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The rough structure of the proof

@ Recall that there are 3 main theorems we have to prove:
@ Thm A. Existence of log terminal models
@ Thm B. Nonvanishing

@ Thm C. Finiteness of models
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Recall that there are 3 main theorems we have to prove:
Thm A. Existence of log terminal models

Thm B. Nonvanishing

Thm C. Finiteness of models

Roughly speaking we would like to show that:
An-1+Bp 1+C,y 1 imply Ag;
Bn—1+Cho1+A, imply Bp;

Cho_1+As+B, imply C,.
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Recall that there are 3 main theorems we have to prove:
Thm A. Existence of log terminal models

Thm B. Nonvanishing

Thm C. Finiteness of models

Roughly speaking we would like to show that:

An-1+Bp 1+C,y 1 imply Ag;

Bn_1+Cho1+A, imply Bp;

Ch_1+As+B, imply C,.

@ We will use the fact that by a result of Hacon-M“Kernan,
An_1+B,_1+C,_1 imply that PL-flips exist in dimension n.
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@ We now recall the precise statements of Thm's A, B, C:

@ Let m: X — U be a projective morphism of normal
quasi-projective varieties, where dim(X) = n.
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@ We now recall the precise statements of Thm's A, B, C:

@ Let m: X — U be a projective morphism of normal
quasi-projective varieties, where dim(X) = n.

@ Thm A. (Existence of log terminal models.) Suppose that
Kx + A is KLT and A is big over U.
If Kx + A ~gy D >0, then Kx + A has a log terminal
model over U.
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@ We now recall the precise statements of Thm's A, B, C:

@ Let m: X — U be a projective morphism of normal
quasi-projective varieties, where dim(X) = n.

@ Thm A. (Existence of log terminal models.) Suppose that
Kx + A is KLT and A is big over U.
If Kx + A ~gy D >0, then Kx + A has a log terminal
model over U.

@ Thm B. (Non-vanishing.) Suppose that Kx + A is KLT and
A is big over U.
If Kx + A is m-pseudo-effective over U, then there is an
effective R-divisor D such that Kx + A ~g y D.
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The structure of the proof Il

@ Thm C. (resp. C ) (Finiteness of models.) Fix A an ample
divisor over U. Suppose that there exists a divisor Ay such
that Kx + Ag is KLT.

Let C C {A|Kx + A+ A is log canonical} be a rational
polytope (resp. a rational polytope s.t. C + Kx + A is
contained in the big cone).

Then the set of isomorphism classes

{Y|Y is a WLCM for (X,A + A) over U; A+ A€}

is finite.
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The structure of the proof Il

@ Thm C. (resp. C ) (Finiteness of models.) Fix A an ample
divisor over U. Suppose that there exists a divisor Ay such
that Kx + Ag is KLT.

Let C C {A|Kx + A+ A is log canonical} be a rational
polytope (resp. a rational polytope s.t. C + Kx + A is
contained in the big cone).

Then the set of isomorphism classes

{Y|Y is a WLCM for (X,A + A) over U; A+ A€}
is finite.
@ Claim 1. Theorems A,_1, B,_1 and C,_; imply Theorem A,
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@ Thm C. (resp. C ) (Finiteness of models.) Fix A an ample
divisor over U. Suppose that there exists a divisor Ay such
that Kx + Ag is KLT.

Let C C {A|Kx + A+ A is log canonical} be a rational
polytope (resp. a rational polytope s.t. C + Kx + A is
contained in the big cone).

Then the set of isomorphism classes

{Y|Y is a WLCM for (X,A + A) over U; A+ A€}
is finite.
@ Claim 1. Theorems A,_1, B,_1 and C,_; imply Theorem A,
o Claim 2. Theorem A, implies Theorem C_,
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@ Thm C. (resp. C ) (Finiteness of models.) Fix A an ample
divisor over U. Suppose that there exists a divisor Ay such
that Kx + Ag is KLT.

Let C C {A|Kx + A+ A is log canonical} be a rational
polytope (resp. a rational polytope s.t. C + Kx + A is
contained in the big cone).

Then the set of isomorphism classes

{Y|Y is a WLCM for (X,A + A) over U; A+ A€}
is finite.
@ Claim 1. Theorems A,_1, B,_1 and C,_; imply Theorem A,

o Claim 2. Theorem A, implies Theorem C_,
@ Claim 3. Theorem A, and Theorem C, imply Theorem B,
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@ Thm C. (resp. C ) (Finiteness of models.) Fix A an ample
divisor over U. Suppose that there exists a divisor Ay such
that Kx + Ag is KLT.

Let C C {A|Kx + A+ A is log canonical} be a rational
polytope (resp. a rational polytope s.t. C + Kx + A is
contained in the big cone).

Then the set of isomorphism classes

{Y|Y is a WLCM for (X,A + A) over U; A+ A€}
is finite.
@ Claim 1. Theorems A,_1, B,_1 and C,_; imply Theorem A,
o Claim 2. Theorem A, implies Theorem C_,

@ Claim 3. Theorem A, and Theorem C, imply Theorem B,
@ Claim 4. Theorem A, and Theorem B, iénply@The(_)remEC,,.
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@ This is joint work with C. Birkar, P. Cascini and J. M®Kernan
@ We work over the field of complex numbers C.
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Remarks

@ This is joint work with C. Birkar, P. Cascini and J. M®Kernan.
@ We work over the field of complex numbers C.

@ Throughout the proof | will usually assume for simplicity that
U = SpecC.
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@ The main idea of the proof of Claim 1 is to show that any
sequence of flips with scaling terminate.
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The directed MMP

@ The main idea of the proof of Claim 1 is to show that any
sequence of flips with scaling terminate.

@ To run the MMP with scaling, assume that X is Q-factorial,
(X,A) is KLT and C > 0 is an R-divisor such that
Kx + A + C is nef and KLT.
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@ To run the MMP with scaling, assume that X is Q-factorial,
(X,A) is KLT and C > 0 is an R-divisor such that
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o Let A =inf{t > 0|Kx + A + tC} is nef
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The directed MMP

@ The main idea of the proof of Claim 1 is to show that any
sequence of flips with scaling terminate.

@ To run the MMP with scaling, assume that X is Q-factorial,
(X,A) is KLT and C > 0 is an R-divisor such that
Kx + A + C is nef and KLT.

o Let A =inf{t > 0|Kx + A + tC} is nef

@ If A =0 we STOP. Otherwise there is an extremal ray R such
that (Kx + A+ AC)-R=0and (Kx + A+ tC)- R <0 for
all0 <t < A
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The directed MMP

@ The main idea of the proof of Claim 1 is to show that any
sequence of flips with scaling terminate.

@ To run the MMP with scaling, assume that X is Q-factorial,
(X,A) is KLT and C > 0 is an R-divisor such that
Kx + A + C is nef and KLT.

o Let A =inf{t > 0|Kx + A + tC} is nef

@ If A =0 we STOP. Otherwise there is an extremal ray R such
that (Kx + A+ AC)-R=0and (Kx + A+ tC)- R <0 for
all 0 <t < A

@ |f the contraction induced by R is not birational, we have a
Mori fiber space and we STOP.
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The main idea of the proof of Claim 1 is to show that any
sequence of flips with scaling terminate.

To run the MMP with scaling, assume that X is Q-factorial,
(X,A) is KLT and C > 0 is an R-divisor such that

Kx + A + C is nef and KLT.

Let A = inf{t > 0|Kx + A + tC} is nef

If A =0 we STOP. Otherwise there is an extremal ray R such
that (Kx + A+ AC)-R=0and (Kx + A+ tC)- R <0 for
all0 <t < A

If the contraction induced by R is not birational, we have a
Mori fiber space and we STOP.

If the contraction induced by R is birational, we replace X by
the corresponding flip/divisorial contraction and repeat the
procedure.

o = =2
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The directed MMP

@ The advantage is that for each flip ¢ : X --» X there is a A
model.

such that Kx + A + AC is nef and hence X is a log terminal
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The directed MMP

The directed MMP

@ The advantage is that for each flip ¢ : X --» X there is a A
such that Kx + A + AC is nef and hence X is a log terminal
model.

@ Thm C, says that there are only finitely many such models

(under appropriate hypothesis) and so we expect that these
flips should terminate.
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The directed MMP

@ The advantage is that for each flip ¢ : X --» X there is a A
such that Kx + A + AC is nef and hence X is a log terminal
model.

@ Thm C, says that there are only finitely many such models
(under appropriate hypothesis) and so we expect that these
flips should terminate.

@ In terms of our induction, we are only allowed to assume Thm
Cp—1 and this makes the proof more technical. (An analog of
special termination will be required.)
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Proof of Claim 1, Special termination

@ Throughout the remainder of the talk, we will assume that
exist in dimension n.

Thms A, 1, By_1, C,_1 hold so that in particular PL-flips
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Proof of Claim 1, Special termination

@ Throughout the remainder of the talk, we will assume that
Thms A, 1, By_1, C,_1 hold so that in particular PL-flips
exist in dimension n.

o Lemma. Suppose that
Kx +A=Kx+S+A+B

is DLT where A is ample and B > 0.
Then any sequence of flips X = X; --» X5 ——» X3--- for the
Kx + A-MMP with scaling is eventually disjoint from S = [A].
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Proof of Claim 1, Special termination

@ Throughout the remainder of the talk, we will assume that
Thms A, 1, By_1, C,_1 hold so that in particular PL-flips
exist in dimension n.

o Lemma. Suppose that
Kx +A=Kx+S+A+B

is DLT where A is ample and B > 0.
Then any sequence of flips X = X; --» X5 ——» X3--- for the

Kx + A-MMP with scaling is eventually disjoint from S = [A].

@ Proof. We may assume that S is irreducible and that the
induced maps S; --» Sjy1 are isomorphisms in codim. 1.
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Proof of Claim 1, Special termination

@ Throughout the remainder of the talk, we will assume that
Thms A, 1, By_1, C,_1 hold so that in particular PL-flips
exist in dimension n.

o Lemma. Suppose that
Kx +A=Kx+S+A+B

is DLT where A is ample and B > 0.

Then any sequence of flips X = X; --» X5 ——» X3--- for the

Kx + A-MMP with scaling is eventually disjoint from S = [A].
@ Proof. We may assume that S is irreducible and that the

induced maps S; --» Sjy1 are isomorphisms in codim. 1.

@ We write (KX,- + A,‘)|5'. = KS,- + ©;.
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@ Note that as we may assume that all S; are isomorphic in

codimension 1, then ©; is just the strict transform of ©j.
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Proof of Claim 1, Special termination Il

@ Note that as we may assume that all S; are isomorphic in
codimension 1, then ©; is just the strict transform of ©j.

@ The Ks, + ©; + \;C|s; are weak log canonical models of
Ks, + ©1 + AiCls, where 0 < A < 1.
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Proof of Claim 1, Special termination Il

@ Note that as we may assume that all S; are isomorphic in
codimension 1, then ©; is just the strict transform of ©j.

@ The Ks, + ©; + \;C|s; are weak log canonical models of
Ks, + ©1 + AiCls, where 0 < A < 1.

@ By Thm C,_; there are only finitely many distinct pairs
(5i,0;).
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Proof of Claim 1, Special termination Il

@ Note that as we may assume that all S; are isomorphic in
codimension 1, then ©; is just the strict transform of ©j.

@ The Ks, + ©; + \;C|s; are weak log canonical models of
Ks, + ©1 + AiCls, where 0 < A < 1.

@ By Thm C,_; there are only finitely many distinct pairs
(5i,0;).

o If X; is a flipping curve for X; ——» Xj 1 that intersects S;,
then either X; C Sj or X; - S; > 0 in which case the flipped
curves are contained in S;j;1. This means that there is a
center v such that a(v, S, ©;) < a(v, Sit1,©i+1).
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@ Note that as we may assume that all S; are isomorphic in
codimension 1, then ©; is just the strict transform of ©j.

@ The Ks, + ©; + \;C|s; are weak log canonical models of
Ks, + ©1 + AiCls, where 0 < A < 1.

@ By Thm C,_; there are only finitely many distinct pairs
(5i,0;).

o If X; is a flipping curve for X; ——» Xj 1 that intersects S;,
then either X; C Sj or X; - S; > 0 in which case the flipped
curves are contained in S;j;1. This means that there is a
center v such that a(v, S, ©;) < a(v, Sit1,©i+1).

@ Since a(v, Si4+1,09i41) < a(v, Sj,0)) then S; 2 S; for all j > 1.
But there are only finitely many models S; and so the flips are

eventually disjoint from ;.
o = = = z 9Dac
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Proof of Claim 1, Cont.

@ Proof of Claim 1.

@ Recall that Kx + A ~g D > 0 and write D = M + F where
Supp(F) C SBs(Kx + A) and M is mobile.
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Proof of Claim 1, Cont.

@ Proof of Claim 1.
@ Recall that Kx + A ~g D > 0 and write D = M + F where
Supp(F) C SBs(Kx + A) and M is mobile.

@ We may assume that X is smooth, A + D has simple normal
crossings, A = A+ B where A is ample and B > 0 and
ANANM=0. (l.e. A and M have no common components.)
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@ Proof of Claim 1.
@ Recall that Kx + A ~g D > 0 and write D = M + F where
Supp(F) C SBs(Kx + A) and M is mobile.

@ We may assume that X is smooth, A + D has simple normal
crossings, A = A+ B where A is ample and B > 0 and
ANANM=0. (l.e. A and M have no common components.)

@ For simplicity assume that M is irreducible (this avoids some
linear algebra).
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Proof of Claim 1, Cont.

@ Proof of Claim 1.

@ Recall that Kx + A ~g D > 0 and write D = M + F where
Supp(F) C SBs(Kx + A) and M is mobile.

@ We may assume that X is smooth, A + D has simple normal
crossings, A = A+ B where A is ample and B > 0 and
ANANM=0. (l.e. A and M have no common components.)

@ For simplicity assume that M is irreducible (this avoids some
linear algebra).

@ Set © = Supp(M+ F)VA =S+ A+ B where 0 < B' < B.
(|f G = Zg,'G,', G = Zg,—'G,- then
GV G':=) max{g, g }G;.)
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Proof of Claim 1, Cont.

@ we will peform a sequence of flips/contractions (for various
divisors ©; > A) such that:
1) the induced rational map ¢ : X --» Y only contracts
divisors in SBs(Kx + A), and
2) Ky + T is nef for some divisor [ = ¢.(A + ®) where
Supp(®) C SBs(Kx + A).
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Proof of Claim 1, Cont.

@ we will peform a sequence of flips/contractions (for various
divisors ©; > A) such that:
1) the induced rational map ¢ : X --» Y only contracts
divisors in SBs(Kx + A), and
2) Ky + T is nef for some divisor [ = ¢.(A + ®) where
Supp(®) C SBs(Kx + A).

@ It is then not hard to show that Y is a log terminal model for
(X,A).
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Proof of Claim 1, Step 1

@ Pick H a sufficiently ample divisor and run the Kx + © MMP
with scaling of H.
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Proof of Claim 1, Step 1

@ Pick H a sufficiently ample divisor and run the Kx + © MMP
with scaling of H.

@ Recall that © = S + A+ B’ where S = Supp(M + F) and
0 < B’ < B. Moreover, © = A + ¥ with
0 <V < Supp(M+F)=5S.
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Proof of Claim 1, Step 1

@ Pick H a sufficiently ample divisor and run the Kx + © MMP
with scaling of H.

@ Recall that © = S+ A+ B’ where S = Supp(M + F) and
0 < B' < B. Moreover, ©® = A + ¥ with
0 <V < Supp(M+F)=5S.

@ Let C be a flipping curve. We have
0>(Kx+0©)-C=(D+V)-C

and so the flipping locus is contained in S.
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Proof of Claim 1, Step 1

@ Pick H a sufficiently ample divisor and run the Kx + © MMP
with scaling of H.

@ Recall that © = S+ A+ B’ where S = Supp(M + F) and
0 < B' < B. Moreover, ©® = A + ¥ with
0 <V < Supp(M+F)=5S.

@ Let C be a flipping curve. We have
0>(Kx+0©)-C=(D+V)-C

and so the flipping locus is contained in S.

@ Therefore, this is a sequence of PL-flips that must terminate
and we may assume that Kx + © is nef.
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Proof of Claim 1, Step 2

@ We wish to remove M, so we write

Kx +S+A+B =Kx + Freqg + A+ B' + M,eq
and we run a MMP with scaling of M,eq.
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Proof of Claim 1, Step 2

@ We wish to remove M, so we write

Kx +S+A+B =Kx + Freqg + A+ B' + M,eq

and we run a MMP with scaling of M,eq.

@ By a similar argument to the one above, the flipping locus is

always contaned in F..q so that this is a sequence of PL-flips
that must terminate.
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Proof of Claim 1, Step 2

@ We wish to remove M, so we write
Kx +S+A+B =Kx + Freqg + A+ B' + M,eq

and we run a MMP with scaling of M,eq.

@ By a similar argument to the one above, the flipping locus is
always contaned in F..q so that this is a sequence of PL-flips
that must terminate.

® Therefore, we have a model where
Kx+S+A+B =Kx+A+®isnefand ® C SBs(Kx + A).
As remarked above, this is a log terminal model of (X, A).
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Outline of the talk

O Finiteness of models
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F}|1i;enes§ of modelg
Proof of Claims 2 and 4

@ In proving Thm C (resp. C-), we need to know that for any
pseudo-effective class Kx + A that we consider, there is an
effective divisor D > 0 such that Kx + A ~r D.
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Finiteness of models

Proof of Claims 2 and 4

@ In proving Thm C (resp. C-), we need to know that for any
pseudo-effective class Kx + A that we consider, there is an
effective divisor D > 0 such that Kx + A ~r D.

@ This will hold as we are assuming Thm B (resp. we are
assuming that Kx + A is big).
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Finiteness of models

Proof of Claims 2 and 4

@ In proving Thm C (resp. C-), we need to know that for any
pseudo-effective class Kx + A that we consider, there is an
effective divisor D > 0 such that Kx + A ~r D.

@ This will hold as we are assuming Thm B (resp. we are
assuming that Kx + A is big).

@ We will just show that there exists an integer kK > 0 and
rational maps ¢; : X --» Yj such that if A € C is
pseudo-effective then there is an integer i with 1 </ < k such
that ¢; is a log terminal model for (X, A).
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Finiteness of models

Proof of Claims 2 and 4 cont.

@ Since C is compact and the pseudo-effective cone is closed, we
may work locally in a neighborhood

Ag € U CCn PSEF.
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Finiteness of models

Proof of Claims 2 and 4 cont.

@ Since C is compact and the pseudo-effective cone is closed, we
may work locally in a neighborhood
Ay € U CCn PSEF.

® Let ¢ : X -—» Y be a log terminal model of Kx + Ap.
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Finiteness of models

Proof of Claims 2 and 4 cont.

@ Since C is compact and the pseudo-effective cone is closed, we
may work locally in a neighborhood
Ay € U CCn PSEF.

® Let ¢ : X -—» Y be a log terminal model of Kx + Ap.

@ ¢ is Kx + Ag negative in the sense that for any exceptional
divisor E C X, a(E, X, Ag) < a(E, Y, ¢ p).
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Finiteness of models

Proof of Claims 2 and 4 cont.

@ Since C is compact and the pseudo-effective cone is closed, we
may work locally in a neighborhood

Ag € U CCn PSEF.

® Let ¢ : X -—» Y be a log terminal model of Kx + Ap.
@ ¢ is Kx + Ag negative in the sense that for any exceptional
divisor E C X, a(E, X, Ag) < a(E, Y, ¢ p).

@ So after shrinking U, we have that ¢ is Kx + A negative for
all A e U.
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Finiteness of models

Proof of Claims 2 and 4 cont.

@ Since C is compact and the pseudo-effective cone is closed, we
may work locally in a neighborhood

Ag € U CCn PSEF.

® Let ¢ : X -—» Y be a log terminal model of Kx + Ap.

@ ¢ is Kx + Ag negative in the sense that for any exceptional
divisor E C X, a(E, X, Ag) < a(E, Y, ¢ p).

@ So after shrinking U, we have that ¢ is Kx + A negative for
all A e U.

@ So we may replace X by Y and assume that Kx + Ag is nef.
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Finiteness of models

Proof of Claims 2 and 4 cont.

@ Since C is compact and the pseudo-effective cone is closed, we
may work locally in a neighborhood

Ag € U CCn PSEF.

® Let ¢ : X -—» Y be a log terminal model of Kx + Ap.

@ ¢ is Kx + Ag negative in the sense that for any exceptional
divisor E C X, a(E, X, Ag) < a(E, Y, ¢ p).

@ So after shrinking U, we have that ¢ is Kx + A negative for
all A e U.

@ So we may replace X by Y and assume that Kx + Ag is nef.

@ In particular, as Ay is big, by the base point free theorem,
Kx + Ag = f*H for some morphism f : X — Z and some
ample R-divisor H on Z.

o = = = T 9ac
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Finiteness of models

Proof of Claims 2 and 4 cont.

@ Since C is a rational polytope, we may assume that U is a
rational polytope and so by induction on the dimension (of
the affine space spanned by the polytope) there exist finitely
many rational maps ¢; : X --» Y; over Z such that for all
A € OC NPSEF(X/Z) then ¢; is a log terminal model of
(X,A) for some 1 < i < k.
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Finiteness of models

Proof of Claims 2 and 4 cont.

@ We have seen that Kx + Ag = f*H and Kx + Ag ~r,z 0
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Finiteness of models

Proof of Claims 2 and 4 cont.

@ We have seen that Kx + Ag = f*H and Kx + Ag ~r,z 0

@ Further shrinking U, we may assume that for all A € U
Kx + A is nef if and only if Kx + A is nef/Z.
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Finiteness of models

Proof of Claims 2 and 4 cont.

@ We have seen that Kx + Ag = f*H and Kx + Ag ~r,z 0

@ Further shrinking U, we may assume that for all A € U
Kx + A is nef if and only if Kx + A is nef/Z.

@ Let Ag € QU. For any © € [Ap, A], we have
©— A= (KX + @) — (KX -I—Ao) ~R,Z (KX -I—@)

so that © — Ag is PSEF/Z iff Kx + © is PSEF/Z iff Kx + A
is PSEF/Z.
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Finiteness of models

Proof of Claims 2 and 4 cont.

@ We have seen that Kx + Ag = f*H and Kx + Ag ~r,z 0

@ Further shrinking U, we may assume that for all A € U
Kx + A is nef if and only if Kx + A is nef/Z.

@ Let Ag € QU. For any © € [Ap, A], we have
©— A= (KX + @) — (KX -I—Ao) ~R,Z (KX -I—@)

so that © — A is PSEF/Z iff Kx + © is PSEF/Z iff Kx + A
is PSEF/Z.

o If Kx + © is PSEF then it is PSEF/Z and so Kx + A is
PSEF/Z. A log terminal model/Z of Kx + A is a log terminal

model/Z of Kx + © and hence it is a log terminal model of
Kx + ©.
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Outline of the talk

© Non-vanishing
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Proof of Claim 3

) l\rlorn-vanisrhh'\g

@ We may assume that A = A 4 B has simple normal crossings,
Ais ample and B > 0.
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) l\rl‘orn-vanisrhh'\ég
Proof of Claim 3

@ We may assume that A = A+ B has simple normal crossings
Ais ample and B > 0.

o If for any fixed k > 0 sufficiently divisible,

RO (Ox ([mk(Kx + A)] + kA))

is a bounded function of m, then by a result of Nakayama, we

have Kx + A = N, > 0. Recall that N, = N,(Kx + A) is the
limit as € — 0 of divisors in SBs(Kx + A + €A).
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Proof of Claim 3

@ We may assume that A = A 4 B has simple normal crossings,
Ais ample and B > 0.

o If for any fixed k > 0 sufficiently divisible,
h2(Ox([mk(Kx + A)] + kA))

is a bounded function of m, then by a result of Nakayama, we
have Kx + A = N, > 0. Recall that N, = N,(Kx + A) is the
limit as € — 0 of divisors in SBs(Kx + A + €A).

@ So A ~g A+ N, — (Kx + A) is ample and
Kx + A'+ B ~g N, > 0 and hence Kx + A’ + B has a log
terminal model which is also a log terminal model for
Kx + A+ B.
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Proof of Claim 3

@ We may assume that A = A 4 B has simple normal crossings,
Ais ample and B > 0.

o If for any fixed k > 0 sufficiently divisible,
h2(Ox([mk(Kx + A)] + kA))

is a bounded function of m, then by a result of Nakayama, we
have Kx + A = N, > 0. Recall that N, = N,(Kx + A) is the
limit as € — 0 of divisors in SBs(Kx + A + €A).

@ So A ~g A+ N, — (Kx + A) is ample and
Kx + A'+ B ~g N, > 0 and hence Kx + A’ + B has a log
terminal model which is also a log terminal model for
Kx + A+ B.

@ By the base point free theorem Kx + A+ B ~g D > 0.
[m] [ = =
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Proof of Claim 3 cont.

o Claim. If h°(Ox ([mk(Kx + A)] + kA)) is not bounded, then
we may assume that A =S+ A+ B where [A] =S, A'is
ample, S ¢ N,(Kx + A).

Christopher Hacon

Finite generation of canonical rings Il

DA
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Proof of Claim 3 cont.

o Claim. If h°(Ox ([mk(Kx + A)] + kA)) is not bounded, then
we may assume that A =S+ A+ B where [A] =S, A'is
ample, S ¢ N,(Kx + A).

@ Proof. Pick H ~g m(Kx + A) + A with multy,(H) > n for
some general x € X.
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Proof of Claim 3 cont.

o Claim. If h°(Ox ([mk(Kx + A)] + kA)) is not bounded, then
we may assume that A =S+ A+ B where [A] =S, A'is
ample, S ¢ N,(Kx + A).

@ Proof. Pick H ~g m(Kx + A) + A with multy,(H) > n for
some general x € X.
@ For t € [0, m] consider

m-—t 1
(t+1)(KX +A) = Kx+TA+B+t(Kx+A+ EA) ~R

—t t
K+ 2 A4 B+ —H=Ky+A,
m m
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) l\rlorn-vanisrhh'\g

Proof of Claim 3 cont.

@ Then for some 0 < € < 1 we have Kx + Ag is KLT;
Ay > A = (e/m)Afort € [0,m—¢], and Kx + Ap_c has a
log canonical center not contained in SBs(Kx + A).
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Proof of Claim 3 cont.

@ Then for some 0 < € < 1 we have Kx + Ag is KLT;
Ay > A = (e/m)Afort € [0,m—¢], and Kx + Ap_c has a
log canonical center not contained in SBs(Kx + A).

@ We pass to a log resolution 7 : Y — X and write
KY + rt = W*(KX + At) + Et

and we then cancel common components of [; and
SBs(7*(Kx + A¢)). The claim now follows easily.
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Proof of Claim 3 cont.

multiple of) A.

@ We now run a Kx + S + A+ B MMP with scaling of (some
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) l\rl‘orn-vanisrhh'\ég
Proof of Claim 3 cont.

@ We now run a Kx + S + A+ B MMP with scaling of (some
multiple of) A.

@ For 0 < t < 1 we get log terminal models ¢; : X —-» Y; of
Kx+S+A+B+tAand S —» T;.
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Proof of Claim 3 cont.

@ We now run a Kx + S + A+ B MMP with scaling of (some
multiple of) A.

@ For 0 < t < 1 we get log terminal models ¢; : X —-» Y; of
Kx+S+A+B+tAand S —» T;.

@ S is not contained in SBs(Kx + S + A+ B) and so it is not
contracted.
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Proof of Claim 3 cont.

@ We now run a Kx + S + A+ B MMP with scaling of (some
multiple of) A.

@ For 0 < t < 1 we get log terminal models ¢; : X —-» Y; of
Kx+S+A+B+tAand S —» T;.

@ S is not contained in SBs(Kx + S + A+ B) and so it is not
contracted.

@ We would like to say that for 0 < t < 1, we have Y; = Y a
log terminal model of Kx + S + A+ B. Then by the base
point free theorem, Kx + S+ A+ B ~gr D > 0.
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Proof of Claim 3 cont.

@ We now run a Kx + S + A+ B MMP with scaling of (some
multiple of) A

@ For 0 < t < 1 we get log terminal models ¢; : X —-» Y; of
Kx+S+A+B+tAand S —» T;.

@ S is not contained in SBs(Kx + S + A+ B) and so it is not
contracted.

@ We would like to say that for 0 < t < 1, we have Y; = Y a
log terminal model of Kx + S + A+ B. Then by the base
point free theorem, Kx + S+ A+ B ~gr D > 0.

@ We can only conclude that T, C Y; =2 T C Y in a
neighborhood of T;.
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Proof of Claim 3 cont.

@ We now run a Kx + S + A+ B MMP with scaling of (some
multiple of) A

@ For 0 < t < 1 we get log terminal models ¢; : X —-» Y; of
Kx+S+A+B+tAand S —» T;.

@ S is not contained in SBs(Kx + S + A+ B) and so it is not
contracted.

@ We would like to say that for 0 < t < 1, we have Y; = Y a
log terminal model of Kx + S + A+ B. Then by the base
point free theorem, Kx + S+ A+ B ~gr D > 0.

@ We can only conclude that T, C Y; =2 T C Y in a
neighborhood of T;.

@ So K1 +© = (Ky, +I¢)| 7 is nef, © is big and hence K1+ ©

is semiample.
o =) = = z 9ac
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Proof of Claim 3 cont.

@ We want to lift sections of K+ + ©.
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Proof of Claim 3 cont.

@ We want to lift sections of K+ + ©.

@ For simplicity assume Kx + A is Q-Cartier (this avoids a
diophantine approximation argument).
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Proof of Claim 3 cont.

@ We want to lift sections of K+ + ©.

@ For simplicity assume Kx + A is Q-Cartier (this avoids a
diophantine approximation argument).

@ We may then assume that for some integer m > 0, we have
m(Kx + A) is integral Weil, m(Ky + ') is Cartier in a
neighborhood of T and h°(m(Kt + ©)) > 0,
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Proof of Claim 3 cont.

@ We want to lift sections of K+ + ©.

@ For simplicity assume Kx + A is Q-Cartier (this avoids a
diophantine approximation argument).

@ We may then assume that for some integer m > 0, we have
m(Kx + A) is integral Weil, m(Ky + ') is Cartier in a
neighborhood of T and h°(m(Kt + ©)) > 0,

@ Then we look at the corresponding short exact sequence and
apply Kawamata-Viehweg vanishing:
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Proof of Claim 3 cont.

@ We have

0= Oy,(m(Ky, +T) = T) = Oy,(m(Ky, +T))

— Or(m(Kt +©)) = 0
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Proof of Claim 3 cont.

@ We have

0= Oy,(m(Ky, +T) = T) = Oy,(m(Ky, +T))

— Or(m(Kt +©)) = 0

@ Then Ky, +T — T —(m —1)tA is KLT (for 0 < t < 1) and
(m —1)(Ky, + T + tA) is nef and big.
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Proof of Claim 3 cont.

@ We have

0= Oy,(m(Ky, +T) = T) = Oy,(m(Ky, +T))

- Or(m(KTt+©)) =0

@ Then Ky, +T — T —(m —1)tA is KLT (for 0 < t < 1) and
(m —1)(Ky, + T + tA) is nef and big.

m(Ky, +T).

@ By Kawamata-Viehweg vanishing, we may lift sections to
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Proof of Claim 3 cont.

@ We have

0= Oy,(m(Ky, +T) = T) = Oy,(m(Ky, +T))

— Or(m(KT +©)) = 0.

@ Then Ky, +T — T —(m —1)tA is KLT (for 0 < t < 1) and
(m —1)(Ky, + T + tA) is nef and big.
@ By Kawamata-Viehweg vanishing, we may lift sections to

m(Kyt +7).
@ It is easy to see that these sections lift to sections of Kx + A.
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