The structure of the proof The directed MMP Existence of models Finiteness of models Non-vanishing

Finite generation of canonical rings II

Christopher Hacon

University of Utah

December, 2006

1 The structure of the proof

- 1 The structure of the proof
- 2 The directed MMP

- 1 The structure of the proof
- 2 The directed MMP
- 3 Existence of models

- 1 The structure of the proof
- 2 The directed MMP
- Existence of models
- 4 Finiteness of models

- 1 The structure of the proof
- 2 The directed MMP
- Existence of models
- 4 Finiteness of models
- Mon-vanishing

- The structure of the proofThe structure of the proof
- 2 The directed MMP
- 3 Existence of models
- 4 Finiteness of models
- 5 Non-vanishing

• Recall that there are 3 main theorems we have to prove:

- Recall that there are 3 main theorems we have to prove:
- Thm A. Existence of log terminal models

- Recall that there are 3 main theorems we have to prove:
- Thm A. Existence of log terminal models
- Thm B. Nonvanishing

- Recall that there are 3 main theorems we have to prove:
- Thm A. Existence of log terminal models
- Thm B. Nonvanishing
- Thm C. Finiteness of models

- Recall that there are 3 main theorems we have to prove:
- Thm A. Existence of log terminal models
- Thm B. Nonvanishing
- Thm C. Finiteness of models
- Roughly speaking we would like to show that:

$$A_{n-1}+B_{n-1}+C_{n-1}$$
 imply A_n ;
 $B_{n-1}+C_{n-1}+A_n$ imply B_n ;
 $C_{n-1}+A_n+B_n$ imply C_n .

- Recall that there are 3 main theorems we have to prove:
- Thm A. Existence of log terminal models
- Thm B. Nonvanishing
- Thm C. Finiteness of models
- Roughly speaking we would like to show that:

$$A_{n-1}+B_{n-1}+C_{n-1}$$
 imply A_n ;
 $B_{n-1}+C_{n-1}+A_n$ imply B_n ;
 $C_{n-1}+A_n+B_n$ imply C_n .

• We will use the fact that by a result of Hacon-M^cKernan, $A_{n-1}+B_{n-1}+C_{n-1}$ imply that PL-flips exist in dimension n.

• We now recall the precise statements of Thm's A, B, C:

- We now recall the precise statements of Thm's A, B, C:
- Let $\pi: X \to U$ be a projective morphism of normal quasi-projective varieties, where $\dim(X) = n$.

- We now recall the precise statements of Thm's A, B, C:
- Let $\pi: X \to U$ be a projective morphism of normal quasi-projective varieties, where $\dim(X) = n$.
- Thm A. (Existence of log terminal models.) Suppose that $K_X + \Delta$ is KLT and Δ is big over U. If $K_X + \Delta \sim_{\mathbb{R}, U} D \geq 0$, then $K_X + \Delta$ has a log terminal model over U.

- We now recall the precise statements of Thm's A, B, C:
- Let $\pi: X \to U$ be a projective morphism of normal quasi-projective varieties, where $\dim(X) = n$.
- Thm A. (Existence of log terminal models.) Suppose that $K_X + \Delta$ is KLT and Δ is big over U. If $K_X + \Delta \sim_{\mathbb{R}, U} D \geq 0$, then $K_X + \Delta$ has a log terminal model over U.
- Thm B. (Non-vanishing.) Suppose that $K_X + \Delta$ is KLT and Δ is big over U.

 If $K_X + \Delta$ is π -pseudo-effective over U, then there is an
 - effective \mathbb{R} -divisor D such that $K_X + \Delta \sim_{\mathbb{R}, U} D$.

• Thm C. (resp. C⁻) (Finiteness of models.) Fix A an ample divisor over U. Suppose that there exists a divisor Δ_0 such that $K_X + \Delta_0$ is KLT.

Let $C \subset \{\Delta | K_X + \Delta + A \text{ is log canonical}\}\$ be a rational polytope (resp. a rational polytope s.t. $C + K_X + A$ is contained in the big cone).

Then the set of isomorphism classes

 $\{Y|Y \text{ is a WLCM for } (X, \Delta + A) \text{ over } U; \ \Delta + A \in \mathcal{C}\}$ is finite.

• Thm C. (resp. C⁻) (Finiteness of models.) Fix A an ample divisor over U. Suppose that there exists a divisor Δ_0 such that $K_X + \Delta_0$ is KLT.

Let $C \subset \{\Delta | K_X + \Delta + A \text{ is log canonical}\}\$ be a rational polytope (resp. a rational polytope s.t. $C + K_X + A$ is contained in the big cone).

Then the set of isomorphism classes

$$\{Y|Y \text{ is a WLCM for } (X, \Delta + A) \text{ over } U; \ \Delta + A \in \mathcal{C}\}$$
 is finite.

• Claim 1. Theorems A_{n-1} , B_{n-1} and C_{n-1} imply Theorem A_n

• Thm C. (resp. C⁻) (Finiteness of models.) Fix A an ample divisor over U. Suppose that there exists a divisor Δ_0 such that $K_X + \Delta_0$ is KLT.

Let $C \subset \{\Delta | K_X + \Delta + A \text{ is log canonical}\}$ be a rational polytope (resp. a rational polytope s.t. $C + K_X + A$ is contained in the big cone).

Then the set of isomorphism classes

$$\{Y|Y \text{ is a WLCM for } (X, \Delta + A) \text{ over } U; \ \Delta + A \in \mathcal{C}\}$$
 is finite.

- Claim 1. Theorems A_{n-1} , B_{n-1} and C_{n-1} imply Theorem A_n
- Claim 2. Theorem A_n implies Theorem C_n^- ,

• Thm C. (resp. C⁻) (Finiteness of models.) Fix A an ample divisor over U. Suppose that there exists a divisor Δ_0 such that $K_X + \Delta_0$ is KLT.

Let $C \subset \{\Delta | K_X + \Delta + A \text{ is log canonical}\}$ be a rational polytope (resp. a rational polytope s.t. $C + K_X + A$ is contained in the big cone).

Then the set of isomorphism classes

$$\{Y|Y \text{ is a WLCM for } (X, \Delta + A) \text{ over } U; \Delta + A \in \mathcal{C}\}$$

is finite.

- Claim 1. Theorems A_{n-1} , B_{n-1} and C_{n-1} imply Theorem A_n
- Claim 2. Theorem A_n implies Theorem C_n^- ,
- Claim 3. Theorem A_n and Theorem C_n^- imply Theorem B_n ,

• Thm C. (resp. C⁻) (Finiteness of models.) Fix A an ample divisor over U. Suppose that there exists a divisor Δ_0 such that $K_X + \Delta_0$ is KLT.

Let $C \subset \{\Delta | K_X + \Delta + A \text{ is log canonical}\}\$ be a rational polytope (resp. a rational polytope s.t. $C + K_X + A$ is contained in the big cone).

Then the set of isomorphism classes

$$\{Y|Y \text{ is a WLCM for } (X, \Delta + A) \text{ over } U; \Delta + A \in \mathcal{C}\}$$

is finite.

- Claim 1. Theorems A_{n-1} , B_{n-1} and C_{n-1} imply Theorem A_n
- Claim 2. Theorem A_n implies Theorem C_n ,
- Claim 3. Theorem A_n and Theorem C_n^- imply Theorem B_n .
- Claim 4. Theorem A_n and Theorem B_n imply Theorem C_n .

Remarks

• This is joint work with C. Birkar, P. Cascini and J. McKernan.

Remarks

- This is joint work with C. Birkar, P. Cascini and J. McKernan.
- ullet We work over the field of complex numbers $\mathbb C$.

Remarks

- This is joint work with C. Birkar, P. Cascini and J. McKernan.
- ullet We work over the field of complex numbers $\mathbb C.$
- Throughout the proof I will usually assume for simplicity that $U = \operatorname{Spec} \mathbb{C}$.

- 1 The structure of the proof
- 2 The directed MMP
- 3 Existence of models
- 4 Finiteness of models
- 5 Non-vanishing

• The main idea of the proof of Claim 1 is to show that any sequence of flips with scaling terminate.

- The main idea of the proof of Claim 1 is to show that any sequence of flips with scaling terminate.
- To run the MMP with scaling, assume that X is \mathbb{Q} -factorial, (X, Δ) is KLT and $C \geq 0$ is an \mathbb{R} -divisor such that $K_X + \Delta + C$ is nef and KLT.

- The main idea of the proof of Claim 1 is to show that any sequence of flips with scaling terminate.
- To run the MMP with scaling, assume that X is \mathbb{Q} -factorial, (X, Δ) is KLT and $C \geq 0$ is an \mathbb{R} -divisor such that $K_X + \Delta + C$ is nef and KLT.
- Let $\lambda = \inf\{t \geq 0 | K_X + \Delta + tC\}$ is nef

- The main idea of the proof of Claim 1 is to show that any sequence of flips with scaling terminate.
- To run the MMP with scaling, assume that X is \mathbb{Q} -factorial, (X, Δ) is KLT and $C \geq 0$ is an \mathbb{R} -divisor such that $K_X + \Delta + C$ is nef and KLT.
- Let $\lambda = \inf\{t \geq 0 | K_X + \Delta + tC\}$ is nef
- If $\lambda=0$ we STOP. Otherwise there is an extremal ray R such that $(K_X+\Delta+\lambda C)\cdot R=0$ and $(K_X+\Delta+tC)\cdot R<0$ for all $0\leq t<\lambda$.

- The main idea of the proof of Claim 1 is to show that any sequence of flips with scaling terminate.
- To run the MMP with scaling, assume that X is \mathbb{Q} -factorial, (X, Δ) is KLT and $C \geq 0$ is an \mathbb{R} -divisor such that $K_X + \Delta + C$ is nef and KLT.
- Let $\lambda = \inf\{t \geq 0 | K_X + \Delta + tC\}$ is nef
- If $\lambda=0$ we STOP. Otherwise there is an extremal ray R such that $(K_X+\Delta+\lambda C)\cdot R=0$ and $(K_X+\Delta+tC)\cdot R<0$ for all $0\leq t\leq \lambda$.
- If the contraction induced by *R* is not birational, we have a Mori fiber space and we STOP.

- The main idea of the proof of Claim 1 is to show that any sequence of flips with scaling terminate.
- To run the MMP with scaling, assume that X is \mathbb{Q} -factorial, (X, Δ) is KLT and $C \geq 0$ is an \mathbb{R} -divisor such that $K_X + \Delta + C$ is nef and KLT.
- Let $\lambda = \inf\{t \geq 0 | K_X + \Delta + tC\}$ is nef
- If $\lambda=0$ we STOP. Otherwise there is an extremal ray R such that $(K_X+\Delta+\lambda C)\cdot R=0$ and $(K_X+\Delta+tC)\cdot R<0$ for all $0< t<\lambda$.
- If the contraction induced by R is not birational, we have a Mori fiber space and we STOP.
- If the contraction induced by R is birational, we replace X by the corresponding flip/divisorial contraction and repeat the procedure.

• The advantage is that for each flip $\phi: X \dashrightarrow X^+$ there is a λ such that $K_X + \Delta + \lambda C$ is nef and hence X is a log terminal model.

- The advantage is that for each flip $\phi: X \dashrightarrow X^+$ there is a λ such that $K_X + \Delta + \lambda C$ is nef and hence X is a log terminal model.
- Thm C_n says that there are only finitely many such models (under appropriate hypothesis) and so we expect that these flips should terminate.

- The advantage is that for each flip $\phi: X \dashrightarrow X^+$ there is a λ such that $K_X + \Delta + \lambda C$ is nef and hence X is a log terminal model.
- Thm C_n says that there are only finitely many such models (under appropriate hypothesis) and so we expect that these flips should terminate.
- In terms of our induction, we are only allowed to assume Thm C_{n-1} and this makes the proof more technical. (An analog of special termination will be required.)

- The structure of the proof
- 2 The directed MMP
- 3 Existence of models
- 4 Finiteness of models
- Mon-vanishing

• Throughout the remainder of the talk, we will assume that Thms A_{n-1} , B_{n-1} , C_{n-1} hold so that in particular PL-flips exist in dimension n.

- Throughout the remainder of the talk, we will assume that Thms A_{n-1} , B_{n-1} , C_{n-1} hold so that in particular PL-flips exist in dimension n.
- Lemma. Suppose that

$$K_X + \Delta = K_X + S + A + B$$

is DLT where A is ample and $B \ge 0$.

Then any sequence of flips $X=X_1 \dashrightarrow X_2 \dashrightarrow X_3 \cdots$ for the $K_X + \Delta$ -MMP with scaling is eventually disjoint from $S=[\Delta]$.

- Throughout the remainder of the talk, we will assume that Thms A_{n-1} , B_{n-1} , C_{n-1} hold so that in particular PL-flips exist in dimension n.
- Lemma. Suppose that

$$K_X + \Delta = K_X + S + A + B$$

is DLT where A is ample and $B \ge 0$. Then any sequence of flips $X = X_1 \dashrightarrow X_2 \dashrightarrow X_3 \cdots$ for the $K_X + \Delta$ -MMP with scaling is eventually disjoint from $S = [\Delta]$.

• **Proof.** We may assume that S is irreducible and that the induced maps $S_i \longrightarrow S_{i+1}$ are isomorphisms in codim. 1.

- Throughout the remainder of the talk, we will assume that Thms A_{n-1} , B_{n-1} , C_{n-1} hold so that in particular PL-flips exist in dimension n.
- Lemma. Suppose that

$$K_X + \Delta = K_X + S + A + B$$

is DLT where A is ample and $B \ge 0$. Then any sequence of flips $X = X_1 \longrightarrow X_2 \longrightarrow X_3 \cdots$ for the $K_X + \Delta$ -MMP with scaling is eventually disjoint from $S = [\Delta]$.

- **Proof.** We may assume that S is irreducible and that the induced maps $S_i \dashrightarrow S_{i+1}$ are isomorphisms in codim. 1.
- We write $(K_{X_i} + \Delta_i)|_{S_i} = K_{S_i} + \Theta_i$.

• Note that as we may assume that all S_i are isomorphic in codimension 1, then Θ_i is just the strict transform of Θ_1 .

- Note that as we may assume that all S_i are isomorphic in codimension 1, then Θ_i is just the strict transform of Θ_1 .
- The $K_{S_i} + \Theta_i + \lambda_i C|_{S_i}$ are weak log canonical models of $K_{S_1} + \Theta_1 + \lambda_i C|_{S_1}$ where $0 \le \lambda \le 1$.

- Note that as we may assume that all S_i are isomorphic in codimension 1, then Θ_i is just the strict transform of Θ_1 .
- The $K_{S_i} + \Theta_i + \lambda_i C|_{S_i}$ are weak log canonical models of $K_{S_1} + \Theta_1 + \lambda_i C|_{S_1}$ where $0 \le \lambda \le 1$.
- By Thm C_{n-1} there are only finitely many distinct pairs (S_i, Θ_i) .

- Note that as we may assume that all S_i are isomorphic in codimension 1, then Θ_i is just the strict transform of Θ_1 .
- The $K_{S_i} + \Theta_i + \lambda_i C|_{S_i}$ are weak log canonical models of $K_{S_1} + \Theta_1 + \lambda_i C|_{S_1}$ where $0 \le \lambda \le 1$.
- By Thm C_{n-1} there are only finitely many distinct pairs (S_i, Θ_i) .
- If Σ_i is a flipping curve for $X_i \longrightarrow X_{i+1}$ that intersects S_i , then either $\Sigma_i \subset S_i$ or $\Sigma_i \cdot S_i > 0$ in which case the flipped curves are contained in S_{i+1} . This means that there is a center ν such that $a(\nu, S_i, \Theta_i) < a(\nu, S_{i+1}, \Theta_{i+1})$.

- Note that as we may assume that all S_i are isomorphic in codimension 1, then Θ_i is just the strict transform of Θ_1 .
- The $K_{S_i} + \Theta_i + \lambda_i C|_{S_i}$ are weak log canonical models of $K_{S_1} + \Theta_1 + \lambda_i C|_{S_1}$ where $0 \le \lambda \le 1$.
- By Thm C_{n-1} there are only finitely many distinct pairs (S_i, Θ_i) .
- If Σ_i is a flipping curve for $X_i \longrightarrow X_{i+1}$ that intersects S_i , then either $\Sigma_i \subset S_i$ or $\Sigma_i \cdot S_i > 0$ in which case the flipped curves are contained in S_{i+1} . This means that there is a center ν such that $a(\nu, S_i, \Theta_i) < a(\nu, S_{i+1}, \Theta_{i+1})$.
- Since $a(\nu, S_{i+1}, \Theta_{i+1}) \leq a(\nu, S_j, \Theta_j)$ then $S_j \ncong S_i$ for all j > i. But there are only finitely many models S_j and so the flips are eventually disjoint from S_i .

- Proof of Claim 1.
- Recall that $K_X + \Delta \sim_{\mathbb{R}} D \ge 0$ and write D = M + F where $\operatorname{Supp}(F) \subset \operatorname{SBs}(K_X + \Delta)$ and M is mobile.

- Proof of Claim 1.
- Recall that $K_X + \Delta \sim_{\mathbb{R}} D \ge 0$ and write D = M + F where $\operatorname{Supp}(F) \subset \operatorname{SBs}(K_X + \Delta)$ and M is mobile.
- We may assume that X is smooth, $\Delta + D$ has simple normal crossings, $\Delta = A + B$ where A is ample and $B \ge 0$ and $\Delta \wedge M = 0$. (I.e. Δ and M have no common components.)

- Proof of Claim 1.
- Recall that $K_X + \Delta \sim_{\mathbb{R}} D \ge 0$ and write D = M + F where $\operatorname{Supp}(F) \subset \operatorname{SBs}(K_X + \Delta)$ and M is mobile.
- We may assume that X is smooth, $\Delta + D$ has simple normal crossings, $\Delta = A + B$ where A is ample and $B \ge 0$ and $\Delta \wedge M = 0$. (I.e. Δ and M have no common components.)
- For simplicity assume that *M* is irreducible (this avoids some linear algebra).

- Proof of Claim 1.
- Recall that $K_X + \Delta \sim_{\mathbb{R}} D \ge 0$ and write D = M + F where $\operatorname{Supp}(F) \subset \operatorname{SBs}(K_X + \Delta)$ and M is mobile.
- We may assume that X is smooth, $\Delta + D$ has simple normal crossings, $\Delta = A + B$ where A is ample and $B \ge 0$ and $\Delta \wedge M = 0$. (I.e. Δ and M have no common components.)
- For simplicity assume that M is irreducible (this avoids some linear algebra).
- Set $\Theta = \operatorname{Supp}(M+F) \vee \Delta = S+A+B'$ where $0 \leq B' \leq B$. (If $G = \sum g_i G_i$, $G' = \sum g_i' G_i$ then $G \vee G' := \sum \max\{g_i, g_i'\} G_i$.)

- we will perform a sequence of flips/contractions (for various divisors $\Theta_i \geq \Delta$) such that:
 - 1) the induced rational map $\phi: X \dashrightarrow Y$ only contracts divisors in $SBs(K_X + \Delta)$, and
 - 2) $K_Y + \Gamma$ is nef for some divisor $\Gamma = \phi_*(\Delta + \Phi)$ where $\operatorname{Supp}(\Phi) \subset \operatorname{SBs}(K_X + \Delta)$.

- we will perform a sequence of flips/contractions (for various divisors $\Theta_i \geq \Delta$) such that:
 - 1) the induced rational map $\phi: X \dashrightarrow Y$ only contracts divisors in $SBs(K_X + \Delta)$, and
 - 2) $K_Y + \Gamma$ is nef for some divisor $\Gamma = \phi_*(\Delta + \Phi)$ where $\operatorname{Supp}(\Phi) \subset \operatorname{SBs}(K_X + \Delta)$.
- It is then not hard to show that Y is a log terminal model for (X, Δ) .

• Pick H a sufficiently ample divisor and run the $K_X + \Theta$ MMP with scaling of H.

- Pick H a sufficiently ample divisor and run the $K_X + \Theta$ MMP with scaling of H.
- Recall that $\Theta = S + A + B'$ where $S = \operatorname{Supp}(M + F)$ and $0 \le B' \le B$. Moreover, $\Theta = \Delta + \Psi$ with $0 \le \Psi \le \operatorname{Supp}(M + F) = S$.

- Pick H a sufficiently ample divisor and run the $K_X + \Theta$ MMP with scaling of H.
- Recall that $\Theta = S + A + B'$ where $S = \operatorname{Supp}(M + F)$ and $0 \le B' \le B$. Moreover, $\Theta = \Delta + \Psi$ with $0 \le \Psi \le \operatorname{Supp}(M + F) = S$.
- Let C be a flipping curve. We have

$$0 > (K_X + \Theta) \cdot C = (D + \Psi) \cdot C$$

and so the flipping locus is contained in S.

- Pick H a sufficiently ample divisor and run the $K_X + \Theta$ MMP with scaling of H.
- Recall that $\Theta = S + A + B'$ where $S = \operatorname{Supp}(M + F)$ and $0 \le B' \le B$. Moreover, $\Theta = \Delta + \Psi$ with $0 \le \Psi \le \operatorname{Supp}(M + F) = S$.
- Let C be a flipping curve. We have

$$0 > (K_X + \Theta) \cdot C = (D + \Psi) \cdot C$$

and so the flipping locus is contained in S.

• Therefore, this is a sequence of PL-flips that must terminate and we may assume that $K_X + \Theta$ is nef.

 \bullet We wish to remove M, so we write

$$K_X + S + A + B' = K_X + F_{\rm red} + A + B' + M_{\rm red}$$

and we run a MMP with scaling of $M_{\rm red}$.

• We wish to remove M, so we write

$$K_X + S + A + B' = K_X + F_{\text{red}} + A + B' + M_{\text{red}}$$

and we run a MMP with scaling of $M_{\rm red}$.

ullet By a similar argument to the one above, the flipping locus is always contaned in $F_{\rm red}$ so that this is a sequence of PL-flips that must terminate.

• We wish to remove M, so we write

$$K_X + S + A + B' = K_X + F_{red} + A + B' + M_{red}$$

and we run a MMP with scaling of $M_{\rm red}$.

- ullet By a similar argument to the one above, the flipping locus is always contaned in $F_{\rm red}$ so that this is a sequence of PL-flips that must terminate.
- Therefore, we have a model where $K_X + S + A + B' = K_X + \Delta + \Phi$ is nef and $\Phi \subset \operatorname{SBs}(K_X + \Delta)$. As remarked above, this is a log terminal model of (X, Δ) .

Outline of the talk

- 1 The structure of the proof
- 2 The directed MMP
- 3 Existence of models
- 4 Finiteness of models
- 5 Non-vanishing

Proof of Claims 2 and 4

• In proving Thm C (resp. C-), we need to know that for any pseudo-effective class $K_X + \Delta$ that we consider, there is an effective divisor $D \geq 0$ such that $K_X + \Delta \sim_{\mathbb{R}} D$.

Proof of Claims 2 and 4

- In proving Thm C (resp. C-), we need to know that for any pseudo-effective class $K_X + \Delta$ that we consider, there is an effective divisor D > 0 such that $K_X + \Delta \sim_{\mathbb{R}} D$.
- This will hold as we are assuming Thm B (resp. we are assuming that $K_X + \Delta$ is big).

Proof of Claims 2 and 4

- In proving Thm C (resp. C-), we need to know that for any pseudo-effective class $K_X + \Delta$ that we consider, there is an effective divisor $D \geq 0$ such that $K_X + \Delta \sim_{\mathbb{R}} D$.
- This will hold as we are assuming Thm B (resp. we are assuming that $K_X + \Delta$ is big).
- We will just show that there exists an integer k > 0 and rational maps $\phi_i : X \dashrightarrow Y_i$ such that if $\Delta \in \mathcal{C}$ is pseudo-effective then there is an integer i with $1 \le i \le k$ such that ϕ_i is a log terminal model for (X, Δ) .

 \bullet Since ${\cal C}$ is compact and the pseudo-effective cone is closed, we may work locally in a neighborhood

$$\Delta_0 \in U \subset \mathcal{C} \cap PSEF$$
.

 \bullet Since ${\cal C}$ is compact and the pseudo-effective cone is closed, we may work locally in a neighborhood

$$\Delta_0 \in U \subset \mathcal{C} \cap PSEF$$
.

• Let $\phi: X \dashrightarrow Y$ be a log terminal model of $K_X + \Delta_0$.

ullet Since ${\cal C}$ is compact and the pseudo-effective cone is closed, we may work locally in a neighborhood

$$\Delta_0 \in U \subset \mathcal{C} \cap PSEF$$
.

- Let $\phi: X \dashrightarrow Y$ be a log terminal model of $K_X + \Delta_0$.
- ϕ is $K_X + \Delta_0$ negative in the sense that for any exceptional divisor $E \subset X$, $a(E, X, \Delta_0) < a(E, Y, \phi_*\Delta_0)$.

ullet Since ${\cal C}$ is compact and the pseudo-effective cone is closed, we may work locally in a neighborhood

$$\Delta_0 \in U \subset \mathcal{C} \cap PSEF$$
.

- Let $\phi: X \dashrightarrow Y$ be a log terminal model of $K_X + \Delta_0$.
- ϕ is $K_X + \Delta_0$ negative in the sense that for any exceptional divisor $E \subset X$, $a(E, X, \Delta_0) < a(E, Y, \phi_* \Delta_0)$.
- So after shrinking U, we have that ϕ is $K_X + \Delta$ negative for all $\Delta \in U$.

ullet Since ${\cal C}$ is compact and the pseudo-effective cone is closed, we may work locally in a neighborhood

$$\Delta_0 \in U \subset \mathcal{C} \cap PSEF$$
.

- Let $\phi: X \dashrightarrow Y$ be a log terminal model of $K_X + \Delta_0$.
- ϕ is $K_X + \Delta_0$ negative in the sense that for any exceptional divisor $E \subset X$, $a(E, X, \Delta_0) < a(E, Y, \phi_*\Delta_0)$.
- So after shrinking U, we have that ϕ is $K_X + \Delta$ negative for all $\Delta \in U$.
- ullet So we may replace X by Y and assume that $\mathcal{K}_X + \Delta_0$ is nef.

ullet Since ${\mathcal C}$ is compact and the pseudo-effective cone is closed, we may work locally in a neighborhood

$$\Delta_0 \in U \subset \mathcal{C} \cap PSEF$$
.

- Let $\phi: X \dashrightarrow Y$ be a log terminal model of $K_X + \Delta_0$.
- ϕ is $K_X + \Delta_0$ negative in the sense that for any exceptional divisor $E \subset X$, $a(E, X, \Delta_0) < a(E, Y, \phi_* \Delta_0)$.
- So after shrinking U, we have that ϕ is $K_X + \Delta$ negative for all $\Delta \in U$.
- ullet So we may replace X by Y and assume that $\mathcal{K}_X + \Delta_0$ is nef.
- In particular, as Δ_0 is big, by the base point free theorem, $K_X + \Delta_0 = f^*H$ for some morphism $f: X \to Z$ and some ample \mathbb{R} -divisor H on Z.

• Since $\mathcal C$ is a rational polytope, we may assume that U is a rational polytope and so by induction on the dimension (of the affine space spanned by the polytope) there exist finitely many rational maps $\phi_i: X \dashrightarrow Y_i$ over Z such that for all $\Delta \in \partial \mathcal C \cap \mathrm{PSEF}(X/Z)$ then ϕ_i is a log terminal model of (X, Δ) for some $1 \le i \le k$.

ullet We have seen that $K_X + \Delta_0 = f^*H$ and $K_X + \Delta_0 \sim_{\mathbb{R},Z} 0$

- ullet We have seen that $K_X + \Delta_0 = f^*H$ and $K_X + \Delta_0 \sim_{\mathbb{R},Z} 0$
- Further shrinking U, we may assume that for all $\Delta \in U$ $K_X + \Delta$ is nef if and only if $K_X + \Delta$ is nef/Z.

- ullet We have seen that $K_X + \Delta_0 = f^*H$ and $K_X + \Delta_0 \sim_{\mathbb{R},Z} 0$
- Further shrinking U, we may assume that for all $\Delta \in U$ $K_X + \Delta$ is nef if and only if $K_X + \Delta$ is nef/Z.
- Let $\Delta_0 \in \partial U$. For any $\Theta \in [\Delta_0, \Delta]$, we have

$$\Theta - \Delta_0 = (K_X + \Theta) - (K_X + \Delta_0) \sim_{\mathbb{R}, Z} (K_X + \Theta)$$

so that $\Theta-\Delta_0$ is PSEF/Z iff $K_X+\Theta$ is PSEF/Z iff $K_X+\Delta$ is PSEF/Z.

Proof of Claims 2 and 4 cont.

- ullet We have seen that $K_X + \Delta_0 = f^*H$ and $K_X + \Delta_0 \sim_{\mathbb{R},Z} 0$
- Further shrinking U, we may assume that for all $\Delta \in U$ $K_X + \Delta$ is nef if and only if $K_X + \Delta$ is nef/Z.
- Let $\Delta_0 \in \partial U$. For any $\Theta \in [\Delta_0, \Delta]$, we have

$$\Theta - \Delta_0 = (K_X + \Theta) - (K_X + \Delta_0) \sim_{\mathbb{R}, Z} (K_X + \Theta)$$

so that $\Theta - \Delta_0$ is PSEF/Z iff $K_X + \Theta$ is PSEF/Z iff $K_X + \Delta$ is PSEF/Z.

• If $K_X + \Theta$ is PSEF then it is PSEF/Z and so $K_X + \Delta$ is PSEF/Z. A log terminal model/Z of $K_X + \Delta$ is a log terminal model/Z of $K_X + \Theta$ and hence it is a log terminal model of $K_X + \Theta$.

Outline of the talk

- 1 The structure of the proof
- 2 The directed MMP
- 3 Existence of models
- 4 Finiteness of models
- Mon-vanishing

• We may assume that $\Delta = A + B$ has simple normal crossings, A is ample and $B \ge 0$.

- We may assume that $\Delta = A + B$ has simple normal crossings, A is ample and $B \ge 0$.
- If for any fixed $k \gg 0$ sufficiently divisible,

$$h^0(\mathcal{O}_X([mk(K_X+\Delta)]+kA))$$

is a bounded function of m, then by a result of Nakayama, we have $K_X + \Delta \equiv N_\sigma \geq 0$. Recall that $N_\sigma = N_\sigma(K_X + \Delta)$ is the limit as $\epsilon \to 0$ of divisors in $\mathrm{SBs}(K_X + \Delta + \epsilon A)$.

- We may assume that $\Delta = A + B$ has simple normal crossings, A is ample and $B \ge 0$.
- If for any fixed $k \gg 0$ sufficiently divisible,

$$h^0(\mathcal{O}_X([mk(K_X+\Delta)]+kA))$$

is a bounded function of m, then by a result of Nakayama, we have $K_X + \Delta \equiv N_{\sigma} \geq 0$. Recall that $N_{\sigma} = N_{\sigma}(K_X + \Delta)$ is the limit as $\epsilon \to 0$ of divisors in $\mathrm{SBs}(K_X + \Delta + \epsilon A)$.

• So $A' \sim_{\mathbb{R}} A + N_{\sigma} - (K_X + \Delta)$ is ample and $K_X + A' + B \sim_{\mathbb{R}} N_{\sigma} \geq 0$ and hence $K_X + A' + B$ has a log terminal model which is also a log terminal model for $K_X + A + B$.

- We may assume that $\Delta = A + B$ has simple normal crossings, A is ample and $B \ge 0$.
- If for any fixed $k \gg 0$ sufficiently divisible,

$$h^0(\mathcal{O}_X([mk(K_X+\Delta)]+kA))$$

is a bounded function of m, then by a result of Nakayama, we have $K_X + \Delta \equiv N_\sigma \geq 0$. Recall that $N_\sigma = N_\sigma(K_X + \Delta)$ is the limit as $\epsilon \to 0$ of divisors in $\mathrm{SBs}(K_X + \Delta + \epsilon A)$.

- So $A' \sim_{\mathbb{R}} A + N_{\sigma} (K_X + \Delta)$ is ample and $K_X + A' + B \sim_{\mathbb{R}} N_{\sigma} \geq 0$ and hence $K_X + A' + B$ has a log terminal model which is also a log terminal model for $K_X + A + B$.
- By the base point free theorem $K_X + A + B \sim_{\mathbb{R}} D \geq 0$.

• Claim. If $h^0(\mathcal{O}_X([mk(K_X+\Delta)]+kA))$ is not bounded, then we may assume that $\Delta=S+A+B$ where $[\Delta]=S$, A is ample, $S \not\subset N_\sigma(K_X+\Delta)$.

- Claim. If $h^0(\mathcal{O}_X([mk(K_X+\Delta)]+kA))$ is not bounded, then we may assume that $\Delta=S+A+B$ where $[\Delta]=S, A$ is ample, $S \not\subset N_\sigma(K_X+\Delta)$.
- **Proof.** Pick $H \sim_{\mathbb{R}} m(K_X + \Delta) + A$ with $\operatorname{mult}_x(H) > n$ for some general $x \in X$.

- Claim. If $h^0(\mathcal{O}_X([mk(K_X+\Delta)]+kA))$ is not bounded, then we may assume that $\Delta=S+A+B$ where $[\Delta]=S$, A is ample, $S \not\subset N_\sigma(K_X+\Delta)$.
- **Proof.** Pick $H \sim_{\mathbb{R}} m(K_X + \Delta) + A$ with $\operatorname{mult}_x(H) > n$ for some general $x \in X$.
- For $t \in [0, m]$ consider

$$(t+1)(K_X + \Delta) = K_X + \frac{m-t}{m}A + B + t(K_X + \Delta + \frac{1}{m}A) \sim_{\mathbb{R}}$$

$$K_X + \frac{m-t}{m}A + B + \frac{t}{m}H = K_X + \Delta_t.$$

• Then for some $0 < \epsilon \ll 1$ we have $K_X + \Delta_0$ is KLT; $\Delta_t \ge A' = (\epsilon/m)A$ for $t \in [0, m - \epsilon]$, and $K_X + \Delta_{m - \epsilon}$ has a log canonical center not contained in $\mathrm{SBs}(K_X + \Delta)$.

- Then for some $0 < \epsilon \ll 1$ we have $K_X + \Delta_0$ is KLT; $\Delta_t \ge A' = (\epsilon/m)A$ for $t \in [0, m \epsilon]$, and $K_X + \Delta_{m-\epsilon}$ has a log canonical center not contained in $\mathrm{SBs}(K_X + \Delta)$.
- We pass to a log resolution $\pi: Y \to X$ and write

$$K_Y + \Gamma_t = \pi^*(K_X + \Delta_t) + E_t$$

and we then cancel common components of Γ_t and $\mathrm{SBs}(\pi^*(K_X + \Delta_t))$. The claim now follows easily.

• We now run a $K_X + S + A + B$ MMP with scaling of (some multiple of) A.

- We now run a $K_X + S + A + B$ MMP with scaling of (some multiple of) A.
- For $0 < t \ll 1$ we get log terminal models $\phi_t : X \dashrightarrow Y_t$ of $K_X + S + A + B + tA$ and $S \dashrightarrow T_t$.

- We now run a $K_X + S + A + B$ MMP with scaling of (some multiple of) A.
- For $0 < t \ll 1$ we get log terminal models $\phi_t : X \dashrightarrow Y_t$ of $K_X + S + A + B + tA$ and $S \dashrightarrow T_t$.
- S is not contained in $SBs(K_X + S + A + B)$ and so it is not contracted.

- We now run a $K_X + S + A + B$ MMP with scaling of (some multiple of) A.
- For $0 < t \ll 1$ we get log terminal models $\phi_t : X \dashrightarrow Y_t$ of $K_X + S + A + B + tA$ and $S \dashrightarrow T_t$.
- S is not contained in $SBs(K_X + S + A + B)$ and so it is not contracted.
- We would like to say that for $0 < t \ll 1$, we have $Y_t \cong Y$ a log terminal model of $K_X + S + A + B$. Then by the base point free theorem, $K_X + S + A + B \sim_{\mathbb{R}} D \geq 0$.

- We now run a $K_X + S + A + B$ MMP with scaling of (some multiple of) A.
- For $0 < t \ll 1$ we get log terminal models $\phi_t : X \dashrightarrow Y_t$ of $K_X + S + A + B + tA$ and $S \dashrightarrow T_t$.
- S is not contained in $SBs(K_X + S + A + B)$ and so it is not contracted.
- We would like to say that for $0 < t \ll 1$, we have $Y_t \cong Y$ a log terminal model of $K_X + S + A + B$. Then by the base point free theorem, $K_X + S + A + B \sim_{\mathbb{R}} D \geq 0$.
- We can only conclude that $T_t \subset Y_t \cong T \subset Y$ in a neighborhood of T_t .

- We now run a $K_X + S + A + B$ MMP with scaling of (some multiple of) A.
- For $0 < t \ll 1$ we get log terminal models $\phi_t : X \dashrightarrow Y_t$ of $K_X + S + A + B + tA$ and $S \dashrightarrow T_t$.
- S is not contained in $SBs(K_X + S + A + B)$ and so it is not contracted.
- We would like to say that for $0 < t \ll 1$, we have $Y_t \cong Y$ a log terminal model of $K_X + S + A + B$. Then by the base point free theorem, $K_X + S + A + B \sim_{\mathbb{R}} D \geq 0$.
- We can only conclude that $T_t \subset Y_t \cong T \subset Y$ in a neighborhood of T_t .
- So $K_T + \Theta = (K_{Y_t} + \Gamma_t)|_T$ is nef, Θ is big and hence $K_T + \Theta$ is semiample.

• We want to lift sections of $K_T + \Theta$.

- We want to lift sections of $K_T + \Theta$.
- For simplicity assume $K_X + \Delta$ is Q-Cartier (this avoids a diophantine approximation argument).

- We want to lift sections of $K_T + \Theta$.
- For simplicity assume $K_X + \Delta$ is Q-Cartier (this avoids a diophantine approximation argument).
- We may then assume that for some integer m>0, we have $m(K_X+\Delta)$ is integral Weil, $m(K_Y+\Gamma)$ is Cartier in a neighborhood of T and $h^0(m(K_T+\Theta))>0$,

- We want to lift sections of $K_T + \Theta$.
- For simplicity assume $K_X + \Delta$ is Q-Cartier (this avoids a diophantine approximation argument).
- We may then assume that for some integer m>0, we have $m(K_X+\Delta)$ is integral Weil, $m(K_Y+\Gamma)$ is Cartier in a neighborhood of T and $h^0(m(K_T+\Theta))>0$,
- Then we look at the corresponding short exact sequence and apply Kawamata-Viehweg vanishing:

We have

$$0 \to \mathcal{O}_{Y_t}(m(K_{Y_t} + \Gamma) - T) \to \mathcal{O}_{Y_t}(m(K_{Y_t} + \Gamma))$$
$$\to \mathcal{O}_T(m(K_T + \Theta)) \to 0.$$

We have

$$0 \to \mathcal{O}_{Y_t}(m(K_{Y_t} + \Gamma) - T) \to \mathcal{O}_{Y_t}(m(K_{Y_t} + \Gamma))$$
$$\to \mathcal{O}_T(m(K_T + \Theta)) \to 0.$$

• Then $K_{Y_t} + \Gamma - T - (m-1)tA$ is KLT (for $0 < t \ll 1$) and $(m-1)(K_{Y_t} + \Gamma + tA)$ is nef and big.

We have

$$0 \to \mathcal{O}_{Y_t}(m(K_{Y_t} + \Gamma) - T) \to \mathcal{O}_{Y_t}(m(K_{Y_t} + \Gamma))$$
$$\to \mathcal{O}_T(m(K_T + \Theta)) \to 0.$$

- Then $K_{Y_t} + \Gamma T (m-1)tA$ is KLT (for $0 < t \ll 1$) and $(m-1)(K_{Y_t} + \Gamma + tA)$ is nef and big.
- By Kawamata-Viehweg vanishing, we may lift sections to $m(K_{Y}, +\Gamma)$.

We have

$$0 \to \mathcal{O}_{Y_t}(m(K_{Y_t} + \Gamma) - T) \to \mathcal{O}_{Y_t}(m(K_{Y_t} + \Gamma))$$
$$\to \mathcal{O}_T(m(K_T + \Theta)) \to 0.$$

- Then $K_{Y_t} + \Gamma T (m-1)tA$ is KLT (for $0 < t \ll 1$) and $(m-1)(K_{Y_t} + \Gamma + tA)$ is nef and big.
- By Kawamata-Viehweg vanishing, we may lift sections to $m(K_{Y_t} + \Gamma)$.
- It is easy to see that these sections lift to sections of $K_X + \Delta$.

