Deformations of Canonical Pairs and Fano varieties

Christopher Hacon

University of Utah

January, 2009

<ロ> (日) (日) (日) (日) (日)

Outline of the talk

Christopher Hacon Deformations...

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Outline of the talk

2 Deformations of singularities

Christopher Hacon Deformations...

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

Э

Outline of the talk

2 Deformations of singularities

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

크

Outline of the talk

- 2 Deformations of singularities
- 3 The MMP for families
- 4 Families of Fanos

<ロ> (日) (日) (日) (日) (日)

크

Outline of the talk

- 2 Deformations of singularities
- 3 The MMP for families
- 4 Families of Fanos

・ロン ・回 と ・ ヨ と ・ ヨ と …

크

Introduction

 $\bullet\,$ Joint work with T. de Fernex. We work over $\mathbb{C}.$

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Introduction

- $\bullet\,$ Joint work with T. de Fernex. We work over $\mathbb{C}.$
- Goal: To use recent results in higher dimensional Birational Geometry to study the geometry of varieties under flat deformations. In particular we will focus on singularities, Fano varieties and extension theorems.

Introduction

- Joint work with T. de Fernex. We work over \mathbb{C} .
- Goal: To use recent results in higher dimensional Birational Geometry to study the geometry of varieties under flat deformations. In particular we will focus on singularities, Fano varieties and extension theorems.
- A projective manifold X is **Fano** if $-K_X$ is ample (eg. $\mathbb{P}^N_{\mathbb{C}}$).

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Introduction

- Joint work with T. de Fernex. We work over \mathbb{C} .
- Goal: To use recent results in higher dimensional Birational Geometry to study the geometry of varieties under flat deformations. In particular we will focus on singularities, Fano varieties and extension theorems.
- A projective manifold X is **Fano** if $-K_X$ is ample (eg. $\mathbb{P}^N_{\mathbb{C}}$).
- We are motivated by the following result of Wiśniewski

Theorem

Let $f : X \to T$ be a smooth family of Fano manifolds. Then the Mori cone (of curves) $\overline{NE}(X) \subset N_1(X)$ and the the nef cone $Nef(X) \subset N^1(X)$ are locally constant.

Definitions

• Recall that $N_1(X) = \{C = \sum c_i C_i | c_i \in \mathbb{R}, C_i \text{ curve on } X\} / \equiv$ where \equiv denotes numerical equivalence i.e. $C \equiv C'$ iff $(C - C') \cdot H = 0$ for any \mathbb{R} -Cartier divisor H.

イロト イヨト イヨト イヨト

臣

Definitions

- Recall that $N_1(X) = \{C = \sum c_i C_i | c_i \in \mathbb{R}, C_i \text{ curve on } X\} / \equiv$ where \equiv denotes numerical equivalence i.e. $C \equiv C'$ iff $(C - C') \cdot H = 0$ for any \mathbb{R} -Cartier divisor H.
- $\overline{NE}(X)$ is the closure of the cone spanned by classes of effective curves $C = \sum c_i C_i$, $c_i \ge 0$.

イロン イヨン イヨン イヨン

Definitions

- Recall that $N_1(X) = \{C = \sum c_i C_i | c_i \in \mathbb{R}, C_i \text{ curve on } X\} / \equiv$ where \equiv denotes numerical equivalence i.e. $C \equiv C'$ iff $(C - C') \cdot H = 0$ for any \mathbb{R} -Cartier divisor H.
- $\overline{NE}(X)$ is the closure of the cone spanned by classes of effective curves $C = \sum c_i C_i$, $c_i \ge 0$.
- N¹(X) = N₁(X)[∨] is given by ℝ-Cartier divisors modulo numerical equivalence and Nef(X) = NE(X)[∨] ⊂ N¹(X) is the closure of the ample cone.

イロン イヨン イヨン イヨン

Definitions

- Recall that $N_1(X) = \{C = \sum c_i C_i | c_i \in \mathbb{R}, C_i \text{ curve on } X\} / \equiv$ where \equiv denotes numerical equivalence i.e. $C \equiv C'$ iff $(C - C') \cdot H = 0$ for any \mathbb{R} -Cartier divisor H.
- $\overline{NE}(X)$ is the closure of the cone spanned by classes of effective curves $C = \sum c_i C_i$, $c_i \ge 0$.
- N¹(X) = N₁(X)[∨] is given by ℝ-Cartier divisors modulo numerical equivalence and Nef(X) = NE(X)[∨] ⊂ N¹(X) is the closure of the ample cone.
- Recall also that if A is ample, then the **nef threshold** $\tau_A(K_X) := \inf\{t \in \mathbb{R} | K_X + tA \text{ is ample}\}.$

イロト イヨト イヨト イヨト

Definitions

- Recall that $N_1(X) = \{C = \sum c_i C_i | c_i \in \mathbb{R}, C_i \text{ curve on } X\} / \equiv$ where \equiv denotes numerical equivalence i.e. $C \equiv C'$ iff $(C - C') \cdot H = 0$ for any \mathbb{R} -Cartier divisor H.
- $\overline{NE}(X)$ is the closure of the cone spanned by classes of effective curves $C = \sum c_i C_i$, $c_i \ge 0$.
- N¹(X) = N₁(X)[∨] is given by ℝ-Cartier divisors modulo numerical equivalence and Nef(X) = NE(X)[∨] ⊂ N¹(X) is the closure of the ample cone.
- Recall also that if A is ample, then the **nef threshold** $\tau_A(K_X) := \inf\{t \in \mathbb{R} | K_X + tA \text{ is ample}\}.$
- The above theorem follows from another result of Wiśniewski:

イロト イヨト イヨト イヨト

Nef thresholds in families

Theorem

Let $f : X \to T$ be a smooth family of projective manifolds and Aan f-ample line bundle. If the nef threshold $\tau_{A|X_0}(K_{X_0})$ is positive for some $0 \in T$, then the function $\tau_{A|X_t}(K_{X_t})$ is constant for $t \in T$.

イロン イヨン イヨン イヨン

Nef thresholds in families

Theorem

Let $f : X \to T$ be a smooth family of projective manifolds and Aan f-ample line bundle. If the nef threshold $\tau_{A|X_0}(K_{X_0})$ is positive for some $0 \in T$, then the function $\tau_{A|X_t}(K_{X_t})$ is constant for $t \in T$.

• Note that since X_0 is Fano, its Mori cone is rational polyhedral and that for any extremal ray R, we may find a Cartier divisor D such that $R = \overline{NE}(X_0) \cap \{D_{=0}\}$. Since $-K_{X_0}$ is ample, we have $\epsilon D = K_{X_0} + A_0$ where $A_0 = \epsilon D - K_{X_0}$ is ample for $0 < \epsilon \ll 1$.

Nef thresholds in families

Theorem

Let $f : X \to T$ be a smooth family of projective manifolds and Aan f-ample line bundle. If the nef threshold $\tau_{A|X_0}(K_{X_0})$ is positive for some $0 \in T$, then the function $\tau_{A|X_t}(K_{X_t})$ is constant for $t \in T$.

- Note that since X_0 is Fano, its Mori cone is rational polyhedral and that for any extremal ray R, we may find a Cartier divisor D such that $R = \overline{NE}(X_0) \cap \{D_{=0}\}$. Since $-K_{X_0}$ is ample, we have $\epsilon D = K_{X_0} + A_0$ where $A_0 = \epsilon D K_{X_0}$ is ample for $0 < \epsilon \ll 1$.
- The proof of this results is of a topological nature, but nether-the-less it is natural to ask if it generalizes to the MMP context and if there are similar results for the pseudo-effective cone, the moving cone, the Mori chamber decomposition etc.

Outline of the talk

Introduction

- 2 Deformations of singularities
- 3 The MMP for families
- 4 Families of Fanos

(日) (同) (三) (三)

臣

Singularities of the MMP

• A log pair (X, B) is a normal variety X and a \mathbb{Q} -divisor $B = \sum b_i B_i$ where $b_i \in \mathbb{Q}_{\geq 0}$ such that $K_X + B$ is \mathbb{Q} -Cartier.

Singularities of the MMP

- A log pair (X, B) is a normal variety X and a \mathbb{Q} -divisor $B = \sum b_i B_i$ where $b_i \in \mathbb{Q}_{\geq 0}$ such that $K_X + B$ is \mathbb{Q} -Cartier.
- A proper birational morphism $\mu: Y \to X$ is a log resolution if Y is smooth and $\operatorname{Ex}(\mu) \cup \mu_*^{-1}B$ hs simple normal crossings.

イロト イヨト イヨト イヨト

Singularities of the MMP

- A log pair (X, B) is a normal variety X and a \mathbb{Q} -divisor $B = \sum b_i B_i$ where $b_i \in \mathbb{Q}_{\geq 0}$ such that $K_X + B$ is \mathbb{Q} -Cartier.
- A proper birational morphism $\mu: Y \to X$ is a log resolution if Y is smooth and $\operatorname{Ex}(\mu) \cup \mu_*^{-1}B$ hs simple normal crossings.
- We write $K_Y + \mu_*^{-1}B + F = \mu^*(K_X + B)$.

Singularities of the MMP

- A log pair (X, B) is a normal variety X and a \mathbb{Q} -divisor $B = \sum b_i B_i$ where $b_i \in \mathbb{Q}_{\geq 0}$ such that $K_X + B$ is \mathbb{Q} -Cartier.
- A proper birational morphism $\mu: Y \to X$ is a log resolution if Y is smooth and $\operatorname{Ex}(\mu) \cup \mu_*^{-1}B$ hs simple normal crossings.
- We write $K_Y + \mu_*^{-1}B + F = \mu^*(K_X + B)$.
- (X, B) is canonical/terminal if the coefficients of F are $\leq 0/< 0$ (for any Y).

Singularities of the MMP

- A log pair (X, B) is a normal variety X and a \mathbb{Q} -divisor $B = \sum b_i B_i$ where $b_i \in \mathbb{Q}_{\geq 0}$ such that $K_X + B$ is \mathbb{Q} -Cartier.
- A proper birational morphism $\mu: Y \to X$ is a log resolution if Y is smooth and $\operatorname{Ex}(\mu) \cup \mu_*^{-1}B$ hs simple normal crossings.
- We write $K_Y + \mu_*^{-1}B + F = \mu^*(K_X + B)$.
- (X, B) is canonical/terminal if the coefficients of F are $\leq 0/< 0$ (for any Y).
- (X, B) is KLT if the coefficients of $F + \mu_*^{-1}B$ are ≤ 1 .

Singularities of the MMP

- A log pair (X, B) is a normal variety X and a \mathbb{Q} -divisor $B = \sum b_i B_i$ where $b_i \in \mathbb{Q}_{\geq 0}$ such that $K_X + B$ is \mathbb{Q} -Cartier.
- A proper birational morphism $\mu: Y \to X$ is a log resolution if Y is smooth and $\operatorname{Ex}(\mu) \cup \mu_*^{-1}B$ hs simple normal crossings.
- We write $K_Y + \mu_*^{-1}B + F = \mu^*(K_X + B)$.
- (X, B) is canonical/terminal if the coefficients of F are $\leq 0/< 0$ (for any Y).
- (X, B) is KLT if the coefficients of $F + \mu_*^{-1}B$ are ≤ 1 .
- Warning: KLT sings are preserved under flips and divisorial contractions, but if (X, B) is canonical and f : X → X' is a divisorial contraction with Ex(f) ⊂ Supp(B), then (X', f_{*}B) is not canonical.

Deformations of singularities

• By results of Kawamata and Nakayama, it is known that:

Theorem

If $f: X \to T$ is a flat family over a smooth curve T and if the fiber X_0 has canonical/terminal singularities, then X_t also has canonical/terminal singularities for t is a neighborhood of $0 \in T$. If, moreover, K_X is f-big, then $P_m(X_t) = h^0(\mathcal{O}_{X_t}(mK_{X_t}))$ is constant.

イロト イポト イヨト イヨト

Deformations of singularities

• By results of Kawamata and Nakayama, it is known that:

Theorem

If $f: X \to T$ is a flat family over a smooth curve T and if the fiber X_0 has canonical/terminal singularities, then X_t also has canonical/terminal singularities for t is a neighborhood of $0 \in T$. If, moreover, K_X is f-big, then $P_m(X_t) = h^0(\mathcal{O}_{X_t}(mK_{X_t}))$ is constant.

 The proof relies on a generalization of Siu's result on deformation invariance of plurigenera: Let f : X → T be a smooth family of projective varieties, then the functions h⁰(mK_{Xt}) are constant.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Deformations of singularities II

• The idea of the proof is as follows: Asume that X_0 is canonical so that if $\mu : X' \to X$ is an appropriate resolution, we have $K_{X'_0} \ge \mu^* K_{X_0}$ where $X'_0 = \mu^{-1}_* X_0$.

Deformations of singularities II

- The idea of the proof is as follows: Asume that X_0 is canonical so that if $\mu : X' \to X$ is an appropriate resolution, we have $K_{X'_0} \ge \mu^* K_{X_0}$ where $X'_0 = \mu^{-1}_* X_0$.
- Pick m > 0 such that mK_{X0} is Cartier. Working locally, we may pick s ∈ O_{X0}(mK_{X0}) a non-vanishing section.

Deformations of singularities II

- The idea of the proof is as follows: Asume that X_0 is canonical so that if $\mu : X' \to X$ is an appropriate resolution, we have $K_{X'_0} \ge \mu^* K_{X_0}$ where $X'_0 = \mu^{-1}_* X_0$.
- Pick m > 0 such that mK_{X0} is Cartier. Working locally, we may pick s ∈ O_{X0}(mK_{X0}) a non-vanishing section.
- Since X_0 is canonical, *s* lifts to a section of $\mathcal{O}_{X'_0}(mK_{X'_0})$ which (by a generalization of Siu's result) then lifts to a section of $\mathcal{O}_{X'}(m(K_{X'} + X'_0))$.

イロト イヨト イヨト イヨト

Deformations of singularities II

- The idea of the proof is as follows: Asume that X_0 is canonical so that if $\mu : X' \to X$ is an appropriate resolution, we have $K_{X'_0} \ge \mu^* K_{X_0}$ where $X'_0 = \mu^{-1}_* X_0$.
- Pick m > 0 such that mK_{X0} is Cartier. Working locally, we may pick s ∈ O_{X0}(mK_{X0}) a non-vanishing section.
- Since X_0 is canonical, *s* lifts to a section of $\mathcal{O}_{X'_0}(mK_{X'_0})$ which (by a generalization of Siu's result) then lifts to a section of $\mathcal{O}_{X'}(m(K_{X'} + X'_0))$.
- Pushing forward we have that the non-vanishing section s extends to a section $\tilde{s} \in \mathcal{O}_X(mK_X)$ and so K_X is Q-Cartier.

・ロッ ・回 ・ ・ ヨ ・ ・ ヨ ・

Deformations of singularities II

- The idea of the proof is as follows: Asume that X_0 is canonical so that if $\mu : X' \to X$ is an appropriate resolution, we have $K_{X'_0} \ge \mu^* K_{X_0}$ where $X'_0 = \mu^{-1}_* X_0$.
- Pick m > 0 such that mK_{X0} is Cartier. Working locally, we may pick s ∈ O_{X0}(mK_{X0}) a non-vanishing section.
- Since X_0 is canonical, *s* lifts to a section of $\mathcal{O}_{X'_0}(mK_{X'_0})$ which (by a generalization of Siu's result) then lifts to a section of $\mathcal{O}_{X'}(m(K_{X'} + X'_0))$.
- Pushing forward we have that the non-vanishing section s extends to a section $\tilde{s} \in \mathcal{O}_X(mK_X)$ and so K_X is Q-Cartier.
- It also follows that $K_{X'} + X'_0 \ge \mu^*(K_X + X_0) \ge \mu^*K_X + X'_0$ so that X is canonical.

• Note that there are examples where (X_0, D_0) is KLT but nearby fibers are not. Therefore some care is required when dealing with log pairs.

<ロ> (日) (日) (日) (日) (日)

Pairs

- Note that there are examples where (X_0, D_0) is KLT but nearby fibers are not. Therefore some care is required when dealing with log pairs.
- Eg. Let $X \to Z$ be a KLT 3-fold flipping contraction over T, then $X_0 \to Z_0$ contracts a K_{X_0} negative divisor and it follows that Z_0 is KLT, but Z is not KLT (K_Z is not \mathbb{Q} -Cartier).

(a)

Pairs

- Note that there are examples where (X_0, D_0) is KLT but nearby fibers are not. Therefore some care is required when dealing with log pairs.
- Eg. Let $X \to Z$ be a KLT 3-fold flipping contraction over T, then $X_0 \to Z_0$ contracts a K_{X_0} negative divisor and it follows that Z_0 is KLT, but Z is not KLT (K_Z is not \mathbb{Q} -Cartier).
- Variations on this example lead to examples were K_{Zt} is not Q-Cartier.

<ロ> (日) (日) (日) (日) (日)

Pairs

- Note that there are examples where (X_0, D_0) is KLT but nearby fibers are not. Therefore some care is required when dealing with log pairs.
- Eg. Let $X \to Z$ be a KLT 3-fold flipping contraction over T, then $X_0 \to Z_0$ contracts a K_{X_0} negative divisor and it follows that Z_0 is KLT, but Z is not KLT (K_Z is not \mathbb{Q} -Cartier).
- Variations on this example lead to examples were K_{Zt} is not Q-Cartier.
- If we restrict ourselves to the case of canonical singularities, then this problem does not occur.

<ロ> (日) (日) (日) (日) (日)

Deformation of canonical pairs

Theorem

Let $S \subset X$ be an irreducible Cartier (in codimension 2) normal divisor on a normal variety X, $D \ge 0$ such that $S \not\subset \text{Supp}(D)$. If $(S, D|_S)$ is canonical, then $K_X + S + D$ is \mathbb{Q} -Cartier near S and (X, D) is canonical near S.

イロト イヨト イヨト イヨト

Deformation of canonical pairs

Theorem

Let $S \subset X$ be an irreducible Cartier (in codimension 2) normal divisor on a normal variety X, $D \ge 0$ such that $S \not\subset \text{Supp}(D)$. If $(S, D|_S)$ is canonical, then $K_X + S + D$ is \mathbb{Q} -Cartier near S and (X, D) is canonical near S.

The proof follows either by results of Kollár-Mori, or by using extension theorems (to be discussed later) to show that sections of $m(K_S + D|_S)$ extend to sections of $m(K_X + S + D)$.

Corollaries

• It follows that if $f: X \to T$ is a flat family and $(X_0, D|_{X_0})$ is canonical/terminal, then (X, D) and $(X_t, D|_{X_t})$ are canonical/terminal.

イロト イヨト イヨト イヨト

臣

Corollaries

- It follows that if $f: X \to T$ is a flat family and $(X_0, D|_{X_0})$ is canonical/terminal, then (X, D) and $(X_t, D|_{X_t})$ are canonical/terminal.
- If X_0 is terminal and \mathbb{Q} -factorial, then X is \mathbb{Q} -factorial. (Given a divisor D on X, $K_{X_0} + \epsilon D|_{X_0}$ is terminal and so $K_X + \epsilon D$ is \mathbb{Q} -Cartier).

イロト イヨト イヨト イヨト

Corollaries

- It follows that if $f: X \to T$ is a flat family and $(X_0, D|_{X_0})$ is canonical/terminal, then (X, D) and $(X_t, D|_{X_t})$ are canonical/terminal.
- If X_0 is terminal and \mathbb{Q} -factorial, then X is \mathbb{Q} -factorial. (Given a divisor D on X, $K_{X_0} + \epsilon D|_{X_0}$ is terminal and so $K_X + \epsilon D$ is \mathbb{Q} -Cartier).
- Assume that (X₀, D|_{X₀}) is terminal and Q-factorial, N¹(X/T) → N¹(X₀) is surjective and ψ : X → Z is the contraction of a negative extremal ray of N¹(X/T). If ψ₀ is a divisorial contraction that contracts no component of D|_{X₀} (or if - K_{X₀} is ψ-ample), then ψ and ψ_t are divisorial.

(ロ) (同) (E) (E) (E)

Corollaries

- It follows that if $f: X \to T$ is a flat family and $(X_0, D|_{X_0})$ is canonical/terminal, then (X, D) and $(X_t, D|_{X_t})$ are canonical/terminal.
- If X_0 is terminal and \mathbb{Q} -factorial, then X is \mathbb{Q} -factorial. (Given a divisor D on X, $K_{X_0} + \epsilon D|_{X_0}$ is terminal and so $K_X + \epsilon D$ is \mathbb{Q} -Cartier).
- Assume that (X₀, D|_{X₀}) is terminal and Q-factorial, N¹(X/T) → N¹(X₀) is surjective and ψ : X → Z is the contraction of a negative extremal ray of N¹(X/T). If ψ₀ is a divisorial contraction that contracts no component of D|_{X₀} (or if -K_{X₀} is ψ-ample), then ψ and ψ_t are divisorial.
- We use the last hypothesis to guarantee that $(Z_0, (\psi_0)_* D|_{X_0})$ (or K_{Z_0}) is canonical.

(ロ) (同) (E) (E) (E)

Outline of the talk

Introduction

- 2 Deformations of singularities
- 3 The MMP for families
- 4 Families of Fanos

・ロン ・回 と ・ ヨン ・ ヨン

臣

Running the MMP

• We briefly recall how to run a MMP.

(ロ) (同) (E) (E) (E)

Running the MMP

- We briefly recall how to run a MMP.
- Let (X, D) be a KLT pair.

・ロン ・四 と ・ ヨ と ・ ヨ と

Running the MMP

- We briefly recall how to run a MMP.
- Let (X, D) be a KLT pair.
- If $K_X + D$ is nef (i.e. $(K_X + D) \cdot C \ge 0$ for any curve $C \subset X$) then we say that (X, D) is a minimal model.

Running the MMP

- We briefly recall how to run a MMP.
- Let (X, D) be a KLT pair.
- If $K_X + D$ is nef (i.e. $(K_X + D) \cdot C \ge 0$ for any curve $C \subset X$) then we say that (X, D) is a minimal model.
- If $K_X + D$ is not nef then there is a curve $C \subset X$ such that $(K_X + D) \cdot C < 0$. By the Cone Theorem, we may assume that $R = \mathbb{R}^+[C]$ is an extremal ray of the cone of effective curves $\overline{NE}(X) \subset N_1(X)$ and that there is a contraction morphism $f = \operatorname{cont}_R : X \to Y$ such that $f_*C' = 0$ iff $[C'] \in R$.

イロン イ団ン イヨン イヨン 三日

Running the MMP

- We briefly recall how to run a MMP.
- Let (X, D) be a KLT pair.
- If $K_X + D$ is nef (i.e. $(K_X + D) \cdot C \ge 0$ for any curve $C \subset X$) then we say that (X, D) is a minimal model.
- If $K_X + D$ is not nef then there is a curve $C \subset X$ such that $(K_X + D) \cdot C < 0$. By the Cone Theorem, we may assume that $R = \mathbb{R}^+[C]$ is an extremal ray of the cone of effective curves $\overline{NE}(X) \subset N_1(X)$ and that there is a contraction morphism $f = \operatorname{cont}_R : X \to Y$ such that $f_*C' = 0$ iff $[C'] \in R$.
- If dim Y < dim X, then we have a log Fano fibration so that -(K_X + D) is ample over Y. In particular K_X + D is not in the closure of the cone of big divisors.

イロン イ団ン イヨン イヨン 三日

Running the MMP II

If dim Y = dim X and dim X = dim Ex(f) + 1, then f is a divisorial contraction, (Y, f*D) is KLT and we may replace (X, D) by (Y, f*D).

イロン イヨン イヨン イヨン

Running the MMP II

- If dim Y = dim X and dim X = dim Ex(f) + 1, then f is a divisorial contraction, (Y, f*D) is KLT and we may replace (X, D) by (Y, f*D).
- If dim Y = dim X and dim X > dim Ex(f) + 1, then (Y, f_{*}D) is not KLT as K_Y + f_{*}D is not Q-Cartier. Instead we replace (X, D) by (X⁺, D⁺ = φ_{*}D) where the flip φ : X --→ X⁺ is a birational map over Z which is an isomorphism in codimension 1 such that K_{X⁺} + D⁺ is KLT and ample over Y.

イロト イヨト イヨト イヨト

Running the MMP III

Theorem

([BCHM], [HM]) Let (X, D) be a klt pair such that D is big (or $K_X + D$ is big; or $K_X + D$ is not pseudo-effective). Then there is a sequence of flips and divisorial contractions

$$X \dashrightarrow X_1 \dashrightarrow \cdots \dashrightarrow X_N$$

such that either (X_N, D_N) is a minimal model (and $K_{X_N} + D_N$ is semiample) or there is a contraction morphism $f : X_N \to Z$ such that $-(K_{X_N} + D_N)$ is ample over Z.

The above sequence of flips and contractions is given by the MMP with scaling.

The MMP for families

• Let $f: X \to T$ be a flat family over a smooth curve such that $N^1(X/T) \to N^1(X_0)$ is surjective, D a divisor on X whose support does not contain X_0 and such that $(X_0, D|_{X_0})$ is a KLT pair with canonical singularities.

イロン イヨン イヨン イヨン

The MMP for families

- Let $f: X \to T$ be a flat family over a smooth curve such that $N^1(X/T) \to N^1(X_0)$ is surjective, D a divisor on X whose support does not contain X_0 and such that $(X_0, D|_{X_0})$ is a KLT pair with canonical singularities.
- Assume that D|_{X₀} (or K_{X₀} + D|_{X₀}) is big and that either:
 SBs(K_X + D) contains no component of Supp(D|_{X₀}), or
 D aK_{X₀} is ample for a > -1.

イロン イ団ン イヨン イヨン 三日

The MMP for families

- Let $f: X \to T$ be a flat family over a smooth curve such that $N^1(X/T) \to N^1(X_0)$ is surjective, D a divisor on X whose support does not contain X_0 and such that $(X_0, D|_{X_0})$ is a KLT pair with canonical singularities.
- Assume that D|_{X₀} (or K_{X₀} + D|_{X₀}) is big and that either:
 SBs(K_X + D) contains no component of Supp(D|_{X₀}), or
 D aK_{X₀} is ample for a > -1.
- If we run the K_X + D MMP over T with scaling of some divisor H (in case 2 we assume that H is a multiple of D − aK_X), then we never contract a component of Supp(D|_{X₀}) (or in case 2 each contraction is K_X negative).

イロン イ団ン イヨン イヨン 三日

The MMP for families

- Let $f: X \to T$ be a flat family over a smooth curve such that $N^1(X/T) \to N^1(X_0)$ is surjective, D a divisor on X whose support does not contain X_0 and such that $(X_0, D|_{X_0})$ is a KLT pair with canonical singularities.
- Assume that D|_{X₀} (or K_{X₀} + D|_{X₀}) is big and that either:
 SBs(K_X + D) contains no component of Supp(D|_{X₀}), or
 D aK_{X₀} is ample for a > -1.
- If we run the K_X + D MMP over T with scaling of some divisor H (in case 2 we assume that H is a multiple of D aK_X), then we never contract a component of Supp(D|_{X0}) (or in case 2 each contraction is K_X negative).
- By the previous result, this induces a $K_{X_0} + D|_{X_0} \text{ MMP}/T$.

イロト イヨト イヨト イヨト

An extension Theorem

• It follows that with the above assumptions:

Theorem

If L is an integral Weil \mathbb{Q} -Cartier divisor, $X_0 \not\subset \operatorname{Supp}(D)$ and $L|_{X_0} \equiv k(K_X + D)|_{X_0}$ for some $k \in \mathbb{Q}_{>1}$, then $H^0(X, \mathcal{O}_X(L)) \to H^0(X_0, \mathcal{O}_{X_0}(L))$ is surjective.

(ロ) (同) (E) (E)

An extension Theorem

• It follows that with the above assumptions:

Theorem

If L is an integral Weil \mathbb{Q} -Cartier divisor, $X_0 \not\subset \operatorname{Supp}(D)$ and $L|_{X_0} \equiv k(K_X + D)|_{X_0}$ for some $k \in \mathbb{Q}_{>1}$, then $H^0(X, \mathcal{O}_X(L)) \to H^0(X_0, \mathcal{O}_{X_0}(L))$ is surjective.

• Proof: Let $\psi: X \dashrightarrow X'$ be a minimal model for $K_X + D$ and hence for $K_{X_0} + D|_{X_0}$. Then $H^0(\mathcal{O}_X(L)) \cong H^0(\mathcal{O}_{X'}(\psi_*L))$ and $H^0(\mathcal{O}_{X_0}(L)) \cong H^0(\mathcal{O}_{X'_0}(\psi_*L))$. The assertion now follows from Kawamata-Viehweg Vanishing.

イロン イヨン イヨン イヨン

Nef values in families

• We conjecture that Wiśnieski's result generalizises to the above situation:

Conjecture

Assume that $\text{SBs}(K_X + D)$ contains no component of $\text{Supp}(D|_{X_0})$ (or $D - aK_{X_0}$ is ample for a > -1). If $\tau_A(K_{X_0} + D|_{X_0}) > 0$ for some ample line bundle A, then the function $\tau_A(K_{X_t} + D|_{X_t})$ is constant for t in a neighborhood of $0 \in T$.

Nef values in families

• We conjecture that Wiśnieski's result generalizises to the above situation:

Conjecture

Assume that $\text{SBs}(K_X + D)$ contains no component of $\text{Supp}(D|_{X_0})$ (or $D - aK_{X_0}$ is ample for a > -1). If $\tau_A(K_{X_0} + D|_{X_0}) > 0$ for some ample line bundle A, then the function $\tau_A(K_{X_t} + D|_{X_t})$ is constant for t in a neighborhood of $0 \in T$.

 If τ_A(K_{X0} + D|_{X0}) > 0, let f : X → Z be the contraction morphism induced by the corresponding extremal ray. We would like to show that if f|_{X0} is non-trivial, then so is f|_{Xt}.

イロン イヨン イヨン イヨン

Nef values in families

• We conjecture that Wiśnieski's result generalizises to the above situation:

Conjecture

Assume that $\text{SBs}(K_X + D)$ contains no component of $\text{Supp}(D|_{X_0})$ (or $D - aK_{X_0}$ is ample for a > -1). If $\tau_A(K_{X_0} + D|_{X_0}) > 0$ for some ample line bundle A, then the function $\tau_A(K_{X_t} + D|_{X_t})$ is constant for t in a neighborhood of $0 \in T$.

- If τ_A(K_{X0} + D|_{X0}) > 0, let f : X → Z be the contraction morphism induced by the corresponding extremal ray. We would like to show that if f|_{X0} is non-trivial, then so is f|_{Xt}.
- If $f|_{X_0}$ is of fiber type, then by semicontinuity, so is $f|_{X_t}$.

Nef values in families

• We conjecture that Wiśnieski's result generalizises to the above situation:

Conjecture

Assume that $\text{SBs}(K_X + D)$ contains no component of $\text{Supp}(D|_{X_0})$ (or $D - aK_{X_0}$ is ample for a > -1). If $\tau_A(K_{X_0} + D|_{X_0}) > 0$ for some ample line bundle A, then the function $\tau_A(K_{X_t} + D|_{X_t})$ is constant for t in a neighborhood of $0 \in T$.

- If τ_A(K_{X0} + D|_{X0}) > 0, let f : X → Z be the contraction morphism induced by the corresponding extremal ray. We would like to show that if f|_{X0} is non-trivial, then so is f|_{Xt}.
- If $f|_{X_0}$ is of fiber type, then by semicontinuity, so is $f|_{X_t}$.
- If $f|_{X_0}$ is divisorial, then by our previous discussion, so is $f|_{X_t}$.

Nef values in families II

• If $f|_{X_0}$ is small, the conjecture holds if dim $X_0 \leq 3$ or if X_0 satisfies the volume criterion for ampleness that is, for any class $\xi_0 \in N^1(X_0)$, ξ_0 is ample iff for any ξ near ξ_0 we have $\operatorname{Vol}(\xi) = \xi^{\dim X_0}$.

(日) (同) (三) (三)

Nef values in families II

- If $f|_{X_0}$ is small, the conjecture holds if dim $X_0 \leq 3$ or if X_0 satisfies the volume criterion for ampleness that is, for any class $\xi_0 \in N^1(X_0)$, ξ_0 is ample iff for any ξ near ξ_0 we have $\operatorname{Vol}(\xi) = \xi^{\dim X_0}$.
- This property is known to hold if X₀ is toric. Lazarsfeld raised the question of understanding for which other classes of divisors and of projective varieties it holds.

・ロト ・同ト ・ヨト ・ヨト

Nef values in families II

- If $f|_{X_0}$ is small, the conjecture holds if dim $X_0 \leq 3$ or if X_0 satisfies the volume criterion for ampleness that is, for any class $\xi_0 \in N^1(X_0)$, ξ_0 is ample iff for any ξ near ξ_0 we have $\operatorname{Vol}(\xi) = \xi^{\dim X_0}$.
- This property is known to hold if X₀ is toric. Lazarsfeld raised the question of understanding for which other classes of divisors and of projective varieties it holds.
- Suppose that this property holds and that $\tau_A(K_{X_0} + D|_{X_0}) > \tau_A(K_{X_t} + D|_{X_t})$. Then there is a $\tau > 0$ such that $K_{X_t} + D|_{X_t} + \tau A|_{X_t}$ is ample but $K_{X_0} + D|_{X_0} + \tau A|_{X_0}$ is not nef.

イロト イヨト イヨト イヨト

Nef values in families III

• Let $\xi \in N^1(X/T)$ be sufficiently close to the class of $K_X + D + \tau A$. Then (using the extension theorem and the fact that $\xi|_{X_t}$ is ample)

$$\operatorname{Vol}(\xi|_{X_0}) = \operatorname{Vol}(\xi|_{X_t}) = (\xi|_{X_t})^{\dim X_t} = (\xi|_{X_0})^{\dim X_0}.$$

イロト イヨト イヨト イヨト

Nef values in families III

• Let $\xi \in N^1(X/T)$ be sufficiently close to the class of $K_X + D + \tau A$. Then (using the extension theorem and the fact that $\xi|_{X_t}$ is ample)

$$\operatorname{Vol}(\xi|_{X_0}) = \operatorname{Vol}(\xi|_{X_t}) = (\xi|_{X_t})^{\dim X_t} = (\xi|_{X_0})^{\dim X_0}.$$

• Therefore X₀ does not satisfy the volume criterion for ampleness. Contradiction.

(a)

Outline of the talk

Introduction

- 2 Deformations of singularities
- 3 The MMP for families
- 4 Families of Fanos

・ロト ・回ト ・ヨト ・ヨト

臣

Moving and pseudo-effective cones

 Let f : X → T be a flat projective family such that X₀ is a Fano variety with Q-factorial terminal singularities. By what we have already seen, for t in a neighborhood of 0 ∈ T, X_t are also Fano varieties with Q-factorial terminal singularities.

・ロト ・同ト ・ヨト ・ヨト

Moving and pseudo-effective cones

- Let $f : X \to T$ be a flat projective family such that X_0 is a Fano variety with \mathbb{Q} -factorial terminal singularities. By what we have already seen, for t in a neighborhood of $0 \in T$, X_t are also Fano varieties with \mathbb{Q} -factorial terminal singularities.
- We have that:

Theorem

The moving cones and the big cones of X_t are locally constant.

(Recall that the moving cone is the closure of the cone spanned by movable divisors.)

イロト イヨト イヨト イヨト

Moving and pseudo-effective cones

- Let $f : X \to T$ be a flat projective family such that X_0 is a Fano variety with \mathbb{Q} -factorial terminal singularities. By what we have already seen, for t in a neighborhood of $0 \in T$, X_t are also Fano varieties with \mathbb{Q} -factorial terminal singularities.
- We have that:

Theorem

The moving cones and the big cones of X_t are locally constant.

(Recall that the moving cone is the closure of the cone spanned by movable divisors.)

• Note that given any divisor D, for $0 < \epsilon \ll 1$ we may write $\epsilon D \sim_{\mathbb{Q}} K_X + B$ where (X, B) is KLT and $B \sim_{\mathbb{Q}} \epsilon D - K_X$ is ample.

Moving and pseudo-effective cones II

• The statement about the big cones of X_t then follows immediately from the extension theorem discussed above (this was previously communicated to us by Lazarsfeld).

・ロト ・日下・ ・ ヨト

Moving and pseudo-effective cones II

- The statement about the big cones of X_t then follows immediately from the extension theorem discussed above (this was previously communicated to us by Lazarsfeld).
- The statement about movable cones follows instead by running a MMP over T and observing that if $D|_{X_0}$ is not movable, then $\text{SBs}(D|_{X_0})$ contains a divisor which must be contracted by this MMP.

(D) (A) (A) (A)

Moving and pseudo-effective cones II

- The statement about the big cones of X_t then follows immediately from the extension theorem discussed above (this was previously communicated to us by Lazarsfeld).
- The statement about movable cones follows instead by running a MMP over T and observing that if $D|_{X_0}$ is not movable, then $\operatorname{SBs}(D|_{X_0})$ contains a divisor which must be contracted by this MMP.
- As we have seen above, this divisorial contraction induces a divisorial contraction on X_t for t near 0 and hence $D|_{X_t}$ is not movable.

Mori Chambers

• Recall that if L_i are movable divisors on X such that $\operatorname{Proj} R(L_1) \cong \operatorname{Proj} R(L_2)$, then L_1 and L_2 belong to the same Mori chamber of $\operatorname{Mov}^1(X)$ (we also require that the interior of a Mori chamber is open in $N^1(X)$).

Mori Chambers

- Recall that if L_i are movable divisors on X such that $\operatorname{Proj} R(L_1) \cong \operatorname{Proj} R(L_2)$, then L_1 and L_2 belong to the same Mori chamber of $\operatorname{Mov}^1(X)$ (we also require that the interior of a Mori chamber is open in $N^1(X)$).
- The following conjecture is a consequence of the conjecture on nef values and hence holds for several classes of varieties (eg. toric varieties; dim X₀ ≤ 3):

Conjecture

The Mori chamber decomposition of the fibers of $X \rightarrow T$ is locally constant.

Mori Chambers

- Recall that if L_i are movable divisors on X such that $\operatorname{Proj} R(L_1) \cong \operatorname{Proj} R(L_2)$, then L_1 and L_2 belong to the same Mori chamber of $\operatorname{Mov}^1(X)$ (we also require that the interior of a Mori chamber is open in $N^1(X)$).
- The following conjecture is a consequence of the conjecture on nef values and hence holds for several classes of varieties (eg. toric varieties; dim X₀ ≤ 3):

Conjecture

The Mori chamber decomposition of the fibers of $X \rightarrow T$ is locally constant.

• In particular the nef cones are locally constant.

・ロン ・日ン ・ヨン ・ヨン

Mori Chambers II

• When X₀ is a toric variety, this is in fact a consequence of the following:

Theorem

Q-factorial terminal toric Fano varieties are rigid.

(日) (同) (三) (三)

Mori Chambers II

• When X₀ is a toric variety, this is in fact a consequence of the following:

Theorem

Q-factorial terminal toric Fano varieties are rigid.

• Note that if X_0 is smooth, then by a result of Bien and Brion, $H^1(T_{X_0}) = 0.$

Mori Chambers II

• When X_0 is a toric variety, this is in fact a consequence of the following:

Theorem

Q-factorial terminal toric Fano varieties are rigid.

- Note that if X_0 is smooth, then by a result of Bien and Brion, $H^1(T_{X_0}) = 0.$
- In general, we use the fact that Fano varieties are Mori Dream spaces i.e. $h^0(\Omega^1_{X_0}) = 0$ and the Cox ring $C(X_0) = \bigoplus_{[D] \in Cl(X_0)} H^0(\mathcal{O}_{X_0}(D))$ is finitely generated.

・ロン ・回 と ・ヨン ・ヨン

Mori Chambers III

• By results of Hu and Keel, the Cox ring is known to govern the birational geometry of X_0 .

(日) (同) (三) (三)

臣

Mori Chambers III

- By results of Hu and Keel, the Cox ring is known to govern the birational geometry of X_0 .
- In particular X_0 is toric if and only if its Cox ring is polynomial.

Mori Chambers III

- By results of Hu and Keel, the Cox ring is known to govern the birational geometry of X₀.
- In particular X_0 is toric if and only if its Cox ring is polynomial.
- Note that for any Weil divisor D on X_0 , we may write $\epsilon D \sim_{\mathbb{Q}} K_{X_0} + \Delta$ where $\Delta \sim_{\mathbb{Q}} -K_{X_0} + \epsilon D$ is ample and $K_{X_0} + \Delta$ is terminal.

イロト イヨト イヨト イヨト

Mori Chambers III

- By results of Hu and Keel, the Cox ring is known to govern the birational geometry of X₀.
- In particular X_0 is toric if and only if its Cox ring is polynomial.
- Note that for any Weil divisor D on X_0 , we may write $\epsilon D \sim_{\mathbb{Q}} K_{X_0} + \Delta$ where $\Delta \sim_{\mathbb{Q}} -K_{X_0} + \epsilon D$ is ample and $K_{X_0} + \Delta$ is terminal.
- Using the extension theorem discussed above, one then shows that sections of $\mathcal{O}_{X_0}(D)$ extend to nearby fibers.

Mori Chambers III

- By results of Hu and Keel, the Cox ring is known to govern the birational geometry of X₀.
- In particular X_0 is toric if and only if its Cox ring is polynomial.
- Note that for any Weil divisor D on X_0 , we may write $\epsilon D \sim_{\mathbb{Q}} K_{X_0} + \Delta$ where $\Delta \sim_{\mathbb{Q}} -K_{X_0} + \epsilon D$ is ample and $K_{X_0} + \Delta$ is terminal.
- Using the extension theorem discussed above, one then shows that sections of $\mathcal{O}_{X_0}(D)$ extend to nearby fibers.
- Since $C(X_0)$ is polynomial, it then follows that the $C(X_t)$ is polynomial and hence that X_t is toric. It is then easy to see that X_0 is rigid.

(ロ) (同) (E) (E) (E)