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1) Extension Theorems:

The purpose of this talk is to show how ap-
propriate generalizations of the extension the-
orems of Siu can be applied to problems in bi-
rational geometry. We begin by recalling Siu’s
result:

Theorem 1. (Siu, 98, 02) Let f : X — T
be a smooth projective morphism of smooth
quasi-projective varieties. Then for all m > 1
the plurigenera

Pm(Xy) := h9(Xy, Ox,(mKx,))

are independent of t.

By semicontinuity, it suffices to show that for
any point O € T, the sections of OXO(mKXO)
extend over some neighborhood 0 € U,,, C T.



Theorem 2. (Kawamata, 99) Let f : X — T
be a flat morphism from a germ of an algebraic
variety to a germ of a smooth curve such that
the central fiber Xqo has canonical singularities.
Then X has also canonical singularities and so
does any fiber X;.

Kawamata also showed that if X, is of general
type, then the plurigenera are are constant.
Nakayama proved analogous results for termi-
nal varieties.

These results are a direct consequence of an
extension theorem which we will now illustrate.



Theorem 3. Let S C X be a smooth divisor
in a smooth variety, f . X — Z a projective
morphism of quasi-projective varieties. If

Ky+S~A+B

where A is f-ample and B is f-effective and
doesn’t vanish along S, then

fFOx(m(Kx + 5)) — fxOg(mKg)

is surjective for all m > 0. (lL.e. "sections of
mKgq extend.”)

To prove such a result, roughly speaking, one
first shows that sections of Og¢(mKqg + H) ex-
tend (for some fixed sufficiently ample H) and
then one applies a limiting procedure.



One reason that makes extending sections from
a subvariety very useful is that it simplifies the
problem at hand by allowing one to do an in-
duction on the dimension of the ambient va-
riety (eg. Basepoint-free Theorem). Unluck-
ily the previous extension result is not suffi-
ciently flexible. From the point of view of bira-
tional algebraic geometry, one would hope for
a statement that applies to log pairs. Usually
this is done by using the Kawamata-Viehweg
vanishing theorem:

If X issmooth, (X, B) isklt and A is nef and big
and L ~ A+ B is integral then H} (X, Ox(Kx+
L)) = 0 and so the map

HO(X,0x(Kx+S+L)) — HO(X,05(Kg+L))

IS surjective.



So one hopes that for all m > 0, the maps

HO(X, Ox(m(Kx+S+L))) — H°(X,05(m(Kgs+L)))

are surjective (when mL is Cartier). If Ky +
S + L is nef, this easily follows, but in general
there is a problem!

Let
f:X—>]P>2

be the blow up at a point 0 € P2, E the excep-
tional divisor and S (resp H) the strict trans-
forms of lines containing O (resp. not contain-
ing 0). Consider

3 1 m
m(Kx + 5+ SH+ SB[ ~ —5-S|s ~ 0

One sees that sections do not extend.



Never-the-less, Tsuji's work, shows that such a
generalization is indeed possible and very use-
ful.

Theorem 4. (Tsuji, Takayama) Let S C X be
a smooth divisor in in a smooth variety, L an
integral divisor on X such that L ~Q A+ B
where A is ample and B is effective B does
not contain S and (S, B|g) is klt. Then

HO(X, Ox(m(Kx+S+L))) — H°(S,0g(m(Ks+L)))

is surjective for all m > 0.

N.B. 1) In the example above, Kx + S+ L is
not Cartier.

2) From the point of view of the MMP the
requirement that Ky + S+ L be Cartier is too
restrictive.



We were able to prove the following result:
Theorem 5. (Hacon-M¢Kernan) Let S C X be
a smooth divisor in a smooth projective variety,
B = Y b;B; a Q-divisor with with 0 < b; < 1
such that S+ B is a divisor with simple normal
crossings. Assume that

B~gA+D

where A is ample and D is effective not con-
taining S and that there is a divisor

G~gKx+S+B

not containing any of the log canonical centers
of (X,"S + B"), then

HO(X,Ox(m(Kx+S+B))) — HY(S,O5(m(Kg+B)))

is surjective for any m > 0 such that m(Kx +
S + B) is Cartier.



The proof follows the ideas of Siu. One pro-
ceeds inductively comparing the multiplier ide-
als of [t(Kx + S+ B)|g| and |tk(Kx + S+ B)|
for k> 0. These ideals measure the singulari-
ties of the base loci of the corresponding linear
series. The condition that "G ~g Kx + S5 + B
does not contain any of the log canonical cen-
ters of 'S + B" allows us to avoid techni-
cal problems that occur when the singulari-
ties of (X,S + B) and of the base locus of
itk(Kx + S + B)| are not disjoint.

There are 3 main applications that I would like
to discuss:

e "'Boundedness of pluricanonical maps”

e ''Rational curves on varieties with mild sin-
gularities”

e ''EXistence of flips”



2) Boundedness of pluricanonical maps
Theorem 6. (Tsuji, Takayama, Hacon-M°‘Kernan)
For any positive integer n, there exists a posi-
tive integer r,, such that if X is a smooth va-
riety of general type and dimension n, then
driy - X --» P(HO(Ox(rKx))) is birational for

all r > ry,.

Tsuji's idea: It suffices to show that there exist
A, B are positive constants depending only on
n = dim(X) such that for any

A
r >

~ (vol(Kx))t/m
then, the map ¢,k is birational. If vOolI(Kx) >
1, the theorem is clear. If vol(Kx) < 1, one
then shows that X belongs to a birationally
bounded family and hence there is a uniform
lower bound for the volume of Kx.

+ B




In fact, let A = A/(vol(Kx))/™ + B and let Z
be the image of ¢>\KX' one sees that

deg(Z) < vol(AKx) = \"vol(Kx) < (An+ B)".

In order to show that the maps ¢,k , are bira-
tional, it suffices to show that there is an open
set U C X such that sections of rKx separate
arbitrary points x,y € U. Therefore, it suffices
to define a Q-divisor G ~ AKx with isolated
log canonical centers at x,y. This is a techni-
cally condition which means that J(G) = Jzy
in a neighborhood of z,y. (Roughly speak-
ing this means that G has high multiplicity at
x,y and low multiplicity in a neighborhood of
z,y.) Then one has that H1{(Ox (A 4+ 1)Ky ®
J(G))) = 0 and hence the map

HO(Ox((AN+1)Kx)) — Cqy

IS surjective, as required.
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It is straightforward to produce a Q-divisor G ~
AK x with nontrivial log canonical center V, at
x. T he point now is to cut down this center
to a point. This can be achieved if there are
many sections in the image of

HO(X,0x(mKx)) — HO(Vg, Oy (mKx)).

Since X is of gen. type and = € X is general,
we may assume that V, is of general type. By
Kawamata’'s Subadjunction, one expects that
(1 + M)Kxl|y, > Ky,. By induction on the
dimension, mKy, has enough sections. The
main difficulty is then to lift these sections to
X. If Kx is ample, this is immediate. In gen-
eral, it is a very delicate statement. Using the
extension results explained above, we are able
to achieve this on an appropriate log resolution
Y — X.

11



3) Rational curves on varieties with mild
singularities.

Here " mild singularities” is to be interpreted
from the point of view of the MMP.

Theorem 7. Let (X, A) be alog pair, f : X —
S a projective morphism such that — K is rel-
atively big and Ox(—m(Kx + A)) is relatively
generated for somem > 0. Letg:Y — X be
any birational morphisms. Then every fiber of

w .= fog is rationally chain connected modulo
g lLCS(X, D).

That is, for any two points of any fiber, there is
a chain of curves connecting these points such
that each curve is either rational or contained
in g"1LCS(X, ).

When S = SpecC we get the following result of
Q. Zhang:

Theorem 8. Let (X,A) be a KLT pair such
that —(Kx + A) is nef and big, then X is ra-
tionally connected (i.e. two general points can
be joined by a rational curve).
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When X = S we have:

Theorem Let (X,A) be a KLT pair and g :
Y — X a birational morphism, then the fibers
of g are rationally chain connected.

In particular if (X,A) is a KLT pair, then:

e if g: X -—» Z is a rational map to a proper
variety which is not everywhere defined, then

Z contains a rational curve.

e X is rationally chain connected if and only if
it is rationally connected.
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The statement is sharp:

Let f: S — C be a P! bundle over an elliptic
curve and E a section of minimal self intersec-
tion E2 < 0. Contracting E we get a surface
T which is rationally chain connected but not
rationally connected. Notice that

K¢+ tE

is KLT for 0O <t < 1 and LC for t = 1 but
—(Kg+tE) is nef for 1 <t <2 and ample for
1l <t <2,

N.B. T is RCC but not RC, so RCC is not a
birational property (the point is that (7,0) is
not KLT).

S — C is the MRC fibration: a surjective map
with connected fibers which are RC, and the
base is not uniruled (see the result of Graber-
Harris-Starr).
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Further consequences: Corollary: Let (X, A)
be a projective log pair such that —(Kxy+A4) is
semiample and —(Kx+A) is big. Then M7 (X)
is a quotient of N1 (LCS(X, A)).

E.G. (Zhang): If (X,A) is KLT, —(Kx + A)
is nef and big then X is simply connected.

Theorem Let (X,A) bea KLT pair, f: X —
S a projective morphism with connected fibers
such that — Ky is relatively big and —(Kx+A)
Is relatively nef for some m > 0. Letg:Y —
X be any birational morphisms. Then

1) the natural map

e = (fog)x: CHYUY) — CHO(S)

IS an isomorphism.
2) w has a section over any curve.
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Idea of the proof Suppose that:

1) Y is smooth and the fiberof r:Y — X —
S is a smooth divisor E.

2) We may write Ky + FE + D ~ F where D, F
are effective with no common components, D
contains an ample divisor, F' is g-exceptional
LD, =0, D4+ E + F has simple normal cross-
ings.

3) The MRC fibration E — Z is a morphism.

Recall that the fibers of £ — Z are rationally
connected and Z is not uniruled. By a result of
Boucksom, Demailly, Paun and Peternell, K,
is pseudo effective. I.e. given an ample divisor
H on Z, for all e >0

Ky +eH 18 big.
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By log additivity of the Kodaira dimensions,
since Kg + D is effective and D contains an
ample divisor, sections of

m(KZ —|— GH)
lift to sections of

m(Kg + D|g).

By the extension result, these sections lift to
sections of

m(Ky + EFE+ D) ~mF

which is exceptional and therefore has x(F) =
0. But then as Kz 4+ eH is big, one sees
that dimZ = 0 and so, by definition of MRC-
fibration, E is rationally connected.
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4) Existence of flips.

There are two main problems in the MMP: A)
existence and B) termination of flips. Shokurov
has shown that assuming the MMP in dimen-
sion n—1, to prove A) in dimension n, it suffices
to construct all pl flips.

Definition 1. A morphism f : X — Z is a pl
flipping contraction if

1) f is a small birational contraction with rel-
ative Picard number 1,

2) X is Q-factorial,

3) Kx + S+ B is purely log terminal, where S
is irreducible, and

4) —(Kx + S+ B) and —S are f-ample.
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The flip of f (if it exists) is a small birational
contraction f' : X' — Z, such that Ky +
S'+ B’ is f'-ample (where S’ + B’ is the strict
transform of S + B).

If it exists, it is given by

fli X'=Projz; P f+Ox(nD) — Z
neN
where D is any positive rational multiple of

Kx + S+ B.

Therefore, to prove existence of flips, it suf-
fices to show that the Oyz-algebra @ f«Ox(nD)
is finitely generated.
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The advantage of considering a pl-flip is that
Shokurov has shown that R = @ f«Ox(nD)
is finitely generated if and only if its image
Rlg C @ f«Og(nD|g) is finitely generated.

The advantage is 2-fold:

— First of all this is now a problem in dimension
n — 1 and therefore one can use results from
the MMP.

— Secondly, —(KX—|—S-|-B)|S — —(K5+szf5(B))
is amplei.e. (S,Diffqg(B)) is a log Fano (rela-
tive to Z) and one expects these varieties to be
more tractable. In particular Shokurov conjec-
tures that a very general class of algebras on
log-Fano varieties are finitely generated. This
conjecture would in particular imply that R|g
is finitely generated and that flips exist.
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The main technical difficulty, is that R|g is not
a divisorial algebra that is one does not know
that there is a divisor D’ < D|g on S such that
Rlg = @ f«+Og(nD’). Using the extension re-
sult, we are however able to show that (on an
appropriate resolution of S), there exists a pos-
itive integer k > 0 and sequence of divisors Dy,
such that

Rls = @ f«Os(Dm)

where (replacing S by an appropriate birational
model)

1) Dy, = km(Kg + By,) is an integral additive
sequence, that is B; + B; < By

2) The limit B = lim By, exists and Kqg + B is
kawamata log terminal.
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If one assumes the real MMP in dimension
n — 1, then we may assume that the mov-
ing part of each D,, is free and the moving
part of Kg + B is semiample. By Kawamata-
Viehweg vanishing, since —(Kxy+ S+ B) is am-
ple, it is easy to see that the restricted alge-
bra is saturated (i.e. there exists a Q-divisor
F=Ky+T-¢g"(Kx+S+B) with "F'>0
such that for all 72,57 > 0, one has

MOV(eri -+ F_l) < l)‘7

Following Shokhurov's ideas (Diophantine Ap-
proximation), it is then easy to sees that this
algebra is finitely generated.

It suffices therefore to find an appropriate bi-
rational model T' of S on which the restricted
algebra is of the form R|p = @ f«xOp(Dm).
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The main point is the following: The algebra R
is determined by the moving parts of |m(Kx +
S+ B)|. Let g: Y — X be a log resolution so
that we may write

Ky+T+B =g¢"(Kx+S+B)+E

where E, T+ B’ are effective, have no common
component, E is exceptional and T = (g~ 1)4S.
Then, the moving part of |m(Ky + T + B')]
is just the pull-back of the moving part of
m(Kx + S + B)|. In order to apply the ex-
tension result, one has to ensure that the log
canonical centers of (Y,"T + B’™") are not con-
tained in the base locus of km(Ky + T + B').
We may assume that all components of B’ are
disjoint. Since T is not in the base locus, we
must only worry about components of B’ and
of B'nNT.
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Canceling common components we may write
the decomposition into mobile and fixed parts
as

imk(Ky + T + Bm)| = [Mm| + Gm

where T'+ B, and G,, have no common com-
ponents. Blowing up along components of
B, NT, we may assume that the moving part
does not vanish along any of these compo-
nents. Note that these components are codi-
mension 1 in 7" and so this does not affect T'!
So all sections of mk(Kp + Bm) extend to Y
as required.
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