divisor E and $S' = f_*^{-1}S \cong S$, then $f^*S = S' + \frac{1}{n}E$, so $f^*(K_X + S) = K_Y + S' + (1 \frac{1}{n})E$, and hence $K_S + \text{Diff}_S(B) = (K_X + S)|_S = (K_Y + S' + (1 \frac{1}{n})E)|_{S'} = K_S + (1 \frac{1}{n})v$.
- Kawamata sub-adjunction: (X, B) LC and W a minimal Nklt center then (K_X + B + ϵH)|_W ~_Q K_W + B_W where (W, B_W) is klt (we will recall a more precise version later).

Multiplier ideals

Let X be smooth, B ≥ 0, f : Y → X a log resolution of (X, B) then the multiplier ideal sheaf of (X, D) is

 $\mathcal{J} = \mathcal{J}(X, B) = f_* \mathcal{O}_X(K_{Y/X} - \lfloor f^*B \rfloor) \subset f_* \mathcal{O}_X(K_{Y/X}) = \mathcal{O}_X.$

- $\bullet \ \mathcal{J}$ is independent of the log resolution.
- $\mathcal{J} = \mathcal{O}_X$ iff (X, B) is klt.
- iF B IS SNC, then $\mathcal{J}(B) = \mathcal{O}_X(-\lfloor B \rfloor)$.
- If G Cartier, then $\mathcal{J}(G+B) = \mathcal{J}(B) \otimes \mathcal{O}_X(-G)$.
- $D_1 \leq D_2$ then $\mathcal{J}(D_2) \subset \mathcal{J}(D_1).$
- $\operatorname{mult}_{x}(D) \geq n = \dim X$, then $\mathcal{J}(D) \subset m_{x}$ (just blow up $x \in X$).
- (Harder) If $\operatorname{mult}_{x}(D) < 1$, then $\mathcal{J}(D)_{x} = \mathcal{O}_{X,x}$.
- $\operatorname{lct}(X,B) = \sup\{t | \mathcal{J}(X,tB) = \mathcal{O}_X\}.$

(ロ) (同) (E) (E) (E)

Nadel vanishing

Theorem (Nadel vanishing)

X smooth, $f : X \to Z$ a projective morphism, $D \ge 0$ an \mathbb{R} -divisor, N a Cartier divisor such that N - D is f-nef and f-big, then

 $R^{i}f_{*}(\mathcal{O}_{X}(K_{X}+N)\otimes \mathcal{J}(D))=0 \quad \forall i>0.$

Proof: Given $g: Y \to X$ a log resolution, $g^*(N - D)$ is $(f \circ g)$ -nef and $(f \circ g)$ -big as well as g-nef and g-big. Thus $R^i g_* \mathcal{O}_Y(K_Y + \lceil g^*(N - D) \rceil) = 0$ and $R^i (f \circ g)_* \mathcal{O}_Y(K_Y + \lceil g^*(N - D) \rceil) = 0$ for i > 0. But $g_* \mathcal{O}_Y(K_Y + \lceil g^*(N - D) \rceil) = \mathcal{O}_X(K_X + N) \otimes \mathcal{J}(D)$ so $R^i f_* \mathcal{O}_X(K_X + N) \otimes \mathcal{J}(D) = R^i (f \circ g)_* \mathcal{O}_Y(K_Y + \lceil g^*(N - D) \rceil) = 0$ for i > 0 (by an easy Spectral sequence argument).

イロン イ団ン イヨン イヨン 三日

Restrictions

- X smooth, H smooth irreducible divisor on X, $D \ge 0$ effective \mathbb{R} -divisor whose support does not contain S. Then
- $\mathcal{J}(H,D|_H) \subset \mathcal{J}(X,D) \cdot \mathcal{O}_H$, and
- if 0 < s < 1, then for all $0 < t \ll 1$ we have

$$\mathcal{J}(X, D + (1-t)H) \cdot \mathcal{O}_H \subset \mathcal{J}(H, (1-s)D|_H)$$

- This is an example of inversion of adjunction. If $\mathcal{J}(H, (1-s)D|_H) \subset m_x \ (x \in H \text{ and all } 0 < s < 1)$, then $\mathcal{J}(X, D + (1-t)H) \subset m_x$ for all $0 < t \ll 1$.
- (analog for log pairs) (X, S + B) an effective log pair, $\nu: S^{\nu} \rightarrow S$ the normalization of S and $K_{S^{\nu}} + B_{S^{\nu}} = \nu^*(K_X + S + B)$, then (X, S + B) is plt (LC + S is the only Nklt place) iff $(S^{\nu}, B_{S^{\nu}})$ is klt and .(X, S + B) is LC iff $(S^{\nu}, B_{S^{\nu}})$ is LC.
- The first is an easy consequence of the connectedness lemma, the second is a deep result of Kawakita.

Inversion of adjunction

- To see this, consider $f : X' \to X$ a log resolution and write $K_{X'} + S' + B' = f^*(K_X + S + B)$.
- Assume for simplicity that S is normal (this is true for plt pairs) and write $(K_X + S + B) = K_S + B_S$ and $(K_{X'} + S' + B')|_{S'} = K_{S'} + B_{S'}$ where as (X', S' + B') is SNC, $B_{S'} = B'|_{S'}$.
- Note that $K_{S'} + B_{S'} = f^*(K_S + B_S)$.
- If (X, S + B) is plt, then B' < 1 and so $B_{S'} < 1$ i.e. (S, B_S) is klt.
- If (S, B_S) is klt, then $B_{S'} < 1$ so that $\lfloor B' \rfloor \cap S' = \emptyset$.
- Suppose by contradiction that there is a component F of [B'] and a point x ∈ f(F) ∩ S, then the fiber f⁻¹(x) intersects S' and [B']. This is easily seen to contradict the connectedness lemma.

(ロ) (同) (E) (E) (E)

- We can now prove that if $\operatorname{mult}_x(D) < 1$, then $\mathcal{J}(D)_x = \mathcal{O}_{X,x}$.
- Fix $x \in H \subset X$ a general smooth divisor, then $\operatorname{mult}_x(D|_H) = \operatorname{mult}_x(D) < 1.$
- Thus $\mathcal{O}_{H,x} = \mathcal{J}(H, D|_H)_x \subset \mathcal{J}(X, D) \cdot \mathcal{O}_{H,x}$ and the claim follows.

イロト イポト イヨト イヨト 二日

More about volumes

• Using multiplier ideals and a cleaver induction, Siu proves the following beautiful result.

Theorem

Let $f : X \to S$ be a smooth projective morphism of smooth projective varieties and $m \ge 0$, then $h^0(m(K_{X_s}))$ is independent of $s \in S$. (Equivalently $f_*\mathcal{O}_X(mK_X)$ is locally free).

- There is no algebraic proof of this (except if K_X is big over S).
- Another important fact that we will need later is

Theorem (Easy addition)

Let $f : X \to S$ be a smooth projective morphism, then $\kappa(X) \le \kappa(X_s) + \dim S$ where $s \in S$ is general. In particular if X has general type, then so does X_s .

・ロン ・回 と ・ ヨ と ・ ヨ と

э

More about volumes

- The idea is as follows. If X has general type (the other cases are similar), we may write $K_X \sim_{\mathbb{Q}} A + E$ where A is ample and E is effective.
- But then $K_{X_s} \sim_{\mathbb{Q}} A|_{X_s} + E|_{X_s}$ where $A|_{X_s}$ is ample and $E|_{X_s}$ is effective.
- We have the following important consequence.

Theorem

Let $Z \to T$ be a projective morphism and $f : Z \to X$ a dominant morphism to a projective variety. If X is of general type, then so is Z_t for general $t \in T$.

• By definition X is of general type iff so is any resolution of X.

More about volumes

- Cutting by generic hyperplanes on T, we may assume that $Z \rightarrow X$ is generically finite.
- Replacing X and Z → T by appropriate birational models we may assume that X, Z, T are smooth.
- Since $f : Z \to X$ is generically finite, we have $K_Z = f^*K_X + R$ where $R \ge 0$ is the ramification divisor.
- Thus Z is also of general type.
- By the easy addition theorem, Z_t is of general type.

Ample canonical class

Next we prove our first boundedness result (due to Anhern-Siu).

Theorem

If X is smooth, K_X is ample, then mK_X is base point free for $m \ge 2 + \binom{n+1}{2}$ (and birational for $m \ge 2 + 2\binom{n+1}{2}$).

- The (well known) idea is, for any given $x \in X$, to find a \mathbb{Q} -divisor $D = D_x \sim_{\mathbb{Q}} \lambda K_X$ with $\lambda < 1 + \binom{n+1}{2}$ such that $\mathcal{J}(D) = \mathfrak{m}_x$ near $x \in X$.
- Eg. $\operatorname{mult}_x D \ge n$ and $\operatorname{mult}_y D < 1$ for all $x \ne y \in U$ a neighborhood of x.
- By Nadel vanishing H¹(ω^m_X ⊗ J(D)) = 0 and so the evaluation H⁰(ω^m_X) → C(x) is surjective.

Creating LC centers

- Creating the above D is done in 2 steps.
- Step 1. Since $H^0(mK_X) = C \cdot m^n + o(m^n)$ where $C = K_X^n/n!$ and vanishing at a point to order k is $\binom{k+n}{n} = \frac{k^n}{n!} + o(k^n)$ conditions, it follows that there exists $D \sim_{\mathbb{Q}} \lambda K_X$ with $\operatorname{mult}_X D \ge n$ and $\lambda \le n + \epsilon$.
- We then have that m_x ⊃ J(D) but the dimension of the co-support of J(D) in a neighborhood of x may be > 0.
- I.e., locally near x we have J(D) = I_Z where x ∈ Z ⊂ X and dim Z > 0.
- The goal is to reduce the dimension of Z inductively, until dim Z = 0.

Cutting down LC centers

- To "cut down" Z, we use (inversion of) adjunction.
- We first produce a divisor $D'_Z \sim_{\mathbb{Q}} \lambda' K_X |_Z$ (on Z) such that $\operatorname{mult}_z(D'_Z) > \dim Z$ and $\lambda' \leq \dim Z + \epsilon$ where $z \in Z$ is a general point (possible since $(K_X|_Z)^{\dim Z} \geq 1$).
- Since K_X is ample, by Serre vanishing we may assume $D'_Z = D'|_Z$ where $D' \sim \lambda' K_X$.
- By inversion of adjunction $\mathfrak{m}_z \supset \mathcal{J}((1-\delta)D + D') = \mathcal{I}_{Z'} \supset \mathcal{I}_Z$ where dim $Z' < \dim Z$.
- Repeating this at most dim X times, we obtain the required divisor.
- (In order to get nonvanishing at x we would need to degenerate z to x. This will not be used in the sequel.)

Tsuji's idea

- There are many new technical difficulties when dealing with singular varieties eg. canonical models (K_X ample Q-Cartier).
- K_X^n can be small (eg $K_X^3 = 1/420$ for n = 3) and $(K_X|_Z)^{\dim Z}$ is even harder to control.
- Hard to get generation at singular points.
- Nether the less one can prove the following.

Theorem (Tsuji, Hacon-McKernan, Takayama)

Fix $n \in \mathbb{N}$ and V > 0, then there exists $r \in \mathbb{N}$ such that if X is a canonical model, dim X = n and $K_X^n \leq V$, then rK_X is very ample. (In particular $\{K_X^n\}$ is duscrete.)

- It will follow that canonical models with Kⁿ_X ≤ V have finitely many deformation types.
- We begin by proving the following (assuming the above theorem in dimension n-1).

Tsuji's idea

Theorem

There exists an integer r = r(n) such that if X is a canonical model of dimension n, then rK_X is birational for $r \ge r_0$.

- Tsuji's idea is to ignore these problems (at first), and begin by showing that $|mK_X|$ induces a birational map for $m \ge A(K_X^n)^{-1/n} + B$ (where A, B depend only on V, n).
- If $K_X^n \ge 1$, then let $r_0 = A + B$.
- If $K_X^n < 1$, then it follows that the degree of $\phi_{|mK_X|}(X) \leq (A(K_X^n)^{-1/n} + B)^n K_X^n \leq (A+B)^n$.
- Thus, X is birationally bounded (for K_X^n bounded from above).
- More precisely, there is a projective morphism of quasi-projective varieties Z → S with a dense set of of points corresponding to birational models of canonical models X with Kⁿ_X < V.

Boundedness of canonical models

• Let $\tilde{\mathcal{X}} \to \mathcal{Z}$ be a resolution.

- After decomposing S in to a finite union of locally closed subsets, we may assume that $\tilde{\mathcal{X}} \to S$ is smooth and the fibers corresponding to canonical models are dense in each component of S.
- By Siu's deformation invariance of plurigenera, all fibers are of general type and the possible volumes belong to a discrete set.
- In particular, this set has a positive minimum v(n).
- Take the relative canonical model so that all fibers are canonical models.
- We may find an integer r > 0 such that rK_X is very ample (for any *n*-dimensional canonical model with $K_X^n < V$).
- The key issue is to show that rK_X is Cartier, but this is clear as being Cartier is an open condition.

Subadjunction

- The main issue is, for general $x \in X$, to produce a divisor $D_x \sim_{\mathbb{Q}} \lambda K_X$ such that locally $\mathcal{J}(D_x) = m_x$ and $\lambda = \mathcal{O}((K_X^n)^{-1/n})$ i.e. $(\lambda \leq A(K_X^n)^{-1/n} + B$ for some constants A, B).
- As before, we have $h^0(mK_X) = \frac{m^n}{n!}K_X^n + o(m^n)$ whilst vanishing at a point of order k is $k^n/n! + o(k^n)$ conditions.
- Thus we can find a divisor $D_1 \sim_{\mathbb{Q}} \lambda_1 K_X$ with $\operatorname{mult}_x(D_1) \ge n$ and $\lambda_1 = O((K_X^n)^{-1/n})$.
- Locally we have J(D₁) = I_Z ⊂ m_x where we may assume that Z is reduced and irreducible.
- Our goal is to cut down Z to a point.
- To do this, we need to bound $(K_X|_Z)^{\dim Z}$ from below.
- Since $x \in X$ is general, Z is of general type and so by induction on the dimension $vol(K_{Z'}) \ge v(d) > 0$ where $d = \dim Z$ and $Z' \to Z$ is a resolution.

Subadjunction

- Tsuji's idea is to use Kawamata's subadjunction to compare K_Z and K_X .
- Recall that $\mathcal{J}(D_1) = \mathcal{I}_Z$ near $x \in Z \subset X$ and $D_1 \sim_{\mathbb{Q}} \lambda_1 K_X$.
- Assume for simplicity that Z is smooth.
- Then, by Kawamata sub adjunction (as K_X is ample)

$$(1 + \lambda_1 + \epsilon)K_X|_Z \sim_{\mathbb{Q}} (K_X + D_1 + \epsilon K_X)_Z \geq K_Z$$

and so $(K_X|_Z)^d \ge (\frac{1}{1+\lambda_1})^d \cdot v(d)$ where $d = \dim Z$.

- We now pick $D'_Z \sim_{\mathbb{Q}} \lambda' K_X|_Z$ such that $\operatorname{mult}_z(D'_Z) > d$ and $\lambda' \leq d(1 + \lambda_1) + 1$.
- Since K_X is ample, by Serre vanishing we may assume that $D'_Z = D'|_Z$ where $D' \sim_{\mathbb{Q}} \lambda' K_X$. Then
- m_z ⊃ J((1 − δ)D₁ + (1 − η)D') = I_{Z₂} ⊃ I_Z where dim Z₂ < dim Z (by inversion of adjunction).
- Let $D_2 = (1 \delta)D_1 + (1 \eta)D'$ so that $D_2 \sim \lambda_2 K_X$ where $\lambda_2 = O((K_X^n)^{1/n})$ and proceed by induction.

Birational boundedness of log pairs

- Not surprisingly, the case of log pairs is substantially harder.
- The first step is to show that (for fixed n, C and v), the set \mathcal{LCM} of LC models (X, B) such that dim X = n, $B \in C$, $(K_X + B)^n = v$ are birationally bounded.
- This means that there exists a pair (X, B) and a projective finite type morphism g : X → S such that for any (X, B) ∈ LCM, there is an s ∈ S and a birational morphism h : X --→ X_s such that the support of the strict transform of B plus the X_s/X exceptional divisors are contained in the support of B_s.
- To this end, it suffices to show that there is an integer $m = O(v^{-1/n})$ such that $m(K_X + B)$ is birational.
- Then X is birationally bounded (similarly to what we have seen above) but why is the pair log birationally bounded?

・ロン ・回 と ・ ヨ と ・ ヨ と

Birational boundedness of log pairs

- We may assume that $h: X \to \mathcal{Z}_s$ is a morphism. Let $S = \sum E_i$ where E_i are the components of the support of B.
- It then suffices to show that if $H = \mathcal{O}_{\mathcal{Z}}(1)$, then $S \cdot h^* H_s^{n-1}$ is bounded from above.
- Since $Z \to S$ is a bounded family, $K_X \cdot h^* H_s^{n-1} = K_{Z_s} \cdot H_s^{n-1}$ is bounded and hence so is

$$B \cdot h^* H_s^{n-1} = (K_X + B) \cdot h^* H_s^{n-1} - K_X \cdot h^* H_s^{n-1}.$$

イロト イポト イヨト イヨト

Adjunction for log pairs

- Adjunction for log pairs is more complicated.
- We have $K_X + B$ ample, $B \in C$ and $D \sim_{\mathbb{Q}} \lambda(K_X + B)$ with $\mathcal{J}(D) = \mathcal{I}_Z$ near $x \in Z \subset X$ and we would like to find (Z, B_Z) LC, $B_Z \in C$ and $K_Z + B_Z$ is big such that $(K_X + D + B)|_Z \ge K_Z + B_Z$.
- We have little control over λ and the coefficients of D, but since x ∈ X is general, we can "pretend" that Z is a fiber of a morphism X → T.
- In this case $K_X|_Z = K_Z$, $B_Z = B|_Z$ and we can ignore D.
- In practice we have to do a delicate analysis of Kawamata's subadjunction.
- Let $D(\mathcal{C}) = \{a \leq 1 | a = \frac{m-1+f}{m}, m \in \mathbb{N}, f = \sum f_i, f_i \in \mathcal{C}\},\$ then $D(\mathcal{C})$ is also a DCC set.

• Let $V^{
u}
ightarrow V$ be the normalization and $V'
ightarrow V^{
u}$ a resolution.

Adjunction for log pairs

Theorem

There exists a divisor Θ on V^{ν} , $\Theta \in \{1 - t | t \in LCT_{n-1}(D(\mathcal{C})) \cup 1\}$ s.t. $(K_X + D + B)|_{V^{\nu}} - (K_{V^{\nu}} + \Theta)$ is PSEF. If V is a general member of a covering family, then $K_{V'} + M_{\Theta} \ge (K_X + B)|_{V'}$

- Since K_X + B is big (and LC), so is K_{V'} + M_Θ (where M_Θ is the strict transform of Θ plus the V'/V^ν exceptional divisors).
- Thus the pushforward $K_{V^{\nu}} + \Theta$ is also big.
- In order to show that the coefficients of Θ lie in a DCC, we must show that
 LCT_{n-1}(D(C)) = {LCT(X, B; M)|B ∈ D(C), M ∈ N}
 satisfies the ACC property (aka the ACC for LCT's).

・ロト ・ 同ト ・ ヨト ・ ヨト

Definition of Θ

- To define Θ we proceed as follows.
- After perturbing D, we may assume that on a neighborhood of the general point of V, (X, B + D) is log canonical with a unique LC place S above V.
- Using the MMP, we may pick a model $f : Y \to X$, that extracts only NKLT places of (X, B + D) including S and is \mathbb{Q} -factorial. Write

•
$$K_Y + S + \Gamma = f^*(K_X + B) + E$$
, $K_S + \Phi = (K_X + S + \Gamma)|_S$
 $K_Y + S + \Gamma + \Gamma' = g^*(K_X + B + D)$, $K_S + \Phi' = (K_X + S + \Gamma + \Gamma')|_S$.

- In particular $\Gamma \in C$ and $\Phi \in D(C)$.
- For any codimension 1 point $P \in V^{\nu}$, let $t_P = LCT(S, \Phi; f|_S^*P)$ (over the generic point of P).
- Then $\Theta = \sum (1 t_p) P$. Define Θ' similarly for (S, Φ') .
- By Kawamata subadjunction (K_X + B + D)|_{V^ν} − (K_{V^ν} + Θ') is PSEF. Since Θ ≤ Θ' we are done (with the first claim; the second is harder and we skip it).

Good minimal models of LC families

- A second difficulty comes from the fact that once we have a bounded family (X

 , B

) → S such that all
 (X, B) ∈ SLC(c, n, C) are birational to a fiber (X

 s, B

), in
 order to deduce boundedness, we must "fix the correct model
 and coefficients of (X, B)" and take the relative log canonical
 model of a resolution of (X

 , B
).
- This would require the LC mmp (and hence abundance!).
- Luckily, we can assume that our families are smooth and a dense set of fibers has a good minimal model. We show:

Theorem (HMX)

If $(\tilde{\mathcal{X}}, \tilde{\mathcal{B}}) \to S$ is log smooth over S and there is a dense set of points such that the fibers $(\tilde{\mathcal{X}}_s, \tilde{\mathcal{B}}_s)$ have a good minimal model, then $(\tilde{\mathcal{X}}, \tilde{\mathcal{B}})$ has a good minimal model over S.

Deformation invariance of log plurigenera

- The key ingredient is a result of Berndtson and Paun on the deformation invariance of log-plurigenera for a klt pair and a smooth morphism $(\tilde{\mathcal{X}}, \tilde{\mathcal{B}}) \to S$
- So far, the only proof of this result is analytic.

- From this point on we may assume that our LC models (X, B) (dim X = n, B ∈ C, (K_X + B)ⁿ = C) belong to a birationally bounded family.
- Recall that this means that there is a projective morphism of varieties of finite type Z → S and a divisor D on Z such that for any (X, B) as above, there is a point s ∈ S and a birational map f : X → Z_s such that D_s contains the strict transform of B and the Z_s/X exceptional divisors.
- Blowing up Z and replacing D by its strict transform and the exceptional divisors, we may assume that each fiber (Z_s, D_s) is SNC.
- Replacing each (X, B) by an appropriate birational model, we may assume that each (X, B) is snc and f : X → Z_s is a morphism (but K_X + B is not ample; vol(K_X + B) = c).

(ロ) (同) (E) (E) (E)

- We begin by considering the set of all LC SNC pairs (X, B) with B ∈ C admitting a morphism to a fixed SNC pair (Z, D) = (Z_s, D_s) say f : X → Z such that f_{*}B ≤ D.
- Claim: The set $\mathcal{V}(Z, D, \mathcal{C}) = {\operatorname{vol}(K_X + B)}$ satisfies the DCC and the set of LCM for these pairs (X, B) is finite.
- Throughout the process, we are allowed to replace (X, B) by a birational pair (X', B') such that R(K_X + B) ≅ R(K_{X'} + B').
- Suppose there is an infinite sequence (X_i, B_i) and define the b-divisor D = lim M_{B_i} as follows.
- For any divisorial valuation ν over Z, let M_{B_i}(ν) be the coefficient of B_i if ν is a divisor on X_i and 1 otherwise. Thus M_{B_i} is the b-divisor given by the strict transform of B_i plus the reduced exceptional divisor (over X_i).
- Since the coefficients of \mathbf{M}_{B_i} are in the DCC set \mathcal{C} , each limit lim $\mathbf{M}_{B_i}(\nu)$ is well defined.

- Let $\Phi = \mathbf{D}_Z$.
- Suppose that (Z, Φ) is terminal, then we claim that $R(K_{X_i} + B_i) \cong R(K_Z + f_{i,*}B_i)$ for all $i \gg 0$.
- In fact since $f_{i,*}B_i \leq \Phi$ has finitely many components which belong to a DCC, it is clear that for $i \gg 0$ we have $f_{i,*}B_i \leq \lim f_{i,*}B_i = \Phi$ so $(Z_i, f_{i,*}B_i)$ is terminal.
- But then $K_{X_i} + B_i = f_i^*(K_Z + f_{i,*}B_i) + E_i$ with $E_i \ge 0$ and f_i -exceptional.
- Thus $H^0(m(K_{X_i} + B_i)) = H^0(m(K_Z + f_{i,*}B_i))$ for all m > 0.
- Thus we may assume that $X_i = Z$ for all $i \gg 0$.
- Suppose that vol(K_Z + B_i) ≥ vol(K_Z + B_{i+1}). Passing to a subsequence, we may assume B_i ≤ B_{i+1}, so that vol(K_Z + B_i) ≤ vol(K_Z + B_{i+1}).
- Thus $\operatorname{vol}(K_{X_i} + B_i) = \operatorname{vol}(K_{X_{i+1}} + B_{i+1})$ for all $i \gg 0$.

• The statement about finiteness of log canonical models follows from a general result of the MMP.

Theorem

Let X be a smooth variety and $B_1 \leq B_2$ effective divisors with SNC such that $K_X + B_1$ is big and $K_X + B_2$ is klt. Then there is a finite set of birational maps $(\psi_i : X \dashrightarrow W_i)_{i \in I}$ such that for any \mathbb{Q} -divisor $B_1 \leq B \leq B_2$, there exists an index $i \in I$ such that ψ_i is the LCM of (X, B) and in particular $\operatorname{Proj}(R(K_X + B)) \cong W_i$.

 Next we explain how to deal with the case when (Z, Φ) is not terminal.

イロト イポト イヨト イヨト

- Suppose that (Z, Φ) is klt. Then it is easy to see that blowing up Z finitely many times along strata of Φ (and the exceptional divisors), we obtain a birational morphism $h: Z' \to Z$ such that $K_{Z'} + \Phi' = h^*(K_Z + \Phi), \Phi' \ge 0$, and (Z', Φ') is terminal.
- One minor issue is that the coefficients of (Z', Φ') are no longer in C and so we must enlarge C slightly. The new values are determined by finitely many linear functions (in dimension 2 we consider a₁ + a₂ 1 where a_i ∈ C). Thus we must replace C by a slightly bigger DCC set.
- We must also replace (X_i, B_i) by blow ups along strata of the strict transform of Φ (and the exceptional divisors).
- Let h_i: X'_i → X_i and f'_i: X'_i → Z' be the corresponding morphisms, then we simply let B'_i = M_{Xi,Bi} as above.

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

- The hardest case is when (Z, Φ) is log canonical but not klt. The proof proceeds by induction on the codimension of the smallest NKLT center.
- Suppose for simplicity that dim Z = 2. Say that Φ consists of two components of multiplicity 1 meeting at a point P ∈ Z.
- If $\mathbf{D} \ge \mathbf{M}_{Z,\Phi}$, then we find a contradiction to $\operatorname{vol}(K_{X_i} + B_i) > \operatorname{vol}(K_{X_{i+1}} + B_{i+1})$.
- Note that then vol(K_Z + Φ) > vol(K_{Xi} + B_i). However vol(K_Z + Φ) = lim vol(K_Z + (1 ε)Φ) and so the contradiction follows if we show lim vol(K_{Xi} + B_i) ≥ vol(K_Z + (1 ε)Φ).
- But $(Z, (1 \epsilon)\Phi)$ is klt and we can use the terminalization trick explained above.

- So assume that there is a divisor with valuation ν over Z such that $\mathbf{D}(\nu) < \mathbf{M}_{Z,\Phi}$. In particular $\mathbf{M}_{Z,\Phi} > 0$ and so ν is a toric valuation.
- Let $\mu: Z_{\nu} \to Z$ be the corresponding toric blow up (eg. blow up $p \in Z$). Ste $\Phi_{\nu} = \mu_*^{-1} \Phi + d_{\nu} E_{\nu}$ where E_{ν} is the exceptional divisor and $0 \le d_{\nu} = \mathbf{D}(\nu) < 1$.
- We may replace (Z, Φ) by (Z_ν, Φ_ν) and (X_i, B_i) by X_{i,ν} → X_i (extracting the divisor corresponding to ν if necessary) and B_i by the strict transform of B_i and the exceptional divisor E_{i,ν} corresponding to ν with mutiplicity d_ν.
- Then (after possibly passing to log resolutions) the only remaining NKLT centers have codimension 1 (not 2).

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

- By a similar argument, we can adress the remaining points contained in the intersection of a component of Φ coefficient 1 and a component of coefficient a > 0.
- Either $\mathbf{D} \ge \mathbf{L}_{Z,\phi}$ and then we can assume as above that $X_i = Z$, or there is a valuation ν such that $\mathbf{D}(\nu) < \mathbf{L}_{Z,\Phi}(\nu)$ in which case we extract the divisor ν and define Φ' by letting the coefficient along the exceptional divisor to be $a' = \mathbf{D}(\nu) < a$.
- Since the coefficients of D(ν) belong to a DCC set, this procedure must terminate.

Boundedness in families

- We must now show that the analogous statements hold when (X, B) is birational to a fiber of a finite type family $(\mathcal{Z}, \mathcal{B}) \to S$.
- Decomposing S in to a finite disjoint union of locally closed subsets (and applying base change), we can assume that each strata of (Z, B) is smooth with connected fibers over S.
- By a result of Siu, Hacon-M^cKernan, Berndtson-Paun, Hacon-M^ckernan-Xu, the log plurigenera h⁰(m(K_{Z_s} + B_s)) are deformation invariant.
- Suppose again for simplicity that (Z, B) is terminal, then for any (X, B) we have h⁰(m(K_X + B)) = h⁰(m(K_{Z_s} + B_s)) and so the set of volumes V = {vol(K_X + B)} is determined by the volumes of finitely many fibers (Z_s, B_s) (one for each component of s).

・ロン ・四 と ・ ヨ と ・ ヨ と

The ACC for LCT's

Outline of the talk

Christopher Hacon On the boundedness of varieties of general type

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

ACC for LCT's

Theorem

Fix $n \in \mathbb{N}$ and $C \subset [0.1]$ a DCC set. Let $LCT_n(C) = \{LCT(X, B; M)\}$ where (X, B) is LC, $B \in C$, $M \ge 0$ is a \mathbb{Z} -Weil, \mathbb{Q} -Cartier divisor. Then $LCT_n(C)$ satisfies the DCC.

- This is Shokurov's ACC for LCT's conjecture, which was proved in the case of bounded singularities by Ein-Mustata-de Fernex.
- We will now give a sketch of the proof.
- Suppose that there is a sequence of pairs (X_i, B_i) and divisors M_i as above with $t_i = LCT(X_i, B_i; M_i)$ such that $t_i < t_{i+1}$ for all i > 0.
- We let $t = \lim t_i > t_i$.

(D) (A) (A) (A) (A)

ACC for LCT's

- For all *i*, let ν_i : Y_i → X_i be a proper birational morphism extracting a unique divisor of discrepancy −1 with center a minimal NKLT center of (X_i, B_i + t_iM_i).
- Cutting by hyperplanes on X_i, we may assume that this minimal NKLT center is a point x_i ∈ X_i.
- We may assume that $\rho(Y_i/X_i) = 1$.
- Define $K_{E_i} + \Delta_i = (K_{Y_i} + E_i + \nu_{i,*}^{-1}(B_i + t_iM_i))|_{E_i} \equiv 0$, and $K_{E_i} + \Delta'_i = (K_{Y_i} + E_i + \nu_{i,*}^{-1}(B_i + tM_i))|_{E_i}$.
- Note that the coefficients of B_i + t_iiM_i and B_i + tM_i are in the DCC set C' = C ∪ {t_i | i ∈ N} ∪ {t} and hence the coefficients of Δ_i and Δ'_i are in the DCC set D(C').
- Since $t > t_i$ and $(\nu_{i,*}^{-1}M_i)|_{E_i} \neq 0$, then $K_{E_i} + \Delta'_i$ is ample.
- Since $\lim t_i = t$, $K_{E_i} + \Delta'_i$ is LC by the ACC for LCT's in dimension n 1.

ACC for LCT's

- The following consequence of the results on the boundednes of LC models gives a contradiction: There exists a number τ < 1 such that for all *i*, K_{Ei} + τΔ'_i is big.
- The idea is that there is an integer m (depending only on the dimension n and the DCC set C) such that if (X, B) is a proper LC pair with K_X + B ample, then m(K_X + B) is birational (even for ℝ-divisors).
- But then, following the proof of Anhern and Siu's theorem, $K_X + (m\binom{n}{2} + 1)(K_X + B)$ is generated at a general point $x \in X$.
- In particular $K_X + (m\binom{n}{2} + 1)(K_X + B)$ is PSEF.
- Since $K_X + (m\binom{n}{2} + 1)(K_X + B) = (m\binom{n}{2} + 2)(K_X + \alpha B)$, where $\alpha = (m\binom{n}{2} + 1)/(m\binom{n}{2} + 2)$, we let $\tau = (\alpha + 1)/2$.