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The struture of the proofThe direted MMPExistene of modelsFiniteness of modelsNon-vanishingProof of Claims 2 and 4In proving Thm C (resp. C-), we need to know that for anypseudo-e�etive lass KX +� that we onsider, there is ane�etive divisor D � 0 suh that KX +� �R D.This will hold as we are assuming Thm B (resp. we areassuming that KX +� is big).We will just show that there exists an integer k > 0 andrational maps �i : X 9 9 KYi suh that if � 2 C ispseudo-e�etive then there is an integer i with 1 � i � k suhthat �i is a log terminal model for (X ;�).Christopher Haon Finite generation of anonial rings II
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The struture of the proofThe direted MMPExistene of modelsFiniteness of modelsNon-vanishingProof of Claims 2 and 4 ont.Sine C is ompat and the pseudo-e�etive one is losed, wemay work loally in a neighborhood�0 2 U � C \ PSEF :Let � : X 9 9 KY be a log terminal model of KX +�0.� is KX +�0 negative in the sense that for any exeptionaldivisor E � X , a(E ;X ;�0) < a(E ;Y ; ���0).So after shrinking U, we have that � is KX +� negative forall � 2 U.So we may replae X by Y and assume that KX +�0 is nef.In partiular, as �0 is big, by the base point free theorem,KX +�0 = f �H for some morphism f : X ! Z and someample R-divisor H on Z .Christopher Haon Finite generation of anonial rings II
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Sine C is a rational polytope, we may assume that U is arational polytope and so by indution on the dimension (ofthe aÆne spae spanned by the polytope) there exist �nitelymany rational maps �i : X 9 9 KYi over Z suh that for all� 2 �C \ PSEF(X=Z ) then �i is a log terminal model of(X ;�) for some 1 � i � k .
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The struture of the proofThe direted MMPExistene of modelsFiniteness of modelsNon-vanishingProof of Claim 3 ont.Claim. If h0(OX ([mk(KX +�)℄ + kA)) is not bounded, thenwe may assume that � = S + A+ B where [�℄ = S , A isample, S 6� N�(KX +�).
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The struture of the proofThe direted MMPExistene of modelsFiniteness of modelsNon-vanishingProof of Claim 3 ont.We now run a KX + S + A+ B MMP with saling of (somemultiple of) A.For 0 < t � 1 we get log terminal models �t : X 9 9 KYt ofKX + S + A+ B + tA and S 9 9 KTt .S is not ontained in SBs(KX + S + A+ B) and so it is notontrated.We would like to say that for 0 < t � 1, we have Yt �= Y alog terminal model of KX + S + A+ B . Then by the basepoint free theorem, KX + S + A+ B �R D � 0.We an only onlude that Tt � Yt �= T � Y in aneighborhood of Tt .So KT +� = (KYt + �t)jT is nef, � is big and hene KT +�is semiample. Christopher Haon Finite generation of anonial rings II



The struture of the proofThe direted MMPExistene of modelsFiniteness of modelsNon-vanishingProof of Claim 3 ont.We want to lift setions of KT +�.
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The struture of the proofThe direted MMPExistene of modelsFiniteness of modelsNon-vanishingProof of Claim 3 ont.We want to lift setions of KT +�.For simpliity assume KX +� is Q-Cartier (this avoids adiophantine approximation argument).We may then assume that for some integer m > 0, we havem(KX +�) is integral Weil, m(KY + �) is Cartier in aneighborhood of T and h0(m(KT +�)) > 0,Then we look at the orresponding short exat sequene andapply Kawamata-Viehweg vanishing:Christopher Haon Finite generation of anonial rings II
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The struture of the proofThe direted MMPExistene of modelsFiniteness of modelsNon-vanishingProof of Claim 3 ont.We have0! OYt (m(KYt + �)� T )! OYt (m(KYt + �))! OT (m(KT +�))! 0:Then KYt + �� T � (m � 1)tA is KLT (for 0 < t � 1) and(m � 1)(KYt + � + tA) is nef and big.By Kawamata-Viehweg vanishing, we may lift setions tom(KYt + �).It is easy to see that these setions lift to setions of KX +�.Christopher Haon Finite generation of anonial rings II
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