Which powers of a holomorphic function are integrable?

Christopher Hacon

University of Utah

January, 2014

Christopher Hacon Which powers of a holomorphic function are integrable?

(1日) (日) (日)

The question

- Let p ∈ Cⁿ and f(z₁,..., z_n) ∈ C[z₁,..., z_n]. For which values s ∈ R is |f|^s integrable on a neighborhood p ∈ U ⊂ Cⁿ?
- It is clear that |f|^s is integrable for all s ≥ 0, however, when s = -t < 0, then ¹/_{|f|^t} may fail to be integrable near the zeroes of f i.e. the poles of ¹/_f.
- It is easy to see that if $\frac{1}{|f|^t}$ is integrable then so is $\frac{1}{|f|^{t'}}$ for $t' \leq t$.

Definition

The log canonical threshold of f at p, $c = \operatorname{lct}_p(f)$ is the supremum of the numbers $s \in \mathbb{R}_{\geq 0}$ such that $|f|^{-2s}$ is integrable on a neighborhood $p \in U \subset \mathbb{C}^n$. (It follows that $|f|^{-2s}$ is not integrable near p if s > c and integrable if s < c.)

The log canonical threshold

- By convention $lct_p(0) = 0$.
- Note that if u(p) ≠ 0, then ¹/_{|f|^t} is integrable on a neighborhood p ∈ U ⊂ ℂⁿ iff so is ¹/_{|uf|^t}.
- Thus the log canonical threshold lct_p(f) is determined by the zero set Z = {f = 0} ⊂ Cⁿ (must count zeroes with multiplicity).
- We then let $lct_p(Z) = lct_p(f)$.
- Note $lct_p(Z) < +\infty$ iff $p \in Z$.
- The log canonical threshold is a natural sophisticated invariant of the singularities of Z at p which appears in a variety of contexts (Kahler Einstein metrics, Bernstein-Sato polynomial, Arnold's complex singular index,...).
- It also naturally generalizes to pairs (X, B) (more about this later) and hence plays an important role in the minimal model program.

• $lct_O(1/z) = 1$. To see this we work in polar coordinates ρ, θ and note that

$$\int \frac{1}{|z|^{2t}} dVol = \int_0^\epsilon \int_0^{2\pi} \frac{1}{\rho^{2t}} \rho d\theta d\rho = \int_0^\epsilon \frac{2\pi}{\rho^{2t-1}} d\rho$$

which is integrable iff t < 1.

- Similarly if $p \in Z$ and Z is smooth at p, then $lct_p(Z) = 1$.
- More generally, if Z = ∑ b_iZ_i where Z_i are smooth codimension one subvarieties meeting transversely (i.e. ∑ Z_i has simple normal crossings) and b_i ∈ Z_{>0} (i.e. Z is an effective Z-divisor), then lct_p(Z) = min{¹/_{bi}}.
- Let \mathcal{HT}_n be the set of all possible *n*-dimensional log canonical (\mathcal{H} ypersurface) \mathcal{T} hresholds, then $\mathcal{HT}_1 = \{0, 1, \frac{1}{2}, \frac{1}{3}, \ldots\}$ as $f = 0, z, z^2, z^3, \ldots$ (we always assume f(p) = 0).
- We would like to understand \mathcal{HT}_n for $n \geq 2$.

- \mathcal{HT}_2 is completely understood by work of Varchenko.
- It seems too difficult (and maybe not so important) to completely determine *HT_n* for *n* ≥ 3.
- It is known that $\mathcal{HT}_n \subset [0,1] \cap \mathbb{Q}$ (we assume $p \in Z$) and $\cup_{n \ge 1} \mathcal{HT}_n = [0,1] \cap \mathbb{Q}$.
- Never-the-less the sets \mathcal{HT}_n have some remarkable structure (first investigated by Shokurov) which is useful in applications.
- We begin by explaining how LCT's are computed in practice and giving some examples.

(日) (同) (E) (E) (E)

An interesting example

- Consider $f = y^2 x^3$. We use the substitution $x = uv^2$ and $y = uv^3$.
- The integral of $1/|f|^{2t}$ is then computed by integrating

$$\frac{|uv^4|^2}{|u^2v^6 - u^3v^6|^{2t}} = \frac{1}{|u|^{4t-2}} \cdot \frac{1}{|v|^{12t-8}} \cdot \frac{1}{|1-u|^{2t}}$$

- Here, $|uv^4|^2$ is the Jacobian of our change of variables and $\varphi = \frac{1}{|1-u|^{2t}}$ is a unit ($\varphi(O) \neq 0$) and so it can be ignored.
- But u ⋅ v = 0 has simple normal crossings, so the integrability condition is just 4t 2 < 2 and 12t 8 < 2 i.e. t < 5/6.
- As lct(cusp) = 5/6 < lct(node) = 1, the cusp is more singular than the node.
- Log resolutions give a more geometric interpretation.

(ロ) (同) (E) (E) (E) (O)(O)

Log resolutions

- A log resolution is a change of variables such that both the Jacobian and the set f = 0 correspond to simple normal crossing divisors (and hence the LCT is easy to compute).
- More precisely we have a map $\nu : X \to \mathbb{C}^n$ s.t. the zeroes of $\operatorname{Jac}(\nu)$ and $\nu^*(f) = f \circ \nu$ have simple normal crossings.
- We denote by K_{X/Cⁿ} is the divisor corresponding to the (complex) Jacobian.
- In local coordinates

$$\nu^*(dz_1 \wedge \ldots \wedge dz_n) = (\operatorname{unit}) x_1^{k_1} \cdots x_n^{k_n} dx_1 \wedge \ldots \wedge dx_n$$

and so $K_{X/\mathbb{C}^n} = \sum k_i E_i$ where $E_i = \{x_i = 0\}$.

- By a deep result of Hironaka, log resolutions always exist and are given by a finite sequence of **blow ups** along smooth centers.
- Eg. the blow up of Cⁿ at the O is obtained by replacing O with a copy of Pⁿ⁻¹ = (Cⁿ \ O)/C^{*} (each point in Pⁿ⁻¹ is a tangent direction at O ∈ Cⁿ).
- \mathbb{P}^{n-1} is covered by charts \mathbb{A}_i^{n-1} ; given $[y_0:\ldots:y_{n-1}] \in \mathbb{P}^{n-1}$, if $y_i \neq 0$ then $\phi_i[y_0:\ldots:y_{n-1}] = (\frac{y_0}{y_i},\ldots,\frac{\hat{y_i}}{y_i},\ldots,\frac{y_n}{y_i}) \in \mathbb{A}_i^{n-1}$.
- Eg. \mathbb{P}^1 is covered by two copies of \mathbb{C} glued together via $\phi(z) = 1/z$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

Blow ups

Log resolutions and LCT's

- 1/|f|^{2t} is locally integrable at p iff |Jac(f)|²/|ν*(f)|^{2t} is integrable on a neighborhood of ν⁻¹(p).
- We assume that ν⁻¹(p) is compact and so it is enough to check that |Jac(f)|²/|ν*(f)|^{2t} is locally integrable at every point of ν⁻¹(p).
- If we denote $K_{X/\mathbb{C}^n} = \sum k_i E_i$ the divisor given by the zeroes of $\operatorname{Jac}(\nu)$ and $\mu^* Z = \sum a_i E_i$, then as $\sum E_i$ is simple normal crossings, $|\operatorname{Jac}(\nu)|^2/|\nu^*(f)|^{2t}$ is locally integrable iff $ta_i - k_i < 1$ for all *i* (assuming $p \in \mu(E_i), \forall i$). Thus

$$\operatorname{lct}_p(f) = \min\{\frac{k_i+1}{a_i}\} \in \mathbb{Q}.$$

Log resolution of the cusp

Kx3/62 = E1 + 2E2+4E3

Multiplicity vs LCT

- Note that blowing up p ∈ Cⁿ yields an exceptional divisor E with k = n − 1 and a = mult_p(f), thus lct_p(f) ≤ n/mult_p(f).
- On the other hand it is not too hard to show that if f(p) = 0, then lct_p(f) ≥ 1/mult_p(f).
- We have $\operatorname{lct}_O(z_1^{a_1} + \dots + z_n^{a_n}) = \min\{1, \frac{1}{a_1} + \dots + \frac{1}{a_n}\}$ (generalizes $\operatorname{lct}_O(z_1^2 + z_2^3) = \frac{1}{2} + \frac{1}{3} = \frac{5}{6}$).
- In particular $\cup_{n\geq 1}\mathcal{HT}_n = [0,1] \cap \mathbb{Q}.$
- More generally, $\operatorname{lct}_{\rho}(f(x) \oplus g(y)) = \min\{1, \operatorname{lct}_{\rho}(f(x)) + \operatorname{lct}_{\rho}(g(y))\}.$
- So $lct_{\rho}(f(x_1,...,x_{n-1})+y^m) = lct_{\rho}(f(x_1,...,x_{n-1})) + \frac{1}{m}$.
- Thus the set of accumulation points of \mathcal{HT}_n contains \mathcal{HT}_{n-1} .

The structure of \mathcal{HT}_n

The structure of \mathcal{HT}_n was understood by de Fernex-Mustata, Kollár and de Fernex-Ein-Mustata. This gives a positive answer to a conjecture of Shokurov.

Theorem (dFEMK)

• The set \mathcal{HT}_n satisfies the ACC (ascending chain condition) so that any non-decreasing sequence is eventually constant.

- The accumulation points of \mathcal{HT}_n are given by $\mathcal{HT}_{n-1} \setminus \{1\}$.
 - In particular there is a biggest element $1 \epsilon_n$ in $[0, 1) \cap \mathcal{HT}_n$. Conjecturally this is computed as follows.
 - Let $c_1 = 1$, $c_{n+1} = c_1 \cdots c_n + 1$ so $c_i = 2, 3, 7, 43, 1807, 3263443, \ldots$ Then

$$1-\epsilon_n=1-\frac{1}{c_1\cdots c_n}=\sum_{i=1}^n\frac{1}{c_i}=\operatorname{lct}_O(z_1^{c_1}+\cdots+z_n^{c_n}).$$

・ロン ・回 と ・ヨン ・ ヨン

Proof of the theorem of dFEMK

- The proof relies on two main ingredients: generic limits and m-adic approximation.
- Suppose that we have a sequence of f_i s.t. lct_p(f_i) is non decreasing, then we must show it is eventually constant.
- The main idea is to find an accumulation point f_i → f_∞, such that (passing to a subsequence) we may assume that
 1) lim lct_p(f_i) = lct_p(f_∞) (generic limits) and
 2) lct_p(f_i) = lct_p(f_∞) for all m ≫ 0 (m-adic approximation).
- Since $\mathbb{C}[z_1, \ldots, z_n]$ is infinite dimensional, it is not clear that these accumulation points/limits exist.

Proof of the theorem of dFEMK

- Assume that $p = O = (0, ..., 0) \in \mathbb{C}^n$ and let $\tau_{\leq m}(f)$ denote the truncation of f (Taylor polynomial of degree $\leq m 1$).
- It is not hard to see that $|\operatorname{lct}_O(f_i) \operatorname{lct}_O(\tau_{\leq m}(f_i))| \leq \frac{n}{m}$ (continuity of LCT's).
- C[z₁,..., z_n]/(z₁,..., z_n)^m is finite dimensional and the zeroes of τ_{<m}(f_i) are determined by a point in the compact space P^{N_m} = P(C[z₁,..., z_n]/(z₁,..., z_n)^m).
- Therefore, after passing to a subsequence, we may assume that τ_{<m}(f_i) converges to "τ_{<m}(f_∞)".
- Repeating this for bigger and bigger m and passing to further subsequences, we obtain the required f_{∞} .
- ullet Unluckily, this choice of f_∞ is not good because we may have

$$\lim_{i\to\infty} (\operatorname{lct}_O(f_i)) \neq \operatorname{lct}_O(f_\infty).$$

Semicontinuity

- For example if $f_i(x) = x^2 + \frac{1}{i}x$, then $f_{\infty}(x) = x^2$ and so $\operatorname{lct}_O(f_i) = 1$ but $\operatorname{lct}_O(f_{\infty}) = 1/2$.
- The problem is that LCT's are are semicontinuous in the **Zariski toplology**: they are constant on open subsets and jump down on closed subvarieties defined by polynomial equations (i.e. acquire worse singularities).
- Another example $f_t(x, y) = y^2 x^3 + tx^2$. For $t \neq 0$ we have a node and hence $lct_O(f_t) = 1$ but for t = 0 we have a cusp and hence $lct_O(f_t) = 5/6$.
- The proper closed subsets in the Zariski toplology are given by zeroes of polynomial equations (and hence are finite unions of hypersurfaces).
- In particular, the proper closed subsets of \mathbb{C} consist of finitely many points and hence $\overline{\{1-\frac{1}{i}|i>0\}} = \mathbb{C}$.

Generic accumulation points

- We instead consider Z_m an irreducible component of the Zariski closure of $\{\tau_{\leq m}(f_i)\}_{i\geq 0} \in \mathbb{P}(\mathbb{C}[z_1,\ldots,z_n]/\mathfrak{m}^m)$ and g_m a very general point of Z_m . (Here $\mathfrak{m} = (z_1,\ldots,z_n)$.)
- Passing to a subsequence, we have $\tau_{\leq m}(f_i) \in Z_m$ for all $i \geq m$.
- We then choose Z_{m+1} so that its image is dense in Z_m and hence g_{m+1} a very general point of Z_{m+1} s.t. $g_m = \tau_{< m}(g_{m+1})$.
- We thus obtain the compatible sequence {g_m}_{m>0} and hence the generic limit g_∞ ∈ ℂ[[z₁,...,z_n]] s.t. g_m = τ_{<m}(g_∞) for any m > 0.
- By construction, we have $lct_O(g_m) = lct_O(\tau_{\leq m}(f_m))$ for all m.
- Then by continuity of LCT's and construction of g_m , we have

$$\operatorname{lct}_O(g_\infty) = \lim_{m \to \infty} \operatorname{lct}_O(g_m) = \lim_{m \to \infty} \operatorname{lct}_O(\tau_{< m}(f_m)) = \lim_{m \to \infty} \operatorname{lct}_O(f_m).$$

m-adic approximation

 We must show that we can remove the limits in the sequence of equalities

$$\operatorname{lct}_O(g_\infty) = \lim_{m \to \infty} \operatorname{lct}_O(g_m) = \lim_{m \to \infty} \operatorname{lct}_O(\tau_{< m}(f_m)) = \lim_{t \to \infty} \operatorname{lct}_O(f_m).$$

 It turns out that if we assume that the sequence lct_O(f_m) is non decreasing, then lct_O(g_∞) is computed by an exceptional divisor E over O and so we can apply the following.

Theorem (m-adic approximation)

If $\operatorname{lct}_O(g)$ is computed by a divisor E over O then $\operatorname{lct}_O(\tau_{\leq m}(g)) = \operatorname{lct}_O(g)$ for all $m \gg 0$ (in fact $m \ge \operatorname{val}_E(g)$).

Thus $\operatorname{lct}_O(g_\infty) =^{m \gg 0} \operatorname{lct}_O(g_m) = \operatorname{lct}_O(\tau_{< m}(f_m)) =^{m \gg 0} \operatorname{lct}_O(f_m).$

(ロ) (同) (E) (E) (E)

- The proof of m-adic approximation relies only of resolution of singularities and the Kollár-Shokurov Connectedness Theorem which dates back to 1992 and is (by now) a standard consequence of Kodaira-Kawamata-Viehweg vanishing.
- The Connectedness Theorem implies that if ν : X → Cⁿ is a log resolution of (Cⁿ, f), and λ > 0 then the non log canonical set ∑_{λa_i-k_i≥1} E_i is connected over O.

Kollár-Shokurov Connectedness

m-adic approximation

• It letp(t) is computed by
$$E_{i} \rightarrow P$$
 & $m > a_{i} \neq letp(t) = letp(t_{em}(t))$
• P
• $e_{i} = e_{i} e_{i}$

- The method of de Fernex, Ein, Mustata, Kollár generalizes to studying LCT's on varieties with bounded singularities (defined by equations of bounded degree).
- This is still too restrictive for most applications. However using the full strength of the MMP, Hacon-M^cKernan-Xu prove the analog for log canonical pairs.

Log pairs

- The easiest example of **log canonical pair** (X, B) is given by X a smooth manifold (defined by polynomial eqn's) and $B = \sum b_i B_i$ a simple normal crossings divisor with coefficients $0 \le b_i \le 1$.
- In general we allow X to be mildly singular in codimension
 ≥ 2 (X is normal) and we let K_X be the canonical divisor. It
 corresponds to the zeroes of a section of ω_X (the line bundle
 locally defined on the smooth locus by dx₁ ∧ ... ∧ dx_n).
- We also require that $K_X + B$ is \mathbb{R} -Cartier i.e. is an \mathbb{R} -combination of divisors defined by rational functions (in particular $K_X + B$ pulls-back to log resolutions).
- Then (X, B) is log canonical if for any resolution ν : Y → X, with K_Y + B_Y = ν*(K_X + B), the coefficients of B_Y are ≤ 1.
- The Jacobian (or $K_{Y/X}$) corresponds to the difference between $dx_1 \wedge \ldots \wedge dx_n$ and $dy_1 \wedge \ldots \wedge dy_n$, i.e. to $K_Y \nu^* K_X$.

Examples of log canonical pairs

X smooth B SN C welficients 05 bit 51

Generalization to log pairs

- Fix a DCC set *I* ⊂ [0, 1] (DCC means that any non increasing sequence is eventually constant; eg. *I* = {1 − ¹/_n | n ∈ ℕ}).
- If (X, B) is log canonical and $M = \sum m_i B_i$ is \mathbb{R} -Cartier with $m_i \in \mathbb{N}$, then define

 $lct(X, B; M) = sup\{t \in \mathbb{R} | (X, B + tM) \text{ is log canonical} \}.$

- In the SNC case this just means that $b_i + tm_i \leq 1$.
- Let $\mathcal{T}_n(I)$ be the set of all such lct(X, B; M). Then:

Theorem (Shokurov's ACC for LCTs Conjecture (H-M-X))

For any positive integer n, the set T_n(I) satisfies the ACC.
If *l* = 1, then T_n(I) = T_n(I) \ 1.

In the SNC case $\mathcal{T}_n(I) = \{\frac{1-b_i}{m_i} | b_i \in I, \ m_i \in \mathbb{N}\}.$

- Unluckily the proof uses all of the recent result of the minimal model program due to Birkar, Cascini, Hacon, M^cKernan, Siu, Xu and others.
- The main idea is to rephrase the local problem as a global one.
- Suppose that the the singularity p ∈ (X, B) is a cone over a 1-dimensional pair (C, P = ∑ p_iP_i), then (X, B) is log canonical iff vol(K_C + P) := 2g 2 + ∑ p_i ≤ 0.
- Not suprisingly, for bigger g and p_i we get worse singularities.
- Similarly, questions about the singularities (LCT's) of (X, B) can be rephrased in terms of global properties of (C, P).

(ロ) (同) (E) (E) (E)

Global to local

- Using techniques from the minimal model program [BCHM], we show that the LCT's at $p \in (X, B)$ are measured by an exceptional divisor $E \subset Y \xrightarrow{\nu} X$ (this is the analog of blowing up the vertex of a cone).
- If λ_i = lct_{pi}(X_i, B_i; M_i) is an increasing sequence with limit λ, then by adjunction one considers (E_i, P_i) where

$$K_{E_i} + P_i = (K_{Y_i} + E_i + \nu_{i,*}^{-1}(B_i + \lambda M_i))|_{E_i}.$$

• If $n = \dim E$, then

$$\operatorname{vol}(K_E + P) = \lim \frac{\dim H^0(m(K_E + P))}{m^n/n!} > 0.$$

• We then prove the corresponding result for volumes (instead of LCT's).

Theorem (Hacon-M^cKernan-Xu)

Fix $n \in \mathbb{N}$, $I \subset [0, 1]$ a DCC set, then there is a constant M > 0such that if $V = \{ vol(K_X + B) \}$ where (X, B) are log canonical pairs, dim X = n and the coefficients of B are in I, then V satisfies the DCC (and in particular has a positive minimum).

Eg. if dim X = 1 and $B = \sum b_i B_i$, $b_i \in \{1 - \frac{1}{m} | m \in \mathbb{N}\}$, then $V = \{ \operatorname{vol}(K_X + B) = 2g - 2 + \sum b_i \}$ is a DCC set with positive minimum $\frac{1}{42}$.

Refs

- Thanks to NSF and Simons Foundation for generous support.
- Useful references:
- Limits of log canonical thresholds de Fernex-Mustata, Ann. Sci. École Norm. Sup. 42 (2009), 493-517
- Which powers of holomorphic functions are integrable?. Kollár – arXiv:0805.0756
- Log canonical thresholds on varieties with bounded singularities – Ein-de Fernex-Mustata, "Classification of algebraic varieties-Schiermonnikoog 2009" C. Faber, G. van der Geer, E. Looijenga editors, EMS Ser. Congr. Rep., Eur. Math. Soc., Zrich, 2011
- ACC for log canonical thresholds Hacon-McKernan-Xu arXiv:1208.4150