MATH 7800: BOUNDEDNESS IN HIGHER
DIMENSIONAL BIRATIONAL GEOMETRY

CHRISTOPHER D. HACON

1. INTRODUCTION

One of the most natural goals in algebraic geometry is to classify
projective varieties over an algebraically closed field k£ up to birational
isomorphism. Recall that two varieties are birational if they have iso-
morphic open subsets or equivalently isomorphic function fields. In
this note we will assume that k& = C is the field of complex numbers.
The strategy behind this classification is as follows. Starting with a
(irreducible and reduced) variety X C PY of dimension d := dim X,
by Hironaka’s theorem, we may assume that X is smooth and consider
the pluricanonical ring R(Kx) := @, -, H’(mKx). Note that if X
and Y are smooth and birational, then their pluricanonical rings are
isomorphic R(Kx) = R(Ky).

Recall that if X is smooth, then the top exterior power of the cotan-
gent bundle wy = A?TY is a line bundle and the global sections of

H°(mKx) correspond to the global sections of w{™ so that in local
coordinates x1, ..., T,, they can be written as f(z1,...,2,)(dzy A... A
dx,)®™ where f(z1,...,x,) is a holomorphic function.

By [BCHM10], it is known that R(Kx) is finitely generated and so
one may consider the corresponding projective variety Z = ProjR(Kx).
The integer

kK(X) :=trdeg.cR(Kx)—1€{-1,0,1,...,dim X}

is the Kodaira dimension of X and the rational map X --» Z is the
litaka fibration. Note that x(X) = dim Z. Often we replace X by an
appropriate birational model so that X — Z is a morphism. There are
three main cases to consider, namely varieties of maximal Kodaira di-
mension £(X) = dim X also known as varieties of general type, varieties
of intermediate Kodaira dimension dim X > x(X) > 0, and varieties
of negative Kodaira dimension 0 > x(X).

Exercise 1.1. Show that if X and Y are birational smooth projective
varieties, then H(w§$™) = H(wg™) for all m € N.

1



Exercise 1.2. Give an example of a singular projective variety X such
that R(Kx) 2 R(Ky) where Y is birational to X .

1.1. Curves. If d = 1, then we say that X is a curve. In this case
wy is a line bundle of degree 2g — 2 where ¢ is the genus of X so that
2g = By(X) is the first Betti number.

The case k(X) < 0 corresponds to g = 0. In this case X = P! and
wx = Op1(—2) so that H*(w{™) = H*(Op1(—2m)) = 0 for all m > 1.
Thus R(Kx) = C is clearly finitely generated.

The case (X) = 0 corresponds to g = 1. In this case we say that
X is an elliptic curve. We have that wy = Ox so that H°(w{™) =
H°(Ox) = C and hence R(Kx) = CJt] which is also finitely generated.
Note however that there is a one parameter family of elliptic curves
(X; defined by y? = x(x — 1)(z — t)) and the canonical ring does not
identify the isomorphism class of X.

The case k(X) = 1 corresponds to g > 2. In this case we say that X
is a curve of general type. The line bundle wx has degree 2g—2 > 0 and
hence is ample. Recall that this means that some tensor power w§™
for some m > 0 is very ample (i.e. the sections of H(w$™) define an
embedding in to PV). It is not hard to see that w$® is very ample and
so every curve of general type can be embedded in [3Kx| = P%~% as a
curve of degree 6g—6. In particular, by a Hilbert scheme argument, for
fixed g > 2, these curves belong to a bounded family. In fact it is known
that these curves are parametrized by an irreducible quasi-projective
variety of dimension 3g — 3.

Exercise 1.3. Show that if X is a smooth curve of genus g > 2 then
Xm

wy' " is very ample for m > 3.
Exercise 1.4. Show that if X is a smooth curve of genus g > 2 then
RO(wS™) = (2m — 1)(g — 1) for m > 2.

Exercise 1.5. Show that if X is a smooth curve of genus g > 2 then
hl(Tx> = 39 —3.

1.2. Surfaces. If d = 2, then we say that X is a surface. In this
case kK(X) € {—1,0,1,2}. Note that there are many birational but not
isomorphic smooth surfaces. To see this, just take a smooth surface
X and blow up a point x € X to obtain f : X' — X such that
f is an isomorphism over X \ z and f~!(x) = E is a rational curve
E~Pl and Ky.- E = E-E = —1. Recall that by Castelnuovo’s
Criterion, if a smooth surface X contains a rational curve £ = P! such
that £ - Kx = —1 (or equivalently - F = —1), then there exists a

morphism f : X — Y such that f(E) = y is a point on Y and X is
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isomorphic to the blow up of Y at y. If X contains no minus 1 curves
(i.e. smooth rational curves E such that £ = —1), then we say that
X is minimal. By Castelnuovo’s Criterion, it follows easily that every
smooth surface is birational to a (smooth) minimal surface. It is well
known that if x(X) > 0, then the corresponding minimal surface is
unique. This is not the case if k(X) < 0.

If k(X) < 0, then X is birational to a ruled surface X' = Pc(€)
where C' is a curve and & is a rank 2 vector bundle on C'

If k(X) = 0, then X is birational to one of the following minimal
surfaces:

(1) Abelian surface: h°(Q%) = 2 and h°(wx) = 1. We have Tx =
O%? and so Ky = 0. For example X = F x F where E, F are
elliptic curves.

(2) K3 surface: h°(Q%) = 0 and h%(wx) = 1. We have Kx = 0.
For example a hypersurface of degree 4 in P? or a complete
intersection of degree 2,3 (resp. 2,2,2) in P* (resp. P?).

(3) Bielliptic surfaces: h°(Q%) = 1 and h(wx) = 0. For these
surfaces Kx # 0 but 12K x = 0. Let k£ be the smallest positive
integer such that KKy = 0, then there is an étale cover X’ — X
of degree k such that X’ = E x F' is an abelian surface given
by the product of two elliptic curves. We may assume that X
is the quotient of X’ by a finite abelian group of order 2, 3, 4,
or 6.

(4) Enriques surfaces: h°(Q%) = 0 and h%(wx) = 0. For these
surfaces Kx # 0 but 2Ky = 0. The corresponding double
cover is a K3 surface.

If kK(X) =1, then X is birational to a surface X’ with a morphism
f: X’ — C such that the general fiber F' of f is an elliptic curve. For
example consider the product of an elliptic curve F' with a curve C' of
genus g > 2.

If K(X) = 2 and X is minimal, then we say that X is a minimal
model (which is unique). In this case Ky is nef which means that
Kx -C >0 for any curve C' C X. By a result of Bombieri, it is known
that the linear series [5K x| is base point free so that for any z € X
there exists a divisor D € |5K x| whose support does not contain z.
It follows that |5K x| defines a morphism f : X — P¥ = |5Ky|. It
is well known that if D is nef and big (so that D - C' > 0 for any
curve ¢ C X and D? > 0), then hi(Kx + D) = 0 for i > 0. In
particular hi(mKx) = 0 for i > 0 and m > 2 so that h’(mKx) =
x(mKx) = ™MV K2 4 v (Ox). Let Xean = f(X), then f: X — Xean

2
is a morphism that contracts all curves C' C X such that Ky - C' =
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0. It is not the case that X ., is smooth, but its singularities are
well understood: they are du Val singularities (also known as rational
double points orcanonical singularities). In particular wy_, is an ample
line bundle and in fact wx_,, = Ox.,. (1) is very ample. It follows easily
that R(Ky) = R(Kx.,,) is finitely generated and hence we have X,, =
ProjR(Kx,,,). We say that X., is the canonical model. Notice that
the canonical model uniquely determines the minimal model (which is
obtained by taking the minimal desingularization). The upshot is that
if we fix v = K% = K%__, then Xc,, is a subvariety of PV of degree 25v
and so by a Hilbert scheme type argument, it belongs to a bounded
family. In particular for fixed v there are only finitely many topological
types for the corresponding minimal/canonical models.

Exercise 1.6. Show that if f : X' — X is the blow up of X at x, then
E = f~Y(x) is a smooth rational curve with Kx - E = E-E = —1.
Note that Ba(X') = Ba(X) + 1.

Exercise 1.7. Using Castelnuovo’s Criterion, show that every smooth
surface is birational to a minimal surface.

Exercise 1.8. Show that if X is ruled then |mKx| =0 for all m > 0.
Exercise 1.9. Show that if X is ruled then h°(Qk) = h%(wc).
Exercise 1.10. Show that P? is birational to a ruled surface.

Exercise 1.11. Let F,, = Ppi(Op1 @ Opi(n)), then F, and F,, are
birational but not isomorphic for any n # m > 0.

Exercise 1.12. Show that F,, is minimal iff n # 1.

Exercise 1.13. Show that a hypersurface of degree 4 in P® or a com-
plete intersection of degree 2,3 (resp. 2,2,2) in P* (resp. P°) are K3
surfaces.

Exercise 1.14. Show that if X is birational to a surface X' with a
morphism f : X' — C such that the general fiber F' of f is an ellip-
tic curve, then k(X) < 1 give examples where k(X) = 0,—1. Give
examples where not all fibers are isomorphic.

Exercise 1.15. Show that if a divisor D is semiample, then it is also
nef. Give an example of a divisor D which is nef but not semiample.

Exercise 1.16. Show that x(Ox) is a birational invariant.

Exercise 1.17. Show that x(mKx) = m(";l)K?( + x(Ox).
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1.3. n-folds. Not surprisingly, in dimension d > 3 the situation is
much more complicated. We begin by recalling the following funda-
mental result of [BCHM10].

Theorem 1.18. Let X be a smooth complex projective variety, then
R(Kx) is finitely generated.

An immediate consequence of this result, is that if X is of gen-
eral type, then it is birational to a unique canonical model X, =
ProjR(Kx). In fact, for any m > 0, the closure of the image of the
induced rational map ¢,, : X --» |mKx| is ¢ (X) = Xcan. We make
the following observations:

(1) Xcan is not necessarily smooth, but its singularities are canonical
and in particular rational and we have HO(w{™ ) = H(w{™)
for any smooth (or with canonical singularities) variety X bi-
rational to X ,,. It follows that

d'ho (mK X)
md
(2) If X is a variety of general type (smooth or with terminal singu-

larities), then it admits a minimal model. The minimal model is
not necessarily unique, but any two minimal models are related
by a finite sequence of flops.

(3) w?g::n is a line bundle for all m > 0 sufficiently divisible, however
Wx.,, may not be Cartier so we could have K% < 1. In
fact, by an example of [lano-Fletcher00], if X is a weighted
complete intersection of degree 46 in weighted projective space
P(4,5,6,7,23), then vol(Kx) = 1/420 and |mK x| is birational
if and only if m = 23 or m > 27.

Following ideas of H. Tsuji in [HMO06], [Takayama06] and [Tsuji07],
the following remarkable result is proven.

Theorem 1.19. Let d € N and P, be the set of all smooth projective
d-dimensional varieties of general type.

K% =vol(Kx) :=lim

(1) There exists an integer m = my depending only on d such if
X € Py, then |mKx| is birational.

(2) The set Vg = {vol(Kx)|X € Pa} is discrete and in particular
there is a minimal element 0 < vy € Vy.

(3) For any v € V,, there exists a projective morphism of quasi-
projective varieties X — T such that if X is a d-dimensional
canonical model, then X = X; for somet € T.

The above theorem shows that vol(Ky) is the correct higher dimen-

sional generalization of the genus of a curve. It is a discrete birational
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invariant. Once this invariant is fixed, the corresponding canonical
varieties of general type are parametrized by a quasi-projective variety.
If we wish to use these ideas to construct a proper moduli space, we
must also consider the corresponding problem for slc models (X, B),
i.e. the higher dimensional generalization of stable curves.
If 0 < k(X) < d, then one considers the Iitaka fibration X --»
:= Proj(R(Kx)). This is defined by |[mKx| for m > 0 sufficiently
divisible. The fibers of X --» Z are varieties F' with x(F) = 0 and
R(Kx) = R(Kz+ B) where (Z, B) is a klt pair and Kz + B is of general
type. Therefore the geometry of of X can be described in terms of lower
dimensional pairs of general type and varieties of Kodaira dimension
0. Note that the case of dimension 0 is particularly hard to study. In
particular it is not even clear if there are finitely many topologies for
minimal threefolds of Kodaira dimension 0.
Finally, if £(X) < 0, then it is known that X is birational to a Mori
fiber space f: X’ — Z. We have
(1) p(X'/2) =1,
(2) X’ has terminal singularities, and
(3) Kx is ample over Z.

In particular, the fibers of f are Fano varieties (F' is terminal and — K g
is ample). Therefore we view terminal Fano varieties as building blocks
for Fano varieties. A famous conjecture of Alexander Borisov, Lev
Borisov, and Valery Alexeev (known as the BAB conjecture) states that
terminal Fano varieties of dimension d are bounded. This conjecture
was recentluy solved in [Birkar16b].

Theorem 1.20. Fixz d € N, then the set of all terminal projective
varieties such that —Kx s ample 1s bounded.

2. PRELIMINARIES

2.1. Singularities of the MMP. In this section we recal the stan-
dard notions of singularities of the minimal model program. Let X
be a normal quasi-projective variety and D = ) d;D; be an R-divisor.
Here we assume that the D; are distinct prime divisors and d; € R. The
support of D is Supp(D) = Ug,20D;. Recall that by definition a divisor
G is R Cartier if locally we may write G = > r;(g;) where r; € R and
(g:) is the divisor associated to a rational function g; € C(X). If r € R,
then we let

[r] = min{n € Z|n > r}, ) |7] = max{n € Z|n < r}



be the round up and round down of r. We also define the fractional
part {r} =r —|r] € [0,1). For any R-divisor D = > d;D;, we define
the round up [D], round down | D| and fractional part by

[D] = Z(CHD“ D] = ZLdz’JDz‘, {D} = Z{dz}Dz
Recall that by definition
[(Ox(D)) ={f € C(X)|(f) + D = 0} = I(Ox(|D]))-

If X is normal, then the nonsingular locus X, is a big open sub-
set so that Xgne 1= X \ Xyeq is a closed subset of codimension > 2
in X. Therefore, we let Kx = i.Ky,, where Kx,, is a Canoni-
cal divisor on Ky, (equivalently wy, = Ox,,(Kx,,)). We define
Wy =Wy, = Ox(Kx). Note that Kx is a Weil divisor, but it may
not be R-Cartier. If B = > b;B; is an R-divisor such that Kx + B is
R-Cartier, then we say that (X, B) is a pair. If (X, B) is a pair, then
since Kx + B is R-Cartier, the pull-back f*(Kx + B) is defined for
any morphism of normal varieties f : X’ — X. Suppose now that f is
proper and birational. We write

Kx = f"(Kx + B) + Ax:/(X, B).
Note that we chose Kx/ so that f,Kx = Kx.

Lemma 2.1. The divisor Ax: does not depend on the choice of Kx
(here for simplicity we supress (X, B) from the notation so that Ax, :=
Ax/(X,B)).

Proof. Suppose that we have Ky, = f*(Kx + B) + A and K%, =
K%+ B)+A where Kx, K, Kx/, K, are canonical divisors chosen
so that f.(Kx/) = Kx and f.(KY%/) = K%, then f.(A— A’) =0 and
A — A’ ~g 0 so that by the Negativity Lemma (see below), A — A" =
0. O

Lemma 2.2 (Negativity Lemma). Let f : X — Y be a proper bira-
tional morphism of normal varieties and B a Q-Cartier divisor such
that —B is f nef, then B is effective if and only if so is f.B. In this
case, i.e. if B > 0, then for anyy € Y, either f~'(y) C Supp(B) or
f~'(y) NSupp(B) = 0.

Proof. See [KM98, 3.39] O

The R-divisor Ax/(X,B) = > a(E; X, B)E defined by the above
equation is the discrepancy divisor and the numbers a(E; X, B) are the
discrepancies of (X, B) along the divisors E. Notice that a(E; X, B) =
0 unless F is contained in the support of the strict transform of B or £

is exceptional. In particular Ax/(X, B) is a finite sum. If £ = f, ' B;,
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then a(E, X, B) = —b;. The discrepancies a(E, X, B) do not depend on
the choice of the birational model X’. In fact if v : X" — X' is another
birational morphism, then v, Ax» (X, B) = Ax/(X, B). In particular we
have defined a b-divisor A by letting Ay, = Ax := Kx — f*(Kx + B)
for any birational model X’ — X. (Recall that a b-divisor D is specified
by the choice of a divisor Dy for any birational model f : X' — X
which is compatible with respect to push-forwards; the set of all b-
divisors is then identified with T&nDiV(X "y where f : X’ — X belongs
to the partially ordered set of all birational models of X.)

The total discrepancy and the discrepancy of a pair (X, B) is given
by

total discrepancy (X, B) := inf{a(E; X, B)|E is a prime divisor over X},

discrepancy (X, B) := inf{a(F; X, B)|E is an exceptional prime divisor over X}.
It is easy to see that if total discrepancy (X, B) < —1, then total discrepancy(X, B) =

—o00. We will also write Kx/ + By, = f*(Kx + B) and so we define a
b-divisor B = B(X, B) by letting

BX/ = BX/ = f*<KX —|—B) —KX/
so that B = —A.

Definition 2.3. If B > 0, then we say that a pair (X, B) is:

(1) kit (Kawamata log terminal) if total discrepancy (X, B) > —1,

(2) lc (log canonical) if total discrepancy (X, B) > —1,

(3) canonical if discrepancy (X, B) > 0,

(4) terminal if discrepancy (X, B) > 0,

(5) plt if discrepancy (X, B) > —1,

(6) dit (divisorially log terminal) if b; < 1 and there is a closed sub-
set Z C X such that (X\Z, B|x\z) has simple normal crossings

and for any prime diwisor E over X with center contained in
Z, we have a(E; X, B) > —1.

Recall that a pair (X, B) has simple normal crossings if X is smooth
and the support of B is a union of smooth divisors meeting transversely.
A log resolution of a pair (X, B) is a proper birational morphism f :
X’ — X such that the exceptional set Ex(f) is a divisor and (X, /' BU
Ex(f)) has simple normal crossings. To check whether (X, B) is klt/lc,
it suffices to consider a log resolution f : X’ — X and to check if
a(E; X, B) > —1 (resp. > —1) for all prime divisors £ on X".
Remark 2.4. it is known that kit singularities are rational i.e. if
f: X" — X is a log resolution then f.wx = wx and R f.Ox =0 for
i >0 [KM98, 5.22].
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Definition 2.5. If (X, B) is a pair and E is a divisor over X such
that a(E; X, B) < —1 (resp. a(F;X,B) < —1), then we say that E
is a non-lc (resp. non-kit) place of (X, B), and the image of E on X
is a non-lc (resp. a non-kit) center. The union of all non-lc (resp.
non-kit) centers is the non-lc locus nle(X, B), (resp. the non-klt locus

nklt(X, B)).

Definition 2.6. Let (X, B) be a lc pair and D > 0 an effective divisor.
The log canonical threshold of (X, B) with respect to D is

let(X, B; D) = sup{t > 0|(X, B +tD) is lc}.

Exercise 2.7. Let X be the cone over a rational curve of degree n (resp.
an elliptic curve or a curve of genus g > 2) and f: X' — X the blow
up of the vertex with exceptional curve E. Compute the discrepancy
a(E, X,0).

Exercise 2.8. Show that if (X, B) is a lc snc pair then discrep(X, B)
is the minimum of 1, 1 —b;, and 1 — b; — b; where B; N B; # 0.
Exercise 2.9. Show that if total discrepancy(X, B) < —1, then

total discrepancy(X, B) = —o0.

Exercise 2.10. Let (X, B) be log smooth of dimension d. Assume that
B = > b;B; and © € B; for each i. Let X' — X be the blow up of
x € X with exceptional divisor E. Show that a(E; X, B) =d—1-=>_b;.

Exercise 2.11. Suppose that B < B’, where (X, B) and (X, B’) are
log pairs. Show that a(E; X, B) > a(E; X, B') for any divisor E over
X.

Exercise 2.12. Show that if X is canonical and X' — X is a resolu-
tion, then R(Kx) = R(Kx/).

Exercise 2.13. Show that terminal singularities are canonical but not
VICEVErsa.

Exercise 2.14. Show that klt singularities are lc but not viceversa.

Exercise 2.15. Let X be the cone over an abelian surface. Show that
X is lc but its singularities are not rational.

Exercise 2.16. If (X, B) is plt, show that | B] is a disjoint union of
prime divisors.

Exercise 2.17. Find a log resolution for 3 lines meeting at a point in
the plane and for the cusp y? — x> = 0.

Exercise 2.18. Compute 1ct(C?,0; D) where D is the cusp y*—x3 = 0.
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2.2. Kawamata-Viehweg vanishing. Let A be an ample line bun-
dle on a projective variety X and F a coherent sheaf, then by Serre
vanishing H'(F®™) = 0 for i > 0 and m > 0. Notice that m here
depends both on X and F. In the case when X is a smooth projective
variety and F = wy, then by Kodaira vanishing we have

H(wx ®A) =0, Vi>D0.

Kodaira vanishing was vastly generalized by Kawamata and Viehweg.
Recall that an R-Cartier divisor D on a normal projective variety X is
nef if D - C' > 0 for any curve C' C X and D is nef and big if D is nef
and the top self intersection is positive D¢ > 0.

Remark 2.19. If D is nef then D¢ > 0 if and only if vol(D) > 0.

Theorem 2.20. [Kawamata-Viehweg vanishing] Let X be a smooth
projective variety and B an R-divisor with simple normal crossings
support such that |B| = 0 (so that (X, B) is kit). If N is a Cartier
divisor such that N — Kx — B is nef and big, then H'(N) = 0 for all
1> 0.

It is not hard to generalize this result to the relative setting.

Theorem 2.21. [Relative Kawamata-Viehweg vanishing] Let X be a
smooth quasi projective variety and B an R-divisor with simple normal
crossings support such that |B|] = 0 (so that (X, B) is kit). If f :
X — Y s a projective morphism and N is a Cartier divisor such that
N — Kx — B is f-nef and f-big, then R'f.(N) =0 for all i > 0.

Recall that an R-Cartier divisor D is f-nef if D-C > 0 for any curve
contained in a fiber of f and f-big if D|g is nef and big where F' is a
general fiber of f.

Proof (Theorem 2.20 implies Theorem 2.21). Let A be an ample divi-
sor on Y. Assuming for simplicity that X is projective, then (possibly
replacing A by a multiple), we may assume that N + f*A — Kx — B is
nef and big. By Theorem 2.20, we have H (N + f*A) = 0 for all i > 0.
By Serre vanishing, we may assume that H’(R*f,N @ Oy (A)) = 0 for
j>0and RFf,N ® Oy(A) is generated for k € N. By the Leray spec-
tral sequence, it follows that 0 = H'(N + f*A) =& HY(R'f.N ® Oy (A))
for 7 > 0. Since R'f,N ® Oy (A) is generated, R'f,N =0 fori > 0. [

It is also easy to generalize Theorem 2.20 to the klt setting.

Theorem 2.22. [Kawamata- Viehweg vanishing for klt pairs] Let (X, B)
be a projective kit pair. If N is a Cartier divisor such that N — Kx — B
is nef and big, then H'(N) =0 for all i > 0.
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Proof. Consider f : X’ — X a log resolution. If Kx + B' = f*(Kx +
B), then (X',{B’}) is kit and |B’'| = —G where G is effective and
exceptional (as (X, B) is klt). But then f*N+G—Kx —{B'} = f*(N—
Kx — B) is nef and big. Therefore, by Theorem 2.20, H'(f*N +G) = 0
for 7 > 0 and by Theorem 2.21 R f,(f*N + G) = 0 for i > 0. But then

0=H(f*N+G)=H(N® f.G)=H(N) fori>0,

where we used the fact that f.(f*N +G) = N ® f.G by the projection
formula, and f,Ox(G) = Ox as G is effective and exceptional. O

Putting these statements together, one obtains the following result.

Theorem 2.23. Let f : Y — X be a proper morphism of quasi-
projective varieties with (Y, D) a kit pair, N a Q-Cartier Weil divi-
sor on Y such that N = Ky + M + D where M is f-big and f-nef
R-Cartier, then R'f.Oy(N) =0 fori >0

Theorem 2.24. [Kolldr-Shokurov Connectedness Lemma] Let f : X —
Y be a proper morphism of normal varieties with connected fibers and
B a Q-divisor such that —(Kx + B) is Q-Cartier, f-nef and f-big. We
write B = BT—B~ where BT, B~ are effective and B~ is f-exceptional.
Then nklt(X, B) N f~Y(y) is connected for every y € Y.

Proof. Let v : X’ — X be a log resolution and write Ky, + B’ =
v (Kx + B), then nklt(X, B) = v(nklt(X’, B')) and so it suffices to
show that nklt(X’, B') N (f o v)"!(y) is connected for every y € Y.
Since —(Ky: + B') is Q-Cartier, (f o v)-nef and (f o v)-big, we may
replace (X, B) by (X', B’) and so we may assume that (X, B) is log
smooth.

Let B<! = %7, b;B; and S = |B] — |B<']. Then Supp(S) =
nklt(X, B). We have a short exact sequence

0 — Ox(—|B]) = Ox(=|B~'|) = Os(—|B~']) — 0.
Notice that
—|B] = Kx — |[Kx + B] = Kx — (Kx + B) + {Kx + B}.
Since —(Kx+B) is f-nef and (X, { Kx+B} = {B}) is klt, by Theorem
2.21, we have f,Ox(—|B]) = 0 and hence there is a surjection
fOx(=|B<]) = £.0s(=|B~)).

Note that —| B<!] is effective and f-exceptional so that f.Ox(—|B<!]) =

Oy. Thus, the composition Oy — f,Og(—|B=<!']) is surjective and fac-

tors through f,Og — Ofs). But then f,Og — Oy (g is also surjective

so that S — f(S) has connected fibers. O
11



Remark 2.25. If (X, B) is a pair such that B > 0 and —(Kx + B) is
nef and big, then the above result states that nklt(X, B) is connected.

Remark 2.26. If (X, B) is a pair such that B > 0 and f : X' — X
18 a proper birational morphism, then the above result states that the
fibers of nklt(X', B') — X are connected.

Theorem 2.27. Let (X, B) be an lc pair and (X, By) a kit pair. If
Wy and Wy are non-klt centers of (X, B), then so is every irreducible
component of WiNWs. It follows that for ony x € X there is a minimal
non-klt center W of (X, B) containing x.

Proof. We may assume that X is affine and W = W; N Ws,. For sim-
plicity, we will also assume that B is R-Cartier and (X, 0) is klt. Let
B; be a general divisor containing W; and p : X' — X a log reso-
lution of (X, B + By + By + By). There are divisors E; C X' that
correspond to non-klt centers of (X, B) with centers W;. Therefore,
multg,B(X,B) = 1. Let ¢; = multg,(¢u*B) and €, = multg, (u*B;).
Note that as (X,0) is klt, ¢, > 0 and by our assumptions ¢; > 0
(whereas multg, ,u*B; =0). Let a; = e;/¢}, then E; are non-klt places
for (X, (1 —€)B+ €(a1 By + asBs)) for 0 < e < 1 and

nklt(X, (1 — €)B -+ 6((1,1B1 —+ GQB2)) == W1 U WQ.

By the Connectedness Theorem 2.24, for any w € W there are non-klt
places Fj(€) corresponding to divisors on X’ with centers contained in
W; such that Fy(e) N Fy(e) Np~t(w) # 0 for 0 < e < 1. By finiteness of
p-exceptional divisors, we may assume that F; = Fj(e) does not depend
on €. By continuity, we may assume that the F; are also non-klt centers
of (X, B) . But then w € f(F; N Fy) is also a non-klt center of (X, B).
If w € W is general, we may assume that f(F; N Fy) =W, U

Exercise 2.28. Prove Theorem 2.27. (Hint, consider pairs of the form
(X, (1 — E)B + E(BO + CL1B1 + CLQBQ)).)

Theorem 2.29. Let (X, B) be an lc pair and (X, By) a kit pair. If W
is a minimal non-klt center of (X, B), then W is normal.

Proof. We may assume that X is affine. Let u : X’ — X be a log
resolution of (X, B+ By) such that there is a divisor £ on X’ which is a
non-klt place of (X, B) with center W. Let B’ be a general divisor on X
containing W and ¢ = multg(p*D’). If e = multg(p*B) and a = e/¢’,
then E is a non-klt place of (X, (1 —€)B + eB’). (X,{Kx: + D}) is
kit and —(Kx' + D) ~gx 0 is p-nef and p-big, it follows by Theorem
2.21 that R'u,Ox/(—|D]) = 0 and hence that p,Ox:/(—|D<']) —
psOp(—| D|<") is surjective. Since —| D<!] is effective and exceptional,
12



w:Ox:/(—|D<']) = Ox: and so Ox — O is surjective. Thus E —
W has connected fibers and W is normal. O

Exercise 2.30. Fix d € N. Show that for any m > 0 there exists a

projective variety X of dimension d and an ample line bundle A on X
such that H (X, A®™) # 0. (Hint: Letd=1.)

Exercise 2.31. Show that if f : X — Y is a morphism of projective
varieties, N is a nef R-Cartier divisor on Y, then f*N 1is nef on X.
Moreover if N is nef and big, then f*N s nef and big iff f is generically
finite (i.e. f is dominant and dim X = dimY).

2.3. Multiplier ideal sheaves. Let X be a smooth projective variety
and B > 0 an R-divisor on X, then we define the multiplier ideal sheaf
J (X, B) as follows: let f: X’ — X be a log resolution, then

where KX’/X = KX’ — f*KX

Remark 2.32. We have the following facts:
(1) Since Kxi/x is effective and exceptional,

J(X,B) C f.Ox:/(Kx/x) = Ox
1s an ideal sheaf.
(2) If B is Cartier, then by the projection formula,
J(X,B) = [.Ox/(Kx/x — [*B)
= Ox(—B) ® f.Ox/(Kx1/x) = Ox(—B).
(3) More generally, J(X,B) = J(X,{B}) ® Ox(—|B]).
(4) If (X, B) is snc, then J(X, B) = Ox(—|B]) for any choice of
log resolution X' — X.
By the previous point it suffices to show that J(X,{B}) =
Ox i.e. we may assume that | B| = 0. we must then show that
Kxi)x — | f*B] > 0 or equivalently multp(Kx//x — f*B) > —1.
This can be checked by a computation in local coordinates say
T1,...,xqg on X andyy,...,yq near the generic point of a divisor
E on X'. If ¢; = multg(f*B;), then x; = yi' - b; where b; is a
reqular function and, B; is defined by x; = 0 and E by y; = 0.
Since dr; = yfiilcibidyl + y{'db;, we have
dey A ... Ndx, =y gdy AL A dy,,

where g is a reqular function and vy =" ¢;. But then

multE(KX//X) > Zci —1> multE(f*B) — 1.
13



(5) The definition of J(X,B) is independent of the choice of the
log resolution X' — X.
To see this, suppose that v : X" — X' is a birational mor-
phism. By the previous point,

V*OX”<KX”/X’ — LV*f*BJ) = j(X/, f*B) = OX/(—Lf*BJ)
But then by the projection formula
(fov) Oxn(Kxnyx—|v* [*B]) = fu(Kx ) x@uiOxn(Kxnjx—|v" f*B]))

J(Kxryx ® Oxi(=[f*B))-

(6) If mult,(B) > dim X, then J(X,B) C m,. To see this, let
f: X' —= X be a log resolution and let E be the divisor on X'
corresponding to the blow up of x € X. Then multp(Kx//x —
[*B) < =1 and so Kx//x — | f*B] < —E. But then J(X,B) =
[+Ox(Kxyx — [f*B]) C f.Ox/(—=F) = m,.

(7) If mult,(B) < 1, then J(X,B) = Ox (near x € X). See
Corollary 2.38

Theorem 2.33 (Nadel vanishing). Let X be a smooth projective va-
riety and B > 0 an effective R-divisor and f : X — Z a projective
morphism. If N is a Cartier divisor on X such that N — B is f-nef
and f-big, then

R'f, (Ox(Kx + N)® J(X,B)) =0, for i > 0.

Proof. Let v : X’ — X be a log resolution of (X, B), then v*(N — B)
is f’-nef and f’-big where f’ = f owv. By Theorem 2.21, we have
Rv,Ox/(Kx+[v*(N—=B)]|) =0fori > 0and R f/Ox/(Kx/+ [v* (N —
B)]) =0 for i > 0. Note that

R flOx/(Kx: + [v*(N — B)]) = R f.(Ox(Kx + N) ® J(X, B))
vanishes for ¢ > 0. O
Corollary 2.34. Let X be a smooth projective variety, B > 0 an
effective R-divisor N a Cartier divisor such that N — B is nef and

big and H a very ample divisor, then Ox(Kx + N +nH) ® J(D) is
generated for any n > dim X.

Proof. This follows immediately from Lemma 2.35 below. U

Lemma 2.35. Let F be a coherent sheaf on a smooth projective variety
and H a very ample line bundle such that H(F @ Ox(jH)) = 0 for
1>0and 0 <) <d=dimX, then F is globally generated.
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Proof. We must show that F is generated at x € X. Let 7/ C F be the
biggest subsheaf with 0 dimensional support. There is a short exact
sequence

0=>F =>F—=>F' =0

where F” has no sections supported at points. Since H(F'@Ox(jH)) =
0 for ¢ > 0, it follows that H'(F" @ Ox(jH)) = 0 for i« > 0 and
0 <j7<d=dmX. Itis easy to see that F is generated iff so is
F”. We may therefore replace F by F” and hence assume that F
has no sections supported at points. Pick Y € |H| a general element
containing x € X and consider the induced short exact sequence

0> Fo0x(-Y)—=F—= Fly —0.

It is easy to see that H'(F|ly ® Ox(jHl|y)) = 0 for i > 0 and 1 <
j < d=dimY. By induction on the dimension, F|y ® Ox(jH|y) is
generated for any j > dim X. Since H*(F|y®Ox(jH|y)) = H(Fly®
Ox(jH|y)) is surjective, it follows that F is generated at x as required.

U

We next investigate how multiplier ideals behave under restriction
to a divisor. Suppose that H C X is a smooth divisor on a smooth
variety, then it may happen that for an effective Q-divisor D we have
J(H,Dl|y) C J(X,D)-Og. consider in fact H = {z =0} C X = C~
If D = 1{x—y* =0}, then J(X, D) = Ox, however J(H, D|y) = mo
where O € H is the origin. We think of this as saying that (H, D|y) is
more singular than (X, D). The next result shows that (H, D|g) is at
least as singular as (X, D).

Theorem 2.36. Let H C X be a smooth divisor on a smooth variety
and D > 0 a Q-divisor whose support does not contain H. Then
where J(X, D) - Oy :=Im (J(X,D) — Ox — Og) C Og.
Moreover, if 0 < s < 1, then for all 0 <t < 1, we have
T(X, D+ (1—1)H) - On C J(H, (1 - 5)D|n).

Proof. Let f : X’ — X be a log resolution of (X, D + H) and write
[*H = H + > a;E; where H = f7'H, a; > 0 and E; are f-
exceptional. By adjunction Ky = (Kx + H')|g and Ky = (Kx +
H)|g. Thus Kpryp = (Kx/yx — > a;jEj)|g. Consider the short exact

sequence
0= Oxi(Kxiyx — |f*D] = f"H) = Ox:(Kxiyx = [f*D] =Y a,E))
15



Since —| f*D| — f*H ~q s {f*D} and (X', {f*D}), it follows by The-
orem 2.21 that R'f,.Ox/(Kx//x — | f*D]| — f*H) = 0 and so

FOx/(Kxryx—|f*D]=>_ a;E;) = f.Op(Kuyu+|f*Dlul) = T (H,Dlu)

is surjective. The first assertion now follows since

J(X,D) = £.Ox(Kxx—|f"D]) > f.Ox:/(Kxyx—|*D]=Y _ a;E)).
Since
JX, D+ (1-t)H) = f.Ox/(Kx/x — [f"(D+ (1 -t)H)])
and
J(H, (1 =s)D|u) = fOuw(Kpu — [(1 = 5)f"Dlu)),
we must show that for any divisor £ on X’ such that £ N H' # (), we
have that for any irreducible component V' of ENH', if multy (Kg /g —
(1 —=s)D|y)) < —1, then
Let k = multg(Kx//x), a = multg(f*H) and d = multg(f*D), then
we must show that
E—|1-ta+d| <k—a—|[(1-s9)d)].

But for 0 < t < 1 this equation is easily seen to hold. 0

We have the following important consequence relating singularities
on X and H.
Corollary 2.37. Let X, H, D be as above. Then

(1) (Inversion of adjunction) If J(H, D|y) = Oy near a point x €
H, then J(X,D) = Ox nearx € X. In other words if (H, D|g)
is kit near x € H then (X, D) is kit near x € X.

(2) (Inversion of adjunction 1) If J(H,(1—s)D|y) C m, for some
point v € H and 0 < s < 1, then J(X,D + (1 —t)H) C m,
for any 0 <t < 1. In other words if (H, (1 — s)D|g) is not kit
near x € H, then (X, D + (1 —t)H) is not kit near x € X.

Proof. Exercise. 0

Corollary 2.38. If X is smooth and D is an effective Q-divisor such
that mult, (D) < 1, then J(X,D) = Ox near x € X.

Proof. By induction on d = dim X. The case d = 1 is clear since
then J(X,D) = Ox(—|D]) = Ox. If d > 1, then pick z € H C X
a general very ample divisor so that H is smooth and not contained

in the support of D. We have mult,(D|y) = mult,(D) < 1 and so
16



by induction J(H,D|y) = Oy near x. By Corollary 2.38, we have
J(X,D) = Ox near z € X. O

Remark 2.39. A more general version of inversion of adjunction is
the following. Let (X,S + B) be a pair such that S is a prime divisor
not contained in the support of B, let v : S — S be the normalization
of S and (S', Bs/) be the log pair defined by the adjunction formula
V*(KX + S + B) = KS/ + BS/. Then
(1) (X, S+ B) is purely log terminal near S if and only if (S’, Bs/)
18 kawamata log terminal.
(2) (X, S+ B) is log canonical near S if and only if (S', Bs) is log
canonical.

Proposition 2.40. If X is smooth, Z C X an irreducible d-dimensional
subvariety and D is an effective Q-divisor such that
(1) Z is a non-klt center of (X, D),
(2) (X, D) is lc along the general point of Z,
(3) Supp(B) does not contain Z, and
(4) mult,(B|z) > d at a smooth point z € Z.

Then, for any 0 < € < 1 we have
J(X,(1—€)D+ B) Cm,.

Proof. Consider f : X’ — X a log resolution of (X, D), then there
is a divisor £ on X’ with center Z such that ag(X,D) = —1. If
k = multp(Kx/ x), then multg(f*D) =k + 1. Since z € Z is general,
we may assume that f|g is smooth over z. We have

J(X,(1=€e)D+B) = fLI(X", [ (L =€) D+ B) — Kx/x).
Since multg(B|z) > d, it follows that
multg, (f*((1 —€e)D+ B) — Kx//x) > d+ 1 = codimy E.,

where F, is the fiber of E — Z over z € Z. Thus J(X', f*((1 —€)D +
B) — Kx//x) C Zg_ and the proposition follows. O

Exercise 2.41. Show that (X, B) is kit iff 7 (X, B) = Ox.

Exercise 2.42. Show that if (X, S + B) is purely log terminal (resp.
log canonical) near S, then (S', Bs/) is kawamata log terminal (resp.
log canonical).

Exercise 2.43. Use the Connectedness lemma to show that if (S', Bgr)
is kawamata log terminal, then (X, S + B) is purely log terminal near

S.
17



2.4. Adjoint ideals.

Definition 2.44. Let (X,S) be a log smooth pair where S is a reduced
irreducible divisor and D be an effective R-divisor whose support does
not contain S. Let f 1Y — X be a log resolution of (X,S + D). We
define the adjoint ideal

Tsp = Oy (Ky)x + [7'S = (D +S)]).

Exercise 2.45. Show that Js p is independent of the chosen log reso-
lution.

Exercise 2.46. Show that J(X,S+ D) C Jsp C J(X, D).

Proposition 2.47. Let (X, S) be a log smooth pair where S is a reduced
irreducible divisor and D be an effective R-divisor whose support does
not contain S. There is a short exact sequence

0—J(X,S+D)— Jsp— TS, Dl|s) — 0.

Proof. Let f:Y — X be a log resolution of (X, S + D) and consider
the short exact sequence

0 = Oy(Ky/x—|f"(D+S)]) = Oy (Kyx+S8'=|f"(D+8)]) = Os/(Ksys—Lfls"(Dl]s)]) =0,
where S = f*_lS, Kg = (KX + S)|S, and Kg = (Ky + S/)|S/. By
Theorem 2.21, we have R' f,Oy(Ky/x — [ f*(D + S)]) = 0 and hence

the proposition follows simply by pushing forward via f the above short
exact sequence on Y. O

Corollary 2.48. Let (X,S) be a log smooth pair where S is a reduced
irreducible divisor and D be an effective R-divisor whose support does
not contain S. If L is a Cartier divisor such that L — (Kx + D+ 5) is
nef and big, then

H(L|s® J(S,D|s)) C Im (H*(L) — H°(Lls)) .

Proof. By Theorem 2.20, H'(L ® J(X,S + D)) = 0 and so by Propo-
sition 2.47, H(L® Js.p) — H°(L|s ® J (S, D|s)) is surjective and the
corollary follows. O

Lemma 2.49. Let X be a smooth variety, D, D’ an effective R-divisor
and X be an effective Cartier divisor such that D < X + D’ and
j(X, D/) = Ox, then O)((—Z) C j(D)

Proof. Let f 1Y — X be a log resolution of (X, D + D"+ ¥). Since
—f*D > —f(X+ D') and f.Oy(Ky/x — [ f*D']) = J(X,D") = Ox,
by the projection formula we have

J(X, D) = [0y (Ky/x — Lf*DJ)IBD fOy(Kyyx = LI(E+ D)) =



fOy(Kyyx — | f*D']) ® Ox(-%) = Ox(-%).

2.5. Deformation invariance of plurigenera.

Theorem 2.50. Let f : X — T be a smooth morphism of smooth
quasi-projective varieties such that Kxr is pseudo-effective and H an
ample divisor. Then H*(X,, Ox,(mKx,+ Hy)) is deformation invariant
forallt €T and m > 0.

If moreover Ky, is big for some t € T, then H°(X;, Ox,(mKx,)) is
deformation invariant for allt € T and m > 1.

Proof. The question is local over T' so we may assume that T is affine.
Cutting by general hyperplanes in 7" we may assume that dim7T = 1.
Pick t € T', we must show that f,Ox(mKx + H) — H°(Ox,(mKx, +
H,)) is surjective. Here X; = f~1(t) is the fiber over ¢t and H; = X]|x,.
Pick ¥ € |/mKx, + H¢| and A such that [rKx, + A;| is free and

rKx, + Hy + A = [rKx + H + Al Vo<r<m.
Here A; = Alx, and |rKx + H + A|; denotes the image of the restriction

map [rKx + Al = [rKx, + A4
We will first show that

EX+|rKx, + Ay C lk(mKx+H)+rKx+A|; VE>0,1<r<m.

We proceed by induction on [ = mk + r. By assumption, the cases
0 <1 < m hold. Assume that the above inclusion holds for all integers
< | =mk+r where 1 <r < m, in particular for a very general element
U € |(r—1)Kx,+A;| there exists a divisor S € |(mk+r—1)Kx+kH+A|
such that S|x, = kX4 U. Since K x/r is pseudo-effective over T', for any
0 > 0 there exists an effective Q-divisor D ~q Kx/r + 0A. Consider
now the divisor G = (1 —€)S + e¢(mk +r — 1)D, then
(mk+r—1)Kx+kH+A—G~gelkH —(1—(mk+r—1))A)

is ample (for 0 < § < 1) and so by Corollary 2.48 H°(Ox, (((mk +
) Kx,+kH+A;)®J(G|x,))) is contained in the image of the restriction
map
HY(Ox((mk+7r)Kx +kH+A)) — H(Ox,((mk+7)Kx, + kHi+ Ay)).
Since J (X, e(mk +1r —1)D;) = Oy, for 0 < € < 1 and since U is a
general smooth divisor intersecting D, transversely, we have

J (X, (1 =€) U + e(mk +r —1)D,;) = Ox,.
Since Gy < kX + (1 — €)U + ¢(mk + r — 1) Dy, then by Lemma 2.49,

J(Glx,)=TJ((1—=e)(kX+U) +e(mk+r—1)Dx,) D Ox,(—kX)
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and so for any U’ € |rKx, + A, we have that kX + U’ € |(mk+7r)Kx +
kH + Al; as required. The induction is complete.

Consider now an element D € |k(mKx + H) + A| such that D, =
k> + U where U € |A;] is general. Since

-1 1

is ample for k& > 0, by Corollary 2.48 we have that H°(Ox,(mKx, +
H,) @ J (21D Xt)) is contained in the image of the homomorphism

H° (Ox(mKX + H)) — HO(OXt(mKXt + Ht))

Since Z=1D|x, < ¥ 4 221U and J(X,, 22U) = Oy, for k > 0,
by Lemma 2.49 we have j( LDy) C Oxt( Y), it follows that ¥ €
]mKX + H’t

Suppose now that K, is big for some t € T'. Since H°(X;, Ox,(mKx,+
H)) is deformation invariant for all ¢ € T and m > 0, it follows
easily that K, is big for all ¢ € T and Kx is big over T. Let
Y € |mKx,| and consider an element D € |kmKx + A| such that
Dy = k¥ + U where U € |A;] is general. Since K is big over T, we
may write (m — 1)Ky ~g A’ + E where A’ is ample and E > 0. Let
G =190l D 4 ¢B, then

1—€)(m-—-1
(m—l)Kx—GNQ&A/—( T>r(Lk >A
is ample for £ > 0. By corollary 2.48, H°(Ox,(mKx,) ® J(G|x,))
is contained in the image of H(mKyx) — H°(mKx,). Since Glx, <
¥+ %U + eE; where (X, %U + eEy) is klt, it follows by
Lemma 2.49 that ¥ € |mKx|; as required. O

Remark 2.51. Y.T. Siu has shown that if f : X — T is a smooth
morphism of smooth quasi-projective varieties, then h®(mKy,) is inde-
pendent of t € T'. The proof is analytic and there is no known algebraic
proof of this fact.

2.6. Fujita’s Conjecture and the Theorem of Anhern and Siu.

Conjecture 2.52. [Fujita’s Conjecture] Let X be a smooth projective
variety and A an ample divisor on X, then Kx + tA is generated for
any integer t > dim X.

The above result is known in dimension < 5 by results of Kawamata
[Kawamata97] and Ye-Zhu [YZ15]. In what follows we will prove several

closely related statements.
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Theorem 2.53. Fujita’s Conjecture holds if A is ample and globally
generated.

Proof. For simplicity let ¢ = n + 1 where n = dim X. Since A is
generated, it defines a finite (onto its image) morphism f : X — P
such that f*Opn(1) = A. Fix x € X we wish to show that Ky +
(n + 1)A is generated at z. Pick general hyperplanes A, Ay, As, . ..
passing through f(z). For k> 0 consider Dy, = (A1 + ... + 4;). It
is easy to see that mult,(Dy) > dim X and mult,(Dy) < 1 for y # «
in a neighborhood of x € X. But then by Remark 2.32, we have that
the support of Ox/J(Dy) has a component supported at x so that
m!, C Ox/J(Dy) 2 I, C m, near x € X for some [ > 0. Since
(n+ 1)A — Dy, is ample, by Theorem 2.33 we have H*(Ox(Kx + (n +
1)A) @ J(Dy)) = 0. From the short exact sequence

0= O0x(Kx+(n+1)A) T (Dr) —» Ox(Kx + (n+1)A)

we see that
HY(Ox(Kx + (n+1)A4)) = H(Ox(Kx + (n+ 1)A) ® Ox /T (D))
is surjective. Since H(Ox(Kx + (n +1)A) ® Ox/Zy) is a summand
of HY(Ox(Kx + (n + 1)A) ® Ox/J(Dy)) and since the short exact
sequence
— Ox(KX + (n + 1)14) X Ox/mz — 0
induces a short exact sequence of global sections, it follows that
HY(Ox(Ex + (n+1)A)) = H(Ox(Kx + (n+ 1)A) ® Ox/m,)

is surjective and hence Kx + (n + 1)A is generated at x € X. O

Exercise 2.54. Show that mult,(Dy) < 1 for y # x in a neighborhood
of v € X.

Theorem 2.55. Fujita’s Conjecture holds in dimension 2.

Proof. Since A is ample, by Serre vanisghing and Riemann Roch, for

k>0
kA(KA— K A?

Vanishing to order m at a smooth point x € X of a surface is imposed

by < (m; 1) conditions. Thus, for any € > 0 and for k£ > 0, there is

divisor Dy, € |kA| such that mult,(Dy) > k(1 —€). Let

D D
A = let, (X, 7]6) = sup{t > 0\(X,t7k) is lc at v € X}.
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Notice that by Remark 2.32, we have A < 2/(1—¢). By Nadel vanishing,
since 3 > ), it follows that if D = %Dk, then

H(Ox(Kx +3A)) = H(Ox(Kx +3A)® Ox/J(X, D))

is surjective and hence that Ky + 3A is generated at = € X (since
Ox(Kx+3A)®0x /m, is a summand of Ox(Kx+3A4)®0x/J (X, D)).

Suppose now that z is not a minimal non-klt center of (X, D), then
the minimal non-klt center is a curve x € C' C X which is normal and
hence smooth at x € X. This means that D = C'+ D’ where C is not
contained in the support of D" and mult,(D’) < 1. Let f : X’ — X be

a log resolution and C’ = f;1C. Consider the short exact sequence

0— Ox/(Kx +3f*A—|f*D]) = Ox/(Kx +C"+3f*A—|f*D])
— Oc/(Ker +3f*A— | f*D]) — 0.
By Kawamata-Viehweg vanishing we obtain a short exact sequence
0 — H(Ox(Kx+3A)®@J (X, D)) = H(f.Ox/(Kx+C'+3f*A—|f*D]))

— H(f.0c/(Ker + 3f*A— | f*D])) — 0.
We claim that deg(L¢r) > 2 where Lev = 3f*A — | f*D| and hence
Ko + Lo is generated. Grant this for the time being, then since
C’" — C'is an isomorphism near z € C, we have that f.Oc/(Ko +
3f*A — | f*D]) is locally free and generated near x € C' and so the
same holds for f,Ox/(Kx +C"+3f*A— |f*D]). But then Kx + 34
is generated near x € X.

We have 3f*A — | f*D] ~q (3= X)f*A+ {\f*D} and hence Lo =
(B3f*A—[f*D])|cr is a Cartier divisor of positive degree and it suffices to
show that deg((3—\) f*A+{f*D})|¢c» > 1. Since mult,(Dy/k) > (1—e¢),
it follows that mult, ({Af*Dx}) > A(1 —€) — 1 (since | f*D] = C’ near
x € C'). But thendeg(Ler) > AM(1—€)—143-A>1for0<e< 1. O

The next result implies that Fujita’s conjecture holds for ¢ > (";rl)

Theorem 2.56 (Anhern-Siu). Let X be a smooth projective n-dimensional
variety and A be an ample line bundle such that

n —+ 1 dim Z
2
for any subvariety x € Z C X, then Kx + A is generated at x € X.

AdimZ'Z> (

Proof. As we have seen above, it suffices to show that there exists a
Q-divisor D > 0 such that

(1) x is an isolated point of the support of Ox/J (D) and

(2) D ~q cA for some ¢ < 1.
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The first step is to produce a divisor D with J (D) C m,. This can be
achieved by the following easy argument.

Lemma 2.57. Letx € V be a smooth point on an irreducible d— dimensional
projective variety and A an ample divisor such that A > a? for some
number a > 0. Then for any k > 0 there ezists a divisor Ay € |kA|
such that mult,(Ag) > ka.

Proof of Lemma 2.57. By Riemann-Roch, we have
kA4
d!
Vanishing to order m at the smooth point x € V imposes at most

(d+m—1) :m_d+0(md_1>

RO (Oy (kA)) = + O(K*).

d d!

independent conditions. The lemma follows easily. 0

Since by assumption A" > (";1), it follows that there exists a divisor

D; ~g ;A with mult,(Dy) > n and ¢ < n/(”;q) Replacing D; by
AD; where

A =lct,(X,0; D) =sup{t > 0|(X,tD;) islcat x € X} <1,

we may assume that (X, D) is lc but not klt at € X. Perturbing
Dy, we may assume that in fact (X, D;) has a unique non-klt center
through z € X. Thus J(X, Dy) = Zz, C m, locally near z € X. We
will now show by induction that for any k£ > 0 there exists an effective
Q-divisor Dy, ~ ¢, A such that

(1) (X, Dy) is lc but not kit at =z € X,

(2) (X, Dy) has a unique non-klt center x € Z;, C X of dimension
dim Z, <n — k, and

(3) e < (Shim—i+1) /().
Note that the case k = 1 was established above. Assume now that the
claim holds for all integers < k. Consider the normalization of a general
curve in Zj passing through = € Z; say g : T — X with g(ty) = =.
For general t € T, g(t) is a smooth point on Z; and hence there is a
divisor Gy ~ g¢A|z, such that multyy (Gy) > dim Z;, and g¢ < k/ ("Zl)
By Serre vanishing

H(Ox(tA)) = H(Oz,(tA))

is surjective for ¢ > 0 and so there is a Q-divisor G; on X such that
G, ~ ¢ A and ét|Zk = (G;. By Proposition 2.40, it follows that J((1 —
0)Dy, + Gy) C my(yy and the cosupport of J((1 — 8)Dy, + Gy) at g(t) is
strictly contained in Zj. It then follows that
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Claim 2.58. There exists a divisor Gy, ~ gA|z, such that J((1 —
8) Dy + Gy) C my and the cosupport of J((1 — 0)Dy + Gy,) at x is
strictly contained in Zy.

The proof of this claim is a lengthy exercise. Granting the claim
then, after multiplying (1 — 0) Dy + Gy, by its log canonical threshold
at x € X and peturbing it so that there is a unique non-klt center at
x € X, we obtain the required Dy 1.

O

Exercise 2.59. Let X be a smooth projective variety and B > 0 a
Q-divisor. Suppose that Ox /T (X, B) is supported on Z C X and
that D € V is a general element of a linear series whose base locus is
contained in Z. Then for any t < 1 whe have that Ox/J (X, B +tD)
18 supported on Z C X.

Exercise 2.60. Let T be a normal curve, g : T"'— X a a morphism to
a smooth projective variety, B > 0 an effective Q-divisor on X and G
a Q-divisor on X. Suppose that for any t € T'\ {to} there is a divisor
Gy ~q G such that myyy C J(X, B+ Gy), then myq) C J(X, B+ Gy)
for some G ~q G.

3. BOUNDEDNESS OF VARIETIES OF GENERAL TYPE

The goal of this section is to prove the following result.

Theorem 3.1. Fix d € N. Then there exists an integer m = my
depending only on d such that if X is a smooth d-dimensional projective
variety, then |kKx| is birational for all k > m.

We begin with a few preparations.
3.1. Kawamata sub-adjunction.

Theorem 3.2 (Kawamata subadjunction). Let (X, By) be a kit pair
and V' be a non-klt center of a pair (X, B) which is minimal on a
neighborhood of its generic point ny C U C X. Assume that (X, B) is
le at ny, then for any ample Q-divisor H, we have

where V¥ — V' is the normalization and the pair (V¥|y, Byv|y) is klt

Proof. See [Kawamata98]. O

We illustrate the above result with the following basic example. Let
(X, S + B) be a plt surface pair so that |[S+ B] = S. Then S is a

minimal log canonical center and in particular it is a smooth curve. Let
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f: X" — X be alog resolution of (X, S+ B) and write Kx/+ 5"+ B’ =
f*(KX+S+B) Where S, = f*_IS Let KS/+BS/ = (KX/+S,+BI)|S/ =
K¢ + By and Kg + Bg = (f‘S’)*(KS’ + By (note that f’s/ is an
isomorphism). We have

Kg+ Bs = (Kx + S+ B)ls,

where (S, Bg) is klt.

From the classification of PLT surface sinularities, one can check that
the coefficients of Bg are of the form 1 — % € [0,1) where b; are
coefficients of B and k; € N. It is easy to see that if the coefficients of
B lie in a DCC set, then so do the coefficients of Bg.

3.2. Easy addition.

Theorem 3.3. Let [ : X — T be a morphism of smooth complex
projective varieties, then k(X) < k(X;) + dimT where X; is a general
fiber.

Proof. Let g : X — Z be the litaka fibration. Replacing X by an
appropriate birational model, we may assume that ¢ is a morphism.
By definition dim Z = k(X) and Kx ~g g*A + E where E is effective
and A is ample. It is easy to see that

k(X;) > dim(g(X;)) > dim X;—dim(X/Z) = dim Z—dim T = k(X )—dim T
O

Corollary 3.4. Let f : Z — T be a projective morphism and g : Z —
X be a dominant morphism to a variety of general type, then X; is a
variety of general type for general t € T.

Proof. Replacing X, Z,T by appropriate birational models, we may
assume that X, Z, T are smooth (recall that by definition X is of general
type if so is any of its resolutions). Cutting by general hyperplanes on
T, we may assume that g is generically finite (i.e. that dim Z = dim X).
Since g is generically finite, K; = ¢*Kx + R where R > 0 is the
ramification divisor and so Z is of general type. By Theorem 3.3

dimZ = k(Z) < k(Z;)) + dim T
and so dim 7, < k(Z;) i.e. Z, is of general type. O

3.3. Finite generation of the canonical ring. We recall the follow-
ing result from [BCHM10]

Theorem 3.5. Let f: X — T be a projective morphism and (X, B) a
klt pair such that B > 0 is a Q-divisor. Then the pluricanonical ring

R(Kx + B/Z) = ®m>0f.Ox(m(Kx + B))
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1s a finitely generated Op module.

Remark 3.6. If X is projective and Kx + B is big, then Xcan =
ProjR(Kx+B) is a projective variety and ¢ : X --+ Xean is a birational
morphism which we may think of as follows. Let m > 0 be sufficiently
divisible so that R(Kx + B) is generated in degree m, then ¢ is defined
by the linear series |mKx| so that Xean C PN = mKx|. Ifp: X' — X
is a log resolution of |mKx| so that |p*m(Kx + B)| = M + F where
F is the fixed divisor and M is base point free, then M defines the
morphism q : X' — Xean and we have

M = q*OXcan(:l) = q*OXcan (m(KXCan —"_ BXC&D))

where Bx,,, = [«B. In particular Kx_,, + Bx.,, s an ample Q-Cartier
divisor and

* * F
P (Kx + B) = ¢"(Kx,., + Bx.) + o

It follows easily that (Xcan, Bx.,,) has kit singularities. It is expected
that pluricanonical rings of lc pairs are also finitely generated.

Definition 3.7. Let f : X — T be a projective morphism and (X, B >
0) be a lc pair such that Kx + B is ample over T then we say that
(X, B) is a log canonical model over T. If Kx + B is nef over T then
we say that (X, B) is a weak log canonical model over T

Exercise 3.8. Show that if X is projective and Kx + B s big, then
Xean 18 birational to X.

Exercise 3.9. Show that if (X, B) is kit then so0 is (Xcan, Bxeun)-

Exercise 3.10. Show that if X is projective and Kx is big and canon-
ical, then Xcan has canonical singularities (this is of course not true if
X does not have canonical singularities).

3.4. Proof of Theorem 3.1. Tsuji’s observation is that in order to
prove Theorem 3.1, it suffices to prove the apparently weaker result

Theorem 3.11. Fiz d € N. Then there exists constants A, B > 0
depending only on d such that if X is a smooth d-dimensional projective
variety, then |kKx| is birational for all

A
k> ———— +B.
= Tol(Kx )7
Claim 3.12. Theorem 3.11 implies Theorem 3.1
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Proof. 1f vol(Kx) > 1, then we may pick m = [A + B]|. Therefore, we
may assume that vol(Kx) < 1. Let r = (Ul% + B where v = vol(Kx),

then Z = ¢,(X) C |rKx| is a variety of degree rv < (A + B + 1)<
By a Hilbert scheme argument, there exists a projective morphism of
quasi-projective varieties Z — T such that if X is a smooth projective
variety of dimension d and volume vol(Kx) < 1, then X is birational
to a fiber Z; for some ¢t € T. We replace T' by the closure of the
points t € T such that Z; is birational to a smooth projective variety
of dimension d and volume vol(Kx) < 1. Replacing T' by a union of
locally closed subsets and passing to a log resolution, we may assume
that the fibers Z; are smooth. By Siu’s theorem on the deformation
invariance of plurigenera, we may assume that vol(Z;) is constant on
all connected components of 1. It follows that there is a minimum
value for vol(Z;) say v4. But then we may pick m = [4; + B]. O
Ya

By a similar argument, we also have
Claim 3.13. Theorem 3.1 implies Theorem 1.19.

Proof. We begin by showing that V), is discrete. It suffices to show
that V; N[0, L] is discrete for any L > 0. Arguing as above, we may
assume that there is a smooth projective morphism f : Z — T such
that the fibers Z; parametrizes all smooth d-dimensional projective
varieties of general type with vol(Kx) < L. Since vol(Z;) is constant
on all connected components of T', the claim follows.

(1) now follows since V,; has a minimal positive element say vy > 0
and as observed above we may pick m = [% + B].

Yq

Consider now X = Projp(R(Kz)). Since for any t € T we have
[:0z(mKz) — H°(mKz,), is surjective, it follows that X; = Proj(R(Kx,)).
This is (3). O

Proof of Theorem 3.1. We claim that it suffices to show that for any
two distinct very general points z,y € X, there exists an effective Q-
divisor D, , such that:

(1) vay ~Q MK x where A < Vol(lgw + B — 1;
(2) x is an isolated point of the co-support of J(D,,) and y is
contained in the co-support of J (D).

To see the claim, note that Kx is big and so we may pick m > 0

such that mKx ~ G + H where H is ample and G > 0. We may

assume that x,y are not contained in the support of G and we let

D, = Dy, + ==2G. It follows that (r — 1)Kx — D,  ~q “=22H is

ample, so that by Theorem 2.33 H'(X,w3Y™ ® J(D},,)) = 0. Consider
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the short exact sequence
0—=wi"®J(D,,) = wi —=Q—0,
which induces a surjection
H(X,w{") — HY(X, Q).

Since x is an isolated point of the co-support of J(D; ), Q has a
summand say @, supported at x and hence admitting a surjection
Q, — C(z). Since y is also contained in the co-support of Q, one sees
that there is a section of w$" vanishing at y but not at z. Thus |rKx|
defines a birational map and the claim now follows.

In what follows, we will show that there is a divisor D, ~g AKx
where A < W + B — 1 and z is an isolated point of the co-
support of J(D,). The argument for producing the divisor D, , is
similar and we refer the reader to [Tsuji07] or [Takayama0O6] for the
details. For simplicity, we will also assume that Kx is ample. This can
be achieved replacing X by its canonical model. Of course, X will no
longer be smooth but this only introduces minor technical challanges.

We proceed by induction on the dimension and so we may assume
that Theorem 1.19 holds in dimension < d — 1. Since

vol(wy)
d!

and since vanishing to order k£ at a smooth point € X imposes at most
k?/d! 4+ O(k%1) conditions, by an easy computation, it follows that for
any smooth point x € X and m > 0, there exists a Q-divisor D] ~
mKx such that mult, (D) > Zvol(Kx)'//¢. (Note that by assuming
that x € X is very general, we may assume that m is independent of
z € X.) Let

R (Ox(mKx)) = m? 4+ O(m*1)

7 :=sup{t > 0|(X,tD") is lc at x € X }.
By Remark 2.32, we have 7 < W. Let D, = 7D, then

m, C J(X,D,)and D, ~g AKx where A < 2—d1/d. Perturbing D,,

-vol(K x
we may assume that on a neighborhood of = € X( : Wie have J(D,) = Iy,
where x € V, C X is an irreducible subvariety.

We now plan to follow the ideas in the proof of the Theorem of
Anhern-Siu to cut down the dimension of the non-klt center V, until
we arrive to the case where dim V,, = 0. We will therefore assume that
dim X > dim V, > 0. Following the proof of Theorem 2.56, it suffices
to

(1) produce a divisor £, on V,, such that mult, (E,/) > dim V, and
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(2) lift E, to a divisor on X say F,, ~gp N Kx whose support
does not contain V, and such that F,/|y, > E,, where ' =
O(vol(Kx)™Y™ (ie. X < W + B’ for appropriate con-
stants A’, B').

In what follows, we will assume that Ky s ample (this can be achieved
by replacing X by its canonical model) and for simplicity that X is
smooth (in practice X has canonical singularities, but this only adds
minor technical difficulties). Notice that by Kawamata subadjunction,
we have
(KX +Dx+€KX)‘VV = Ky + B,

where V¥ — V' is the normalization abd B, > 0. By Theorem 3.4,
V¥ is of general type and so vol(Ky/) > v], where V' — V" is any
resolution, dim V' = n’ < n and v, > 0 is a constant. By induction
on the dimension, we may assume that there is an effective Q-divisor
E' ~g vKy: on V' with mult, (E') > n' ;== dim V' and 0 < v < n/v,
(i.e. 7 is bounded above by a constant). Pushing forward to V* and
adding B,, we obtain a Q divisor on V"

E” + BE ~Q (KX + D;B + EKX)‘VV = (1 + )\+ E)KX‘VV-

Assume for simplicity that V,, is normal (this is true on a neighborhood
of z € X) Since K is ample, it follows (by Serre vanishing) that

H(X,0x(mKx)) = H(X,Op.(mKx|v))
is surjective for all m > 0. It then follows that
E" 4+ B, ~q Fyly, = Fu |V, where Fpr~g (1+ X +6€)Kx.
Set X' =14+ X +e.

4. VARIETIES OF LOG GENERAL TYPE

In this section we will discuss results related to the boundedness of
varieties of log general type. The first question that we encounter is
why should we consider log pairs of general type and what generality
should we consider.

4.1. Automorphisms of varieties of general type. Let X be a
smooth projective variety of general type, then it is known that the
automorphism group of X is finite. It is natural to ask how big can
this automorphism group be. The well known answer in dimension 1
is the following.

Theorem 4.1. Let C be a curve of general type and G its automor-
phism group. Then |G| < 42(2g — 2).
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Proof. Let f:C — B = (/G be the induced morphism, then we

. 1
Ko ~g f*(Kp+D)  where D__Z;O m)g.
here P; denote the branch points of f and n; the ramification indices of
f over P;. To prove the above formula, assume that P € B is a point of
ramification index n so that f*P = n(@). In local coordinates we have
y = f(x) = 2", then dy = nz""'dz or equivalently dy/y = ndz/x and
SO f*(KB+P> :K0+QNQ Kc+f*P.
It then follows that

2g — 2 =deg(K¢) = |G| ~deg(KB + D),

and so it suffices to show that deg(Kp+ D) > —. This can be done by
a tedious case by case analisys. Since 1 — =+ > 1 / 2, we may assume that
there are k < 4 points and that g = —1 so that deg(KB +D)=-2+
S (1——) Assume that ny > ny > n3 > ny. Since deg(Kp+D) > 0,

ny > 3 and hence deg(Kp + D) > %. Thus k£ = 3 (the case k < 2,
g = —1 gives deg(Kp + D) < 0). If ng > 4, then deg(Kp + D) > }l.
If ng = 3, then ny > 4 and deg(Kp + D) > é Thus ns = 2 and
then ny > 3. If ny > 5, then deg(Kp + D) > % If ny = 4, then
ny > 5 and so deg(Kp + D) > %. If ny = 3, then ny > 7 and so

By the same argument, if X is a variety of general type with auto-
morphism group G, f: X — Y = X/G and D is a Q-divisor such that
Kx = f*(Ky + D), then

| ’ . VOI(KX>
~ vol(Ky + D)’

Proposition 4.2. (Y, D) is kit and the coefficients of D belong to the
set {1 — X|n € N}.

Proof. We refer the reader to [KM98, Proposition 5.20]. The main
steps of the proof are as follows.

0) It is easy to see that Y is normal (if not, let v : Y — Y be the
normalization, f factors through Y"....).

1) It is easy to see that the statement holds for curves and hence it
holds in codimension 1.

2) We must check that Ky + D is Q-Cartier. let ¢ = |G| and consider
gKx which is a GG invariant Cartier divisor. Locally this is given by G

invariant principal divisors (h) on X.....
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3) Since Ky + D is Q-Cartier and f*(Ky + D) = Kx (it suffices to
check this in codimension 1).

4) We check that (Y, D) is klt. Let E be an exceptional divisor for
h:Y" — Y and let g : X’ — X be obtained by fiber product. If E’
is a divisor mapping to E via h, such that the ramification index of h
along F is r, then near E' we have

Kx =h'Kx +a(E' X,0)E" =
h* f*(Ky + D) + a(E', X,0)E' = f"*¢*(Ky + D) + a(E', X, 0)E'.
Ky = " Ky + (r — DE' = [*(¢" (Ky) + a(E,Y,0)E) + (r — 1)E'
="Ky + (r—1)E = f"(¢"(Ky + D) + a(E,Y,D)E) + (r — 1)E
= f"¢"(Ky + D) + (ra(E,Y,D) + (r — 1))E'.
It follows that a(E’", X,0)+1 = r(a(E,Y,D)+1) and so if a(E’, X, 0) >
—1 then a(E,Y,D) > —1. O

To generalize Theorem 4.1, it ”suffices” to show the following.

Conjecture 4.3. Let Py be the set of kit pairs (Y, D) be a such that
dimY = d and the coefficients of D lie in the set {1 — L|n € N} (or
more generally in a fived DCC set C), then the set of volumes

Vi = {vol(Ky + D)|(Y, D) € P;}
has a minimum (or even Vy is a DCC set).

Remark 4.4. Note that if (Y,D) € Py, then one can consider a log
resolution f :Y' — Y and the divisor D' given by the strict transform
of D plus the exceptional divisors with coefficient 1. Note then that
Ky + D" — f*(Ky + D) > 0 is exceptional and so vol(Ky + D) =
vol(Ky: + D') and so in the above conjectures, it suffices to consider
log smooth pairs.

Remark 4.5. It is conjectured that min(V,) = .

Proposition 4.6. The set of volumes vol(Kx + B) where (X, B) is log
smooth and B = | B| is not discrete.

Proof. For example let Xy = P? and By = L+ H,+ H,+ H5 be the union
of 4 general lines. We define v : X; — X by blowing up the point
x = LN Hy. Let E; be the corresponding exceptional divisor and blow
up the intersection point £4 N L, where L is the strict transform of L
to obtain Xy, — X with exeptional divisor Fs. Inductively blowing up
the intersection of the strict transform of L with the exceptional divisor
E, for X,, — X,_1, we obtain morphisms v, : X,, = Xy. Let B, =
(v; 1By + Ex(v,), then Ky, + B, = v (Kx, + By). If B,, = B, — E,,,
then we claim that vol(Ky, + B),) = 1 — -. To see this we compute
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the corresponding minimal model. Note that Ky, + B), = f*L — E,, is
not nef. One sees that the minimal model 7 : X,, — X contracts the
curves Ei, ..., FE,_1 and the induced morphism 7 : X — X, contracts
the curve F = m,E,. Since E? = —2for 1 <i<n-—1and E? = —1
and E;- E; =1for [i—j| =1and E;- E; =0 for |[i — j| > 1, it follows
that

(Ey+2E,+...4+nk,) - E; =0 for1<i<n-—1.

But then 7*(nE) = Ey + 2F, + ...+ nkE, and so
_ 1
E? = = (By+2E> 4 ...+ nE,)* =
n

n(n—1) —n? 1

1
—(Ey+ 2By + ...+ nEnE, =~ — 270 .~
n? n? n
Finally
_ _ 1
vol(Kx, +B;) = (Kx)* = (' (Kxy+Bo)=E)* = (Kx,+Bo)*+E” = 1——.

O

Remark 4.7. Many interesting examples (with empty boundary) can
be constructed by taking hypersurfaces of the form x{'xe + x3*x3 +
r§xy+aytxy = 0 in weighted projective space P(wy, wq, w3, wy) (known
as Kollar surfaces).

Exercise 4.8. Let (X, B) be a log canonical surface, then vol(Ky +
B) > (Kx + B)? and equality holds iff Kx + B is nef. (Hint: consider
v: X — X' the canonical model, then Kx + B = v*(Kx + B') + E
where E > 0 (E = 0 iff Kx + B is nef. But then (Kx + B)? =
(Kx'+B)*+E? = (Kx/+B')*—¢e wheree > 0 (and e = 0 iff Kx + B
is nef).

4.2. Open varieties. Let U be a smooth quasi-projective variety and
X its closure (in the corresponding projective space). By Hironaka’s
Theorem, we may assume that X is also smooth and D := X \ U is a
simple normal crossings divisor.

Lemma 4.9. The vector spaces H°(m(Kx + D)) depend only on U
(and not the choice of X and D).

Proof. Suppose that v : X’ — X is a morphism of smooth projective
varieties which is an isomorphism over U such that D’ = v~1(D) also
has has simple normal crossings. Since (X, D) is log canonical and
D' > Ex(v) it follows thaty Ky + D' = v*(Kx + D)+ E where £ > 0
is v-exceptional. But then
H(m(Kx + D)) = H(mv*(Kx + D) +mE) = H(m(Kx + D)).
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The proof now follows easily. U

Note that the vector spaces HY(Q% (logD)) are also uniquely deter-
mined by U.

4.3. Titaka fibration. Let (X, B) be a proper kit pair and R(Kx +
B) = ®,>0H(m(Kx + B)), then R(Kx + B) is finitely generated
and so we may consider the corresponding projective variety Z :=
ProjR(Kx + B). By a Theorem of Mori and Fujino there exists a klt
pair (Z, Bz) and integers [, m such that R(Kx+B)® = R(Kz+Bz)™.

The construction is somewhat involved. Replacing X by a higher
model, we may assume that f : X — Z is a morphism. Replac-
ing X, Z by appropriate birational models, we may assume that f is
smooth other the complement of snc divisor. Assume for simplicity
that Kx ~q,z= 0 so that Kx ~q f*L where L is a Q-Cartier divisor
on Z. (conjecturally this can be accomplished by running a relative
minimal model so that Kx is semiample over Z and replacing Z by
ProjR(Kx + B/Z)). We define By = > (1 —tp)P where for any prime
divisor P C Z, tp = sup{t > 0|(X, B+ tf*P) is lc over nP}. We let
My =L — (Kz+ Bz). The divisor By is known as the boundary part
and the divisor My is the moduli part. It is known that My is a nef
Q-divisor and conjectured that it is semiample. If f is an elliptic fibra-
tion, then My = j*Op:1(1/12). Tt is easy to see that the coefficients of
By are < 1 and hence (Z, By) is klt

Since K7+ Bz + My is big, it is Q-linearly equivalent to A+ FE where
A is ample and £ > 0. But then

4.4. Proper moduli spaces. Another reason to consider log pairs
is to be able to construct proper moduli spaces. In order to obtain

a proper moduli space (functor), we must consider semilog canonical
pairs (X, B).

Definition 4.10. A SLC (semi-log-canonical) pair (X, B) is given by
an Sy quasiprojective variety X with SNC' singularities in codimension
1 and a R-divisor B whose support has no component contained in
Sing(X), such that Kx + B is R-Cartier and if v : XV — X is the
normalization and Kxv+ BY = v*(Kx+ B), then (X", BY) is a disjoint
union of lc pairs.

For example if X is a smooth variety and S is a simple normal
crossings divisor and (X, S + B) is a lc pair, then (S, Bg) is a slc pair
where (Kx + S + B)|s = Ks + Bs. More generally we have:
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Lemma 4.11. Let (X,S + B) be a dlt pair, where S = |S + B] and
write Kg + Bs = (Kx + S + B)|s, then (S, Bg) is slc. Note that if
D C S” is the double locus, then Bs > D.

Proof. See [777]. O

Suppose now that (X% BY) is a lc pair and f : X° — T° =T\ O
is a projective morphism to a smooth curve (or to the generic point
of a DVR). In what follows we will often replace T' by an appropriate
neighborhood of O € T. Assume that for exery ¢ € T° the pairs
(X2, BY) are log canonical models i.e. pairs with lc singularities such
that Kxo + BY is ample. We let X — T be a compactification and
X’ — X be a log resolution of (X, B + X;). Replacing T' by a cover
ramified only over O, we may assume that X’ — T is semistable so
that &} is smooth for t € T\ O and A&}, is a snc divisor. Let B’
be the divisor given by the strict transform of B plus all exceptional
divisors dominating 7" plus Ap. By [HX13], the relative canonical ring
R(Ky + B') is finitely generated over T and so we may consider

X :=Projp R(Kx + B').

Let B be the strict transform of B/, then (X, B) x¢ (T'\ O) is isomorphic
to (X°, B°). Moreover, since B > Xy, the pair (Xo,Bo) is a slc model
where Ky, + Bo = (K + B)|z,. We also have the following.

Lemma 4.12. Suppose that (X', B) is another lc model over T iso-
morphic to (X, B) over T'\ O and such that B' > Xp, then (X', B') is
isomorphic to (X, B) over T

Proof. Let p: W — X and ¢ : W — X’ be a common resolution and
write p*(Kz + B) = ¢*(Kg + B') + E. Since B > X,, it is easy to see
that p, £ > 0 and since ¢*(K 4 + B) is p-nef, then by the Negativity
Lemma, F > 0. Similarly ¢.F < 0 and p*(Kp + B) is ¢-nef so that
FE <0. Thus £ =0 and

X = ProjR(Ky + B/T) = ProjR(Ky + B')T) = X'.

5. THE MMP

5.1. Non-vanishing, base point free and cone theorems. Recall
that for a normal projective variety X, the set of R-Cartier divisors
modulo numerical equivalence is denoted by N'(X) and N;(X) denotes
the dual space of R linear combinations of curves up to numerical
equivalence. We let the effective cone NE(X) C Ni(X) be the cone

generated by effective curves. For any cone C' C N;(X), and any
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L e NY(X), Cpso C Ni(X) denotes the set of curves & € C such that
C - L > 0 (and similarly for Cr.g, Cr—g etc.). If Cp>o = Ry[X] for
some curve class 0 # [X] € Ny(X), then we say that R>o[X] (or simply
[X]) is an ezxtremal ray of C. Similarly if C>g = CL—g, then F' = CL_
is an extremal face. Next we recall the following fundamental results.

Theorem 5.1 (Non-vanishing theorem). Let (X, B) be a projective
sub-klt pair and D a nef Cartier divisor such that aD — (Kx + B) is
nef and big for some a > 0, then H*(Ox(mD — |B])) # 0 for all
m > 0.

Proof. Step 0. We may assume that X is smooth and aD — (Kx + B)
is ample.

Let f: X" — X be aresolution D' = f*D and Kx.+ B' = f*(Kx +
B). Then aD' — (Kx + B') = f*(aD — (Kx + B)) is nef and big and
so aD' — (Kx/ + B') ~g A+ F where A is ample and F' > 0. For
0 <e< 1, (X', B'+ €F) is sub-klt and

aD'— (Kx/ + B +€F) ~g (1 —€)(aD' — (Kx: + B')) + €A
is ample. Since f.(B' + €F) > B, we have
R (Ox/(mD' — | B + €F|)) < H(Ox(mD — | B)))

and so we may replace D and (X, B) by D" and (X', B’ + e¢F").
Step 1. We may assume that D is not numerically equivalent to 0.
Suppose that in fact D = 0, then for any k,t € Z, we write
kD — |B| = Kx +{B}+tD — (Kx + B).
Note that tD — (Kx + B) is ample for all t € Z and so by Kawamata
Viehweg vanishing we have

h*(Ox(mD — | B])) = x(Ox(mD — | B])) =

X(Ox(=|B])) = h*(Ox(=|B])) # 0.
Step 2. For any x € (X \ Supp(B)) there is an integer gy such that
for any integer q > qo there is a Q-divisor

M(q) = qD — (Kx + B)

with mult, M (q) > 2dim X.

Let d = dim X and A be an ample divisor. Since D is nef, D¢- A4=¢ >
0 for 1 < e < d and since D is not numerically trivial, D - A%~1 > 0.
But then

(¢D—Kx—B)* = ((g—a)D+aD—Kx—B)* > d(q—a)D-(aD—Kx—B) > 0.
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Since the RHS goes to infinity as ¢ goes to infinity, by Serre vanishing
and Riemann Roch, we have

K(Ox(elaD — K — B)) > S (2d)" + O(e).

Vanishing at  with multiplicity > 2de imposes at most
(2de)?
d!

conditions and so there is a divisor
M(q,e) € |e(¢D — Kx — B)| with mult, M (q, e) > 2de.

let M(q) = M(q,e)/e.

Step 3. Let t be the log canonical threshold of (X, B) with respect
to M = M(q), then t < 1/2. Since A := ¢D — Kx — B is ample,
perturbing, we may assume that (X, B + tM) has a unique non-klt
center V. By Theorem 2.29, V' is normal and by Theorem 3.2, (Kx +
B+tM +€A)|y ~qg Kv + By, where (V, By,) is sub-klt. Consider the
short exact sequences

Since

+ O(et™)

mD — (Kx + B+tM) ~g (m —1tq)D — (1 +1t)(Kx + B)

is ample for all m > 0, by Nadel vanishing H'(Ox(mD) ® J(X, B +
tM)) = 0 and so it suffices to show that H°(Oy(mD)) # 0. Since
mD|y is nef and

mDly — (Ky + By,) ~z (mD — Kx — B —tM — eA)|y ~&

(m—(t+e)q)D—(1+t+¢€)(Kx+ B)

is ample, by induction on the dimension H°(Oy (mD)) # 0.
]

Exercise 5.2. Show that if D is nef and not numerically equivalent to
0, then D - A™1 > 0 for any ample divisor A.

Theorem 5.3. [Base point free theorem/] Let (X, B) be a projective kit
pair and D be a nef Cartier divisor such that aD — Kx — B is nef and
big for some a > 0, then |bD| is base point free for all b>> 0.

Proof. As in the proof of the non-vanishing theorem, we may assume
that aD — Kx — B is ample. Pick m > 0 such that Bs(mD) = B(mD).
(Recall that the stable base locus is defined as B(D) = N,~oBs(mD).

It is easy to see that Bs(mD) = B(mD) for any m > 0 sufficiently
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divisible.) If D = 0, then h°(mD) # 0 implies that mD ~ 0 and so
Bs(mD) = () as required.

Otherwise, assume for simplicity that X is smooth. Pick general
sections Dy, Dy, ..., Dgi1 € |/mD|. Then ¢ :=lct(X, B; >  D;) < 1 and
the non-klt locus of (X, B + ¢)_ B;) is contained in Bs(mD). Per-
turbing, we may assume that there is a unique such non-klt center
say V. Arguing as in the proof of the non-vanishing theorem, we
may assume that H°(Ox(mD)) — HY(Oy(mD)) is surjective and
H°(Oy(mD)) # 0. But then V ¢ Bs(mD) contradicting the assump-
tion that V' C B(D). O

Exercise 5.4. Show that Bs(mD) C Bs(mpD) for any m,p € N, but
it can happen that Bs(mD) ¢ Bs((m + 1)D). Deduce that B(D) =
Bs(mD) for all m > 0 sufficiently big and divisible.

Theorem 5.5 (Cone Theorem). Let (X, B) be a projective kit pair.
Then

(1) There are countably many rational curves C; C X such that
0<—(Kx+B)-C; <2dimX, and

NE = NE (kx>0 + ) Rao[C)].
(2) For any € > 0, there are only finitely many rays
[C;] € W(X)(I<X+B+aq)<o-

(3) If F C NE(X) is a Kx+ B negative extremal face, then there is
a unique morphism contp : X — Z such that (contp),Ox = Oy
and an irreducible curve C C X 1is contracted to a point if and
only if [C] € F.

(4) Let L be a line bundle on X such that L - C' =0 for all curves
[C] € F, then there is a line bundle Ly on Z such that (contp)*Ly =
L.

Proof. For (1) and (2) please see [KM98, §3.3]. Next we sketch the proof
of (3) and (4). Let F C NE(X) be a Kx + B negative extremal face
I = Fp for some Q-Cartier divisor D. For any m > 0, the Q-Cartier
divisor mD — (Kx + B) is strictly positive on NE(X)\ {0}. Therefore
mD — (Kx + B) is ample and mD is nef and by Theorem 5.3, mD is
base point free for all m > 0. Let g,, : X — Z = Z,, be the Stein
factorization of X — |mD] so that Z,, is normal and g,,.Ox = Og.
Let M be the pull-back of the hyperplane line bundle on |mD| to
Zm so that gf Mz = mD. This proves (3).

A curve C' C X is contracted by g, iff C- D =0 and so g = gy, :

X — Z is independent of m > 0. But then D = (m + 1)D — mD =
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g My 1 — g*M,, is Cartier. Suppose now that L-C' = 0 for all [C] € F,
then L 4+ mD also supports F' for m > 0 and so it defines g. By the

arguments above L +mD = g* N for some Cartier divisor Nz on Z so
that L:g*<NZ_MZ,m) O

5.2. Minimal model preliminaries. In this section we recall some
of the results from the minimal model program.

Let (X,B) and (X’,B’) be lc pairsand f: X — T, f': X' = T’
be projective morphisms, then a birational map ¢ : X --» X' is a
birational contraction if X’ contains no divisors exceptional over X.
Given a birational contraction ¢ : X --» X’ such that B’ = ¢, B, then
¢ is Kx + B non-positive (resp. Kx + B negative) if for any common
resolution p: W — X and ¢ : W — Y we have p*(Kx + B) — ¢*(Kx/ +
B’) is effective (resp. effective and its support contains all ¢ exceptional
divisors.

Exercise 5.6. Show that if ¢ : X --+ X' is Kx + B non-positive, then
R(Kx + B/T) = R(Kx + B'/T).

Exercise 5.7. That a composition of two Kx + B non-positive bira-
tional contraction is again a Kx+ B non-positive birational contraction.

Exercise 5.8. Show that a contraction of a —1curve on a smooth sur-
face X (resp. a —2 curve on a surface with canonical singularities) is
Kx negative (resp. Kx non positive). Conclude that the map to the
minimal model X — Xyin (Tesp. to the canonical model X — Xcon )
is Kx negative (resp. Kx non-positive).

Exercise 5.9. Let ¢ : X — X' be a Kx + B non positive birational

contraction. Show that for any divisor E over X we have ag(X, B) <
ag(X', B).

Exercise 5.10. Let ¢ : X — X' be a Kx + B negative birational
contraction. Show that for any divisor E over X we have ag(X, B) <
ap(X', B') and strict inequality holds if the center of E is contained in
the exceptional set of ¢.

Definition 5.11. If (X, B) is kit and ¢ is a Kx+ B negative birational
contraction such that X' is Q-factorial and K x+ B’ is nef over T', then
we say that X' is a log terminal model of (X, B) over T.

Definition 5.12. If (X, B) is lc and ¢ is a Kx + B non-positive bi-
rational contraction such that Kx + B’ is ample, then we say that
(X', B') is a log canonical model of (X, B).

Exercise 5.13. Show that log canonical models are unique and given
by X --» ProjR(Kx + B).
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Exercise 5.14. Show that minimal models are not smooth in dimen-
sion d > 3. (Hint consider the quotient of an abelian threefold via an
involution. )

Exercise 5.15. Show that minimal models are not unique in dimension
d> 3.

Definition 5.16. Let (X, B) be a Q-factorial kit pair and f : X —
Z be a small (so that dim(Ex(f)) = dim X — 1) projective birational
morphism of normal varieties with f.Ox = Oy and relative picard
number p(X/Z) = 1 such that —(Kx + B) is ample over Z, then f is a
Kx + B flipping contraction. We say that Ex(f) is the flipping locus.

Definition 5.17. If f : X — Z is a flipping contraction, then the flip
[t Xt = Z (if it exists) is given by XT = Proj,(R(Kx + B)). We
say that Ex(fT) is the flipped locus.

Remark 5.18. The existence of flips in the kit case follows from [BCHM10],
and in the log canonical case from results of Birkar and of Hacon-Xu.

Lemma 5.19. Let f : X — Z be a Kx + B flipping contraction and
fT: X" — Z be the corresponding flip, then
(1) ¢: X --» X is small,
(2) X is Q-factorial,
(3) Kx+ + Bt is ft-ample,
(4) ¢ : X --» X7 is Kx + B non-positive (in particular if (X, B)
is klt/lc, then so is (X, BY)).
(5) If E is a divisor with center contained in the flipping or flipped
locus, then ag(X, B) < ap(X™*, BT).

Proof. (4) and (5) are an easy consequence of the negativity lemma.
Let p: W — X and ¢ : W — Y be a common resolution, then
p*(Kx + B) — ¢*(Kx+ + B") = E where —E is exceptional and nef
over X and so E > 0 which proves (4). Moreover, the support of E
dominates both the flipping and flipped locus (by the ampleness over
Z condition on Kx+ + BT and —(Kx + B)). But then the fibers of
W — Z are contained in E and (5) follows.

By assumption Ky+ + B is Q-Cartier and f* ample and (3) holds.

Suppose that f* is not small and let E be an fT-exceptional divisor.
Since Ky+ + BT is ample over Z, we may assume that Z is affine and
Ox+(m(Kx+ + B%)) = Ox+(1) is very ample. For any integer ¢ > 0

Oz(tm(Kz + f.B)) = fIOx+(t) C £ Ox+(t)(E),

where the last inclusion is strict for ¢ > 0 as Ox+(1) is ample. Since
Oz (tm(Kz+ f.B)) is reflexive, there is a natural inclusion [ Ox+(t)(E) C

Oz(tm(Kz+ f.B)) which is impossible. Thus f7 is small and (1) holds.
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Let G* be a Q divisor on X and set G = ¢;'GT. Since X is Q-
factorial, G is Q-Cartier. Since p(X/Z) = 1, any Q-Cartier divisor G
on X is of the form G ~q aD + b(Kx + B) where D = f*D, for a Q-
Cartier divisor Dz on Z. But then GT = ¢,G = af T Dz+b(Kx++B™)
is Q-Cartier, and hence (2) follows.

O

Exercise 5.20. Let X --» Xt be a Kx+ B flip. If (X, B) is dlt (resp.
plt), show that (X*, B") is dlt (resp. plt).

Exercise 5.21. Let f : X — Z be a flipping contraction, show that
Kz + f.B is not Q-Cartier and hence (Z, f.B) is not lc.

Exercise 5.22. Show that the properties of Lemma 5.19 determine the
flip uniquely.

Definition 5.23. Let (X, B) be a Q-factorial klt pair and f : X — Z
be a projective morphism of normal varieties such that dim Ex(f) =
dim X —1, f.Ox = Oz, —(Kx + B) is ample over Z and p(X/Z) =1,
then f is a divisorial contraction.

Lemma 5.24. Let f : X — Z be a divisorial contraction, then
(1) E = Ex(f) is a prime divisor,
(2) —E is ample over Z,
(3) f is Kx + B negative and hence (Z, f.B) is klt, and
(4) X is Q-factorial.

Proof. Let E be an exceptional prime divisor. Since the fibers of f are
connected, if F # Ex(f), then there is a curve C' intersecting £ but not
contained in E. It follows that C'- £ > 0 and so F is relatively ample
(as p(X/Z) = 1). By the negativity lemma we obtain an immediate
contradiction and so E = Ex(f) and (1) follows.

It also follows from the negativity lemma that —F is not relatively
trivial and hence either ample or anti-ample (as p(X/Z) = 1, but then
—FE is ample over Z and (2) follows.

We may write Kx +B —aFE ~g 7z 0 for some a > 0 and so Kx + B =
f*(Kz+ f.B) 4+ aF and hence (3) holds.

Let G be a divisor on Z. Pick e so that f;'G + eE ~q 7 0, then
G + el ~q f*G and so G is Q-Cartier.

O

Exercise 5.25. Let ¢ be a birational contraction. Show that if D ~g E
on X, then ¢.D ~q ¢.G. In particular, if D is big or pseudo-effective,
then so is ¢.D.

Exercise 5.26. Let f : X — Z be a birational morphism and G a

Q-Cartier divisor on Z, then f*G is Q-Cartier on X.
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Exercise 5.27. Let f: X --+ Y be a small birational morphism, then
|Glo = | f.Glg for any Q-divisor on X.

Definition 5.28. Let (X, B) be a Q-factorial kit pair and f : X — Z
be a morphism of normal varieties such that f.Ox = Oz, p(X/Z) =1,
—(Kx + B) is ample over Z and dim X > dim Z, then f is a Mori
fiber space.

Exercise 5.29. Show by example that there exist Mori fiber spaces such
that the general fiber X, has Picard number p(X,) > 1.

5.3. Running the minimal model program.

Theorem 5.30. Let (X, B) be a kit pair and f : X — T be a projective
morphism such that Kx + B is big over T' (resp. Kx+ B is not pseudo-
effective over T'), then (X, B) has a minimal model over T (resp. a
Mori fiber space) which can be obtained by a finite sequence of flips and
divisorial contractions over T

In order to construct the minimal model (when Kx + B is pseudo-
effective) or a Mori fiber space (when Kx + B is not pseudo-effective),
we run a minimal model program. The traditional strategy is as follows:

(1) Start with a projective Q-factorial klt pair (X, B).
(2) If Kx + B is nef, stop: this is a minimal model.
(3) If Kx + B is not nef, pick a Kx + B negative extremal ray
¥ C NE(X).
(4) If ¥ defines a Mori fiber space, stop.
(5) If ¥ defines a divisorial contraction (resp. a flipping contrac-
tion) f: X — Z, then replace (X, B) by (Z, f.B) (resp. by the
flip (X*, B")) and return to (2).
Note that if if we have a flip Xt --» Xt then p(X ™) = p(X) but if we
have a divisorial contraction, then p(Z) = p(X)—1. Since p(X) € N, it
follows easily that any sequence of steps of the minimal model program
has at most p(X) divisorial contractions and hence to show that the
above strategy ends after finitely many steps, we must show that any
sequence of flips is finite.

Conjecture 5.31 (Termination of flips). Let (X, B) be a Q-factorial
projective kit pair. There is no infinite sequence of Kx + B flips X =
XO -—> X1 i d X2 - ...

Remark 5.32. To be more precise X = Xg --+» X1 -+ Xo ——» ... is
a sequence of Kx + B flips if there are Kx, + B; flipping contractions
X; = Z; such that X, 11 — Z; is the corresponding Kx, + B; flip where
B; s the strict transform of B on X;.
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Remark 5.33. The termination of flips conjecture is known in dimen-
sion 3 and many cases of dimension 4. In higher dimension it appears
to be a very difficult conjecture. For this reason an alternative ap-
proach is used in [BCHMI10] that reduces the question of termination
of flips to a question of termination of special sequences of flips with
nice properties.

Definition 5.34 (Minimal model program with scaling). In this ver-
sion of the MMP we start with a projective Q-factorial pair (X, B+ H)
such that Kx + B + H is nef and B is big. (Given (X, B) one may
for example pick H a general Q divisor Q-linearly equivalent to a suf-
ficiently ample divisor.) Consider now the nef threshold

A =inf{t > 0|Kx + B+ tH is nef}.

(1) If \=0, then Kx + B is nef and (X, B) is a minimal model.

(2) If X > 0, pick a (Kx + B)-negative extremal ray R such that
(Kx+B+AH)-R=0. Let f : X — Z be the corresponding
contraction.

(3) If dim Z < dim X, then we have a Kx + B Mori fiber space.

(4) If dim Z = dim X, then f is either a Kx + B flipping or di-
visorial contraction and we replace (X, B + ANH) by the corre-
sponding Kx + B flip (X*, Bt +XH™) or divisorial contraction
(Z, f«B4+\f.H). Note that by the Base Point Free Theorem 5.3,
Kx++B" "+ H" or Kz+ f.B+\f.H is also nef and klt and so
we may replace (X, B, H) by (X,B,\H) or (Z, fo, \fsH) and
repeat the process.

Remark 5.35. Therefore, running the MMP with scaling we produce
a sequence of rational numbers 1 > ... t; > tixq... > 0 and flips or
divisorial contractions X; --+ X, 11 such that
(1) KXZ' + Bz + tH@ 18 neffor tl Z t Z ti+1,
(2) X --» X, is a sequence of steps of the Kx + B+ tH mmp for
any 0 <t <t
(4) Kx + B +tH is pseudo-effective for any t > t;.

We then have the following.

Theorem 5.36. [Termination of the minimal model program with scal-
ing] Let (X, B+ H) be a projective Q-factorial kit pair such that Kx +
B+ H is nef and B is big (or Kx + B is big or Kx + B is not pseudo-
effective), then the Kx + B mmp with scaling of H terminates after
finitely many steps.

Proof. For a detailed proof we refer the reader to [BCHM10]. O
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Remark 5.37. The case when Kx + B is big is easily reduced to the
case when B is big. Consider in fact a rational number 0 < e < 1
and write Kx + B ~g A+ E where A is ample and E > 0 (which is
possible if Kx + B is big). We then have that (X, B’ := B+e(A+E))
is klt, B is big, and Kx + B’ ~¢ (1 4+ ¢e)(Kx + B). 1t follows easily
that every step of the Kx + B" mmp is a step of the Kx + B mmp and
so the termination of the Kx + B’ mmp gives the termination of the
Kx + B mmp.

Remark 5.38. The case when Kx + B is not pseudo-effective is easily
reduced to the case when B is big. Consider in fact a rational number
0<e<x1, then Kx + B+eH is not pseudo-effective and in particular
t; >e foranyi > 0. Let B = B+ eH, then every step of the Kx + B
mmp with scaling of H is a step of the Kx + B' mmp with scaling of
H (or more precisely of (1 —e)H ). Termination of the Kx + B mmp
gives the termination of the Kx + B mmp.

As a consequence of Theorem 5.36, we obtain the following.

Theorem 5.39 (Existence of minimal models). Let (X, B) be a Q-
factorial projective kit pair such that B (or Kx + B) is big. If Kx + B
is pseudo-effective, then (X, B) has a good minimal model. If Kx + B
is not pseudo-effective, then (X, B) has a Mori fiber space.

Proof. Let H be a general sufficiently ample divisor, then (X, B + H)
is kIt and Kx + B + H is ample and in particular nef. By Theorem
5.36, the Kx + B mmp with scaling of H terminates ¢ : X --» X'
It is easy to see that ¢ is Kx + B negative birational contraction. If
Kx + B’ is nef, then this is a minimal model for Kx + B. Note that
by Theorem 5.3, Ky, + B’ is semiample (assume for simplicity that
B is a Q-divisor) and so this is a good minimal model. In particular
K(Kx + B) = k(Kx + B') > 0 and so Kx + B is pseudo-effective.
If Kx+ B’ is not nef, then there is a Mori fiber space g : X' — Z
such that —(Kx, + B’) is g ample. It follows easily that Kx + B is not
pseudo-effective. O

Theorem 5.40. [Finite generation] Let (X, B) be a projective klt pair
such that B > 0 has rational coefficients, then R(Kx + B) is finitely
generated.

Proof. If B is big, then by Theorem 5.39, consider the minimal model
f:X -—» X'. Then R(Kx + B) = R(Kx + B’). Note that B’ is
big, and by Theorem 5.3, Kx/ + B’ is semiample so that there exists a
morphism g : X’ — Z such that Kx/+ B’ ~g g*A where A is an ample

Q-divisor on Z and f.Ox = Oy. It is well known that R(Kx/ + B’) is
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finitely generated if and only if so is the truncation
R(KX/ + B/)(m) = @kENHO(OX/<km(KX/ + B,)))

for any m > 0. Suppose that m(Kx + B') ~ g*mA where mA is
Cartier, then by the projection formula

BrenH" (Ox (km(Kx + B'))) = ®renH(Oz(kmA))

which is easily seen to be finitely generated.

We now prove the general case. If |m(Kx + B)| = () for all m > 0,
then the claim is obvious. If this is not the case, then consider the
rational map X — Z defined by |m(Kx + B)| for m > 0 sufficiently
divisible. After replacing X and Y by appropriate birational models,
we may assume that Y is smooth and f : X — Y is a morphism. By a
result of Mori and Fujino, we have that R(Kx+B) = R(Kz+Bz+My)
where (Z, Bz) is a klt log smooth pair and My is a nef divisor. By
construction Kz + Bz + My is big and hence Q linearly equivalent
to Az + E; where Az is ample and E; > 0. Fix 0 < e < 1, then
My + eAy is ample. Pick a general element G € |M; + eAyz|, then
(Z,B’, := By +eEz + Gz) is klt and B, is big. Fix m > 0 sufficiently
divisible, then R(K, + By + Mz)™) = R(K, + B})™ where m’ =
m(1 + e). It follows that R(Kz + Bz + My) is finitely generated if
and only if so is R(Kz + B). The claim follows by what we proved
above. O

Exercise 5.41. Let Z be a normal variety and A an ample divisor.
Show that R(A) = ®renH®(Oz(kA)) is finitely generated.

To gain some intuition on why Theorem 5.36 holds, we show the
following.

Proposition 5.42. Assume that Theorem 5.39 holds, then Theorem
5.36 also holds.

Proof. The idea of the proof is quite simple (if we assume Theorem
5.39). Since each step of the MMP with scaling of H produces a
minimal model for Kx + B + tH for some 0 < t < 1, it suffices
to show that there are only finitely many such minimal models. As-
sume by way of contradiction that there is an infinite sequence of flips
X; --» X;41 such that Kx, + B; + tH; is nef and kit for t € [s;41, s
where 1 > s > ... > s > 8,41 > ... > 0. Let 0 = lims;.
By Theorem 5.39, there exists a minimal model f : X --» X' for
Kx + B+ ocH. Note that we may that f is Kx + B + cH neg-
ative and Kx + B’ 4+ oH' is semiample (by Theorem 5.3) so that

there is a morphism ¢g : X’ — Y and an ample R-divisor A on Y
44



such that ¢g*A ~gr Kx' + B' + oH’'. It is easy to see that the map
fis Kx + B 4+ sH negative for s € [0,0 +¢ and 0 < ¢ < 1 (in
the sense that if E is a divisor on X which is f-exceptional, then
ag(X,B+ sH) < ag(X',B'+ sH')). Let h: X' --» X" be a minimal
model for Ky + B’ + (0 + €)H' over Y, then in fact h is a minimal
model over Y for Kx + B’ 4+ sH' for any s € (0,0 + —¢|. The reason
being that in this case s = t(o +¢€) + (1 — t)o for some 1 > ¢ > 0 and
SO

Kx+B'+sH =t(Kx+B'+(c+e¢)H)+(1—t)(Kx'+ B +0H') ~gpy
t(Kx + B'+ (0 +e)H').

But then it is clear that the Kx, + B’ + (0 + ¢)H' mmp over Y is
automatically a Kx + B’ + sH' mmp over Y. It is easy to see that
if 0 <t <1, then X” is in fact a minimal model for Ky, + B’ 4+ sH’
(not just over Y). Otherwise, let ¥ be a curve with (Kx + B’ +
sH') - X < 0, then ¢, # 0 and so ¥ - (Kxs + B'+0H') >0 > 0
(eg. if r(Kx + B' + oH') is Cartier, then let 6 = 1/r). We may
assume that ¥ is a Kx/ + B’ 4 (0 + €) H' negative extremal ray and so
(Kx/+ B+ (0 +¢H')-¥ > —2dim X. But then

0> (Ky +B +sH') X =
t(KX/—|—B/—|—(O'+€>HI)Z+(1—t>(KX/+B,+UH/)22
2tdim X — (1 —¢)6 >0 for 0 <t < 1.

This is a contradiction and so (replacing € by a smaller number) we may
assume that X" is a Kx/+ B'+ (0 +¢€)H’ minimal model. Let X" — W
be the corresponding log canonical model, then for any s; € (0,0 + €,
X; — W is the log canonical model for Kx, + B; + s;H;. Let n; be the
corresponding morphism so that Kx, + B; + s;H; = 0} (Kx,, + Bw +
siHw). Let X; — Z; be the flipping contraction with flip X;11 — Z;,
then K, + B; + s,+1H; is trivial over Z; and hence there is a morphism
Z; — W. let C; be a flipping curve, then (Kx, + B; + s;H;) - C; < 0,
but this is impossible as Kx, + B; + s;H; is pulled back from W and
nixCi = 0. 0

5.4. Useful consequences.

Theorem 5.43. Let (X, B) be a projective kit pair and Ey, ..., E, a
finite collection of divisors over X such that ag,(X, B) < 0, then there
exists a proper birational morphism f : X' — X such that the set of
f-exceptional divisors is in bijection with E1, ..., E,. In particular:

(1) If we pickn =0, then X" — X is a small birational morphism
such that X' is Q-factorial and Kx, + B’ = f*(Kx + B) where
B' = f7'B and (X', B') is kit.
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(2) If we pick E,...,E, to be the set of all divisors exceptional
over X such that ag(X, B) <0, then (X', B') is terminal where
Ky + B = f*(Kx + B).

Proof. Let g : X" — X be a log resolution such that F1,..., E, are
divisors on X”. Write Kx»+ B" = ¢*(Kx + B) + E” where B” and E”
are effective Q-divisors with no common components. Let F' be the sum
of all exceptional divisors distinct from Ey, ..., E,, then (X", B" +€F)
is klt for any 0 < € < 1 and Ky~ + B” + €F is clearly big over X
and so there exists a minimal model X" --s X' for Kx» + B" + €F
over X. But then E” + €F is nef over X and exceptional over X. By
the negativity lemma E” + ¢F < 0 by the negativity lemma and so
E" + eF = 0. But then the set of X’ — X exceptional divisors is in
bijection with Ey, ..., E,.

(1) is immediate, but (2) is more subtle. First of all, one must show
that the set of divisors exceptional over X such that ag(X,B) < 0
is finite. This can be done by (an easy but tedious argument) first
replacing X by a log resolution and then blowing up along strata of
the support of B. Since Ky, + B' = f*(Kx + B), for any divisor
E exceptional over X', we have ag(X', B') = ap(X,B) > 0 (since
otherwise E is a divisor on X). O

We will also need the following stronger result which is proven by a
similar method.

Theorem 5.44. Let (X, B) be a log pair where B € [0,1]. Then there
exists a projective birational morphism f Y — X such that

(1) Y is Q-factorial,

(2) f only extracts divisors of discrepancy ap(X, B) < —1,

(3) If E =) E; is the sum of the f-exceptional divisors and By =
1B, then

*

Ky+By+E=f(Kx+B)+ Y (ap(X,B)+1)E.

ap(X,B)<—1

(4) If in addition (X, B) is log canonical and B € [0,1), then we
may chose f so that there is a divisor with support equal to
E which is nef over X. In particular the inverse image of the
non-klt locus of (X, B) is equal to the support of E.

Proof. See [HMX14a, Proposition 3.3.1]. O

Lemma 5.45. Let f : X — X' be a birational morphism between
log canonical pairs (X, B) and (X', B") (where B, B" are effective R-
divisors). Suppose that Kx + B is big and (X, B) has a log canonical
model g : X --+ X°.
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If f.B < B’ and vol(Kx + B) = vol(Kx: + B') then the induced
birational map X' --+ X is also the log canonical model of (X', B').

Proof. Let m: W — X be a log resolution of (X, f, !B’ + Ex(f)) and
of g. We write
Ky+0©=7"(Kx+B)+FE

where © and E are effective R-divisors with no common components,
then the log canonical model of (W, ©) is the same as the log canonical
model of (X, B). Replacing (X, B) by (W,0) we may assume that
(X, f71B' + Ex(f)) is log smooth and ¢g : X --» X¢ is a morphism.
Replacing (X', B') by (X, f, ' B'+Ex(f)), we may assume that X = X'

Let A = g.(Kx + B), then A is ample and Kx + B — g*A > 0. Let
L =B —B>0andS acomponent of L with coefficient a > 0. Let

v(t) = vol(g*A +t9),
then v(t) is a non-decreasing function of ¢ and
v(0) = vol(g*A) = vol(Kx+B) = vol(Kx+B') > vol(¢* A+L) > vol(g* A+aS) = v(a).
Therefore v(t) is constant for ¢ € [0, a]. By [LM09, 4.25 (iii)] we have

1dv . . o -
E%h:o =volyxs(g*4) > S - g A" = g5 A"}
where n = dim X. But then ¢,S = 0. It follows that every component

of L is exceptional for g and so g is the log canonical model of (X, B').
]

Remark 5.46. If H is ample, then H +tS is ample for 0 <t < 1 and
s0
1 dv . (H+tS)"— H"
T L R
5.5. Adjunction. Let (X, S+ B) be a pair where S is a prime divisor
not contained in the support of B, and S¥ — S the normalization, then
we define the different as follows.

K. + Diffg.(B) = (Kx + S + B)|s.

In practice, to compute Diffs.(B), we consider a log resolution f :
X' — X of (X, S+ B) and we write Kx + 5"+ B' = f*(Kx + S+ B)
where S’ = f1S. We define Diffg(B) = B|s and we have

Kgv + Diffsv(B) = (f|s)«(Ks + Diffs(B)).

For example if X is the cone over a rational curve of degree n and S
is a line on S, then the blow up of the vertex P gives a log resolution
f X' — X with exceptional divisor E. We have Kx + 5" + (1 —

1/n)E = f*(Kx + S). (To check this observe that F? = —n and
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0= Ky + B)-E= (f(Kx +S)+1/nE—~8) - E=—-1—1as
required). But then

(fls)+(Kx45"+(1=1/n)E)|s) = (f|s')«(Kg+(1=1/n)P) = Ks+(1-1/n) P

and hence Diff S(0) = (1 — 1/n)P. In general, computing the differ-
ent can be reduced to a computation about surfaces. When X is a
log canonical surface, one can perform these computations explicitely.
Shokurov shows the following.

Lemma 5.47 (Shokurovs Log Adjunction Formula). Let (X,S + B)
be a log canonical surface where B =Y b;B; and S is a prime divisor
with normalization S¥ — S, then

(KX +S+B)|Su = Kgv +D1HSV(B) = Kgqv + Diff g +B’Su

where the coefficients of Diffsv(B) are 1 or of the form (n — 1 +
Y aib;)/n € [0,1] for some a; € N. In particular if the coefficients
of B are in the set I, then the coefficients of Diffg.(B) are in the set
D(I).

5.6. Deformation invariance of plurigenera.

Theorem 5.48. If (X, B) is a snc pair and X — T is a morphism
such that (X, B) is log smooth over T, then

(1) h°(Xy, Ox,(m(Kx,+By))) is independent of t € T. In particular
[Ox(m(Kx + B)) = H°(X,, Ox,(m(Kx, + B,)))

1s surjective for allt € T.

(2) If there is a point t € T' such that (X, By) has a good minimal
model, then (X, B) has a good minimal model over T and every
fiber has a good minimal model. Furthermore, the relative log
canonical model of (X, B) over T gives the relative log canonical

model for each fiber.
Proof. See [HMX14b, 1.2, 1.4]. O

6. BOUNDEDNESS OF PAIRS OF LOG GENERAL TYPE

Theorem 6.1. Fiz d € N and I C [0,1] a DCC set whose only accu-
mulation point is 1. Let Py be the set of all projective log canonical
models (X, B) such that dim X =d and B € I.

(1) There exists an integer mq depending only on d, I such that if
(X, B) € Par, then |m(Kx + B)| is birational for allm > mg.
(2) The set Var :={vol(Kx + B)|(X,B) € Py} is a DCC set.
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(3) For any v € Vg, there exists a projective morphism of quasi-
projective varieties X — T and a pair (X,B) such that if
(X,B) € Pys and vol(Kx + B) = v, then (X,B) = (A}, B;)
for somet eT.

Remark 6.2. Let I' = TU {1} C [0, 1], then the set Va5 = {vol(Kx +
B)} where (X, B) are projective log smooth d-dimensional log pairs with
B € I'. This is because given a pair (X, B) € Py we can consider a
log resolution v : X' — X and the divisor B' = v, 'B + Ex(v) so that
Kx + B —v*(Kx + B) = E where E is effective and exceptional and
hence h°(m(Kx + B')) = h°(m(Kx + B)) and in particular vol(Kx: +
B') =vol(Kx + B).

Congecturally, if (X, B) is a log smooth pair with vol(Kx + B) > 0,
then it has a log canonical model X = Proj(R(Kx + B)) and vol(K x +
B) = vol(Kg + B).

Remark 6.3. Suppose that (X, B) is a semi log canonical pair and
let v : U(X;, B;)) — (X,B) be the normalization. If B € I, then
By € I' = Tu{l} C [0,1] and vol(Kx + B) = > vol(Kx, + B;)
is a sum of elements in the DCC set Vyp. It is easy to see that if
vol(Kx + B) = v is fized, then it can be written in finitely many ways
as a sum of elements of V4. This implies that (the normalization of)
semi-log canonical models of fized volume with coefficients in a fized
DCC set also form a bounded family.

Corollary 6.4. Fix d and C a DCC set, then there exists a number
1 > 7 > 0 such that if (X, B) is a d-dimensional log canonical pair
such that Kx + B is big, then Kx + 7B 1is big.

Proof. By Theorem 6.1, there exists an integer m = mgc such that
|m(Kx + B)| is birational. Replacing X by an appropriate birational
model, we may assume that |m(Kx + B)| = |H| + F where H is base
point free and F' > 0 is the fixed locus. Consider the birational map
f:X — Z cCPY =|H| so that f*Oz(1) = H. Pick x,2’ € X general
points and Hy, ..., Hyyq the pullbacks of general hyperplanes through
f(x), and Hi,..., Hy , the pullbacks of general hyperplanes through
f(2’). We then have that x,z’ are isolated points in the cosupport of
J(X, diﬂ > (H; + H})) and so, since by Nadel vanishing

HY(Ox (Kx + (2d + 1)H) @ J(X, d;jrl SO (Hi+ H)) =0
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it follows that H°(Kx + (2d + 1)H) — C, . is surjective and in par-
ticular |Kx + (2d + 1)m(Kx + B)| is birational and hence big. Since

(2d+1)m
K 2d+ 1)m(K B)=(1+(2d+1 K
o QA (I + B) = (14 (2 + Do) (K + 1oty
the assertion follows letting 7 = (2d + 1)m/(1 + (2d + 1)m). O

Exercise 6.5. Show that if X is a smooth projective variety of dimen-
sion d and M is a big Cartier divisor such that |M| is base point free,
then |Kx + (2d+ 1) M| is birational and hence Kx + (2d+ 1)M s big.

Corollary 6.6 (ACC for Pseudo-effective thresholds). Fiz d € N and
C C [0,1] a DCC set. Consider the set of all pseudo-effective thresholds

7?1,0 = {T(Xz', B;; Cz)}

where (X;, B;) is a d-dimensional log canonical pair, C; > 0 belongs to
a base point free linear series, B; € C and 7(X;, B;; C;) is the pseudo-
effective threshold

7(X;, B;; C;) = inf{t > 0|Kx, + B; + tC; is big}.
Then Tac is an ACC set.

Proof. Suppose to the contrary that we have an increasing set of pseudo-
effective thresholds t; = 7(X;, B;; C;). Let t = limt;, then Kx,+B;+tC;
is big and the coefficients of B; + tC; belong to the DCC set C' =
CU{t}. We may assume that the pairs (X;, B; +tC};) are log canonical
and so by Corollary 6.4 there exists a number 0 < 7 < 1 such that
Kx, + 7(B; + tC;) is big and hence so is K, + B; + t;C; for any i > 0
(as 7(B; + tC;) < B; + t;C;). This is a contradiction. O

The above results are closely related to the following conjecture of
Shokurov.

Theorem 6.7. Fizn € N and C C [0,1] a DCC set. let LCT,(C) =
{let(X, B; M)} where (X, B) is log canonical, B, M € C. Then LCT,(C)
satisfies the DCC.

Proof. Suppose that there is a sequence of d-dimensional log canonical
pairs (X, B;) and divisors 0 # M; > 0 such that B;, M; € C and
t; = let(X;, B;; M;) is an increasing sequence. Replacing (X;, B;) by
dlt models, we may assume that X; is dlt and Q-factorial. Since C is
a DCC set, it has a positive minimum say ¢ > 0 and so ¢; < 1/c. Let
t = limt;. Clearly ¢t > t;. For all i > 0 let v; : Y; — X, be the proper
birational morphism extracting a unique divisor E; of discrepancy —1

with center a minimal non klt center of (X;, B; + t;M;). Cutting by
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hyperplanes, we may assume that this minimal non klt center is a closed
point z; € X;. We may assume that p(Y;/X;) = 1 and we define

KEi —+ Al = (Kyl + Ei + V;*I(Bi + tzMZ)NEz?

Kg, + A} = (Ky, + E; + v, /(B + tM;))|g,.

Note that the coefficients of B; + t;M; and B; + tM; are in the DCC
set C' = C x {1,t,t;1,t5,...}. and hence the coefficients of A; and A
are in the DCC set D(C’). Since limt; = ¢, Kg, + Al is log canon-
ical by induction on the dimension (otherwise let(E;, 0; AL) < 1 and
limlct(E;, 0; A]) = 1 contradicting the ACC for LCT’s). Since ¢ > t;
and p(Y;/X;) =1, we have that

Ky, + A} = (Ky, + B + v, (B + tM;))|g, = (t — t)v; M,

is ample and hence Kp, + A} is ample. We claim that there exists a
number 7 < 1 such that Kg, + 7A! is big (see Corollary 6.4) below (in
fact 7 =). But then A; > 7A! for i > 0 so that

KEi+TA;§KEi+TAi NQO

E;

which is an obvious contradiction.

U

The first step in proving Theorem 6.1 is to prove that the pairs
(X, B) € Py with vol(Kx + B) = v are log birationally bounded.

Definition 6.8. A set of log pairs (X, B) € I is log birationally bounded
if there exists a log pair (X, B) and a projective morphism X — T such
that for any pair (X, B) € I, there is a t € T and a birational map
f X --» X, such that the support of the strict transform of B plus
the X5 --+ X exceptional divisors are contained in the support of B.

Theorem 6.9. Fix d € Nou > 0, and I a DCC set. Let Qq,.1 be the
set of projective log canonical pairs (X, B) such that dim X =d, B € I
and vol(Kx + B) < v, then Qg 1 is birationally bounded.

Proof. As in the proof of Theorem 3.1, it suffices to show that there
exists an integer mg, ; = O(v~/%) such that m(Kx + B) is birational
for any m > mg, (this means that mg,; < Av=Y4 4+ B for some
constants A, B depending on d, I but not on v). Suppose in fact that
such an integer m = my,, s exists, then |m(Kx+ B)| induces a birational
map whose image Z has bounded degree

deg Z < vol(m(Kx + B)) = m%v < (Av™Y? + B)4 < (A + uB)?
where © = max{v'/¢,1}. Fix v > 0, then there is a family Z — T

(depending on I, d,v) such that if vol(Kx + B) < v, then Z = Z, for
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some t € T. This explains why X is birationally bounded, but why
is the pair (X, B) log birationally bounded? Replacing (X, B) by an
appropriate birational model, we may assume that
¢ = Prxtm(kx+B) X = Z
is a birational morphism (note that we may apply Exercise 6.5 and
replace m by (2d + 1)m). Thus we may write
[Kx +m(Kx + B)| = [M|+ E,

where M is a big and base point free Cartier divisor and F is an effective
R-divisor. Let H = Og(1) be the very ample divisor on Z such that
¢*H = M. Note that

vol(Kx +m(Kx + B)) < vol((m + 1)(Kx + B)) < 2%.
Fix I' € || Kx + m(Kx + B) ]|, 6 be the smallest positive element in C,
and let .
a= maX{S, 2(2d+1)}.
Let Dy be the sum of the components of B and I'" that are not ¢
exceptional, then
Do < §(B+T).
Note that there is a divisor C' > 0 such that
I(B+TD)+C~gd(m+1)(Kx + B).

Since ¢ is a morphism and M is base point free, by Lemma 6.12, we
have that

Gu(Breq) - H' < Dy~ (2(2d+ 1) M) < 2%0l(K x 4 Dy +2(2d+1)M)
< 2Wol(Kx +a(B+T)+2(2d + 1)(M + E + B))
< 2%ol(K x +B+(a+2(2d+1)) (m+1)(Kx+B)) < 2%(1+2a(m+1))*vol (K x+B)
< 2%afvol((m + 1)(Kx + B)) < 2*%a%.

The rest of the proof also closely follows the proof of Theorem 3.1,
but there is a key difficulty that appears when we try to bound the
volume of Kx + B along a non-klt center V. Assume that (X, B) is
as above (dim X =d, B € I and vol(Kx + B) = v) and for simplicity
K x + B is ample. Suppose that D ~g A(Kx+ B) where J(X, D) = Iy
near a general point z € V' C X. We must find a log canonical pair
(V, By) such that

(1) Ky + By is log canonical, big and By € J for some DCC set J
and
(2) (Kx + B+ D)|y > Ky + By.
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It is clear that (Kx 4+ B+ D)|y is big, however (V| By) is typically not
lc and we have no control over the coefficients of D and hence of By .
Instead we proceed as follows. Let V¥ — V be the normalization and
V' — V a resolution,

D(I):={a<1lla= ,meN, i, el}

m
be the derived set of I.

Exercise 6.10. Show that if I is a DCC set then so is D(I).

Claim 6.11. There exists a dwisor © on V¥, with © € {1 —t|t €
LCTy_1(D(I)) U1} such that
(1) (Kx + B+ D)|y» — (Kyv 4+ ©) is PSEF and
(2) if x € V C X s a general point, then Ky, +©" > (Kx +
B)|y: where ©' is the strict transform of © plus the V' — V¥
exceptional divisors.

Granting the claim, since Kx + B is big, it follows that Ky + ©’ is
also big. By Theorem 6.7 in dimension < d — 1, the set of log canonical
thresholds

{t e LCT,1(D(I)) U1}

is an ACC set (any non-decreasing sequence is eventually constant) and
so, the coefficients of ©" belong to a DCC set J. But then by Theorem
6.1 in dimension < d— 1, the volume of Ky +©’ is bounded from below
(by a constant), and so proceeding as in the proof of Theorem 3.1,
after finitely many steps, we may assume that dim V' = 0 as required.
(In more detail, if vol(Ky» + ©') > C > 0, then there is a divisor
Dy ~ N(Ky» 4+ ©') such that

(1) mult,(Dys) > dimV, where 2’ € V' is a general point, and

(2) X < dimV/CV4,
Note that if A~ : V' — V is the induced morphism, then there is a
divisor D’ on X such that

(1) D'|v > hyDy+ (on an open subset 2’ € U C V'), and

(2) D' ~g N(Kx + B+ D) ~g N(1+\)(Kx + B).
by Proposition 2.40, the non kit locus of (X, D+ (1—¢€) B+ B’) contains
2’ but does not contain V. Replacing D by D+ (1—¢€)D’ and repeating
this process at most d — 1 times, we may assume that 2’ is an isolated
component of J(X,B + D). It follows that |m(Kx + B)| defines a
birational map for any m > Avol(Kx + B)~'/? 4 B where A, B > 0 are
constants.

To gain some intuition on why the above claim works, we begin by

defining ©. After perturbing D, we may assume that (X, B + D) is
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log canonical at the generic point of V' and has a unique non-klt center
S dominating the generic point of V. By Theorem 5.44 there exists a
birational morphism v : Y — X such that Y is Q-factorial, if E' is a v-
exceptional divisor, then ag(X, B+ D) < —1, and S is a v exceptional
divisor. We write

Ky +S+T=v(Kx+B)+E, Ks+®=(Ky+S+71)]s,

Ky+S4+T+T" = v*(Kx+B+D)+F, Ks+® = (Ky+S+T+1")]s.

Assume for simplicity that S is normal. Notice that I' € I and so ® €
D(I). For any codimension 1 point P € V¥ define t, = lct, p(S, @; f|5P)
where the log canonical threshold is computed over np the generic point
of P. We then let © = > (1 — tp)P and define ©' similarly for (S, ®’).
By Kawamata subadjunction (Kx + B+ D)|yv — (Ky» +©’) is pseudo-
effective. Since ©’ > O, it follows that (Kx + B + D)|y» — (Ky» + ©)
is pseudo-effective. (1) of the claim follows.

Part (2) of the claim is much more technical. However, suppose that
V = Sisadivisor on X, then © = ® and so Ky +0 = (Kx+S+1)|s =
(Kx+ B)|s+ E|s, however note that £ = (1—5b)S where b = multg(B).
Since x € S C X is a very general point, we may assume that S varies in
a family covering X and hence S ~ S" # S and so S|s ~ S'|s > 0. O

Lemma 6.12. Let X be a normal projective variety of dimension d
and M a base point free Cartier divisor such that the induced morphism
o 18 birational. Let H = 2(2d + 1)M and D a sum of distinct prime
divisors, then

D-H¥' < 2%0l(Kx + D + H).

Proof. We may discard all ¢,/-exceptional components of D. Let f :
Y — X be alog resolution of the pair (X, D) and G the strict transform
of D on Y, then

D-H™ ' =G (ffH)*™"  and

vol(Ky + G+ f*H) <vol(Kx + D+ H).

Therefore, replacing X, D, M by Y, G, f* M, we may assume that (X, D)
is log smooth and that the components of D are disjoint.

We may write M ~g A+ B where A is ample and B > 0 has no com-
ponents in common with D (as no component of D is ®,; exceptional).
But then Kx + D + 0B is dlt for any 1 > 9 > 0 and so

H(Ox(Kx +E+pM))=0  Vp,icN
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and any integral Weil divisor 0 < £ < D.! Let
A, =Kx+D+mH, then  H'(Op(An)) =0,
for all 2,m > 0. therefore, there is a degree d — 1 polynomial
p(M) = H(Op(An)).

By Exercise 6.5, Ay = Kx + D + H is big and so Kx + D + H has a
log canonical model X --» X;. (Theorem 5.40). Thus there is a degree
d polynomial

Q(m) = h"(Ox(2mA)) = h°(Ox, (2m(Kx,, + Dic + Hic))),

for any sufficiently divisible integer m. The leading coefficients of P(m)

and Q(m) are
D - H! d 24vol(Kx + D + H)
da—n ™ d!

If D =" D, where the D; are prime and M; = (D—D;+(2d+1)M)|p,,
then

HY(Ox(Kx + D+ (2d +1)M)) — H*(Op,(Kp, + M;)),

is surjective, and so the general section of H°(Ox (K x+ D+ (2d+1)M))
does not vanish identically along any component of D. Let

s € H(Ox(Kx+D+(2d+1)M)), and 1€ H'(Ox((2d+1)M))
be sections not vanishing identically along any component of D. If
t=s2"1 01 e H(Ox(2dA, — Ay)),

then ¢ induces an injection H°(Ox(A,,)) — H(Ox(2mA;)). Since
H'(Ox(A,, — D)) = 0, we have a surjection

H*(Ox(Am)) = H(Op(An))

and so
tlp - H(Op(4,)) C Im (H°(Ox(2mA;)) — H*(Op(2m4,))) .
Thus
Since h°(Ox(2Kx + D + 2H)) # 0, we have
Q(m —1) =h’(Ox(2(m —1))A})) < h*(Ox(2mA, — D)).
Therefore P(m) < Q(m)—Q(m—1) and the claim follows by comparing
the leading coefficients of P(m) and Q(m). O

In fact E + pM ~g (1 —€)E+ 6B + ¢E + §A where, for 0 < ¢ < § < 1,
(X,(1—€)E+6B) is klt and eFE + A is ample.
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Proof that Theorem 6.9 implies Theorem 6.1. By the proof of Theorem
6.9 to prove (1), it suffices to show that the set V; 1 has a positive lower
bound. In particular it suffices to show (2).

We will now prove (2). Let f: Z — T be the family (depending on
d, I,v) constructed in Theorem 6.9. Replacing T be a closed subset, we
may assume that the pairs (X, B) € Py such that vol(Ky + B) < v
are birational to fibers (2, B;) for some ¢t € T. We may assume that
(Z,B) is log smooth over T. Blowing up (X, B), we may assume that
f X — Z;is amorphism. Unluckily it is not clear that vol(Kx+B) =
vol(K z, + B;) (even though the inequality < is clear). Notice however
that

Claim 6.13. We have
vol(Kx + B) = vol(Kx + B ALy, g x)

where

Lipx=— Z ap(Z;, f.B)E.
ECX|ap(Zi,f+ B)<0

Proof. Notice that
H"(m(Kx + B)) C H'(m(Kz, + f.B)) = H'(m(Kx + Ly.p.x))

so that every section of H(m(K x+B)) actually belongs to H°(m (K x+
BAL;px)). 0

Notice that as (Z;, B;) has simple normal crossings and f,B < B;,
every divisor in L, g x may be obtained by a finite sequence of blow ups
along strata of the strict transform of B; and exceptional divisors. Let
X' — Z; be a sequence of blow ups along strata of the strict transform
of B; and exceptional divisors such that each component of Ly, 5 x is a
divisor on X’ and let B’ be the strict transform of B plus the X’ --» X
exceptional divisors.

Claim 6.14. We have vol(Kx + B) = vol(Kx' + B’).

Proof. Let g : W — X be a resolution of the indeterminacies of X --»
X', Clearly vol(Kx + B) = vol(Ky + Mpw) where Mpw = g, 'B +
Ex(g). It is easy to see that M > Mp w ALy, gw. We only need to
check divisors F that are exceptional for W — X’ but not for W — X,
but for these divisors we have multz(Ly, g w) = 0 and so the inequality
follows. U

Consider now the connected component of T' containing t, to € T

a fixed point of this component and let Z' — Z be the sequence of
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blow ups of Z along strata of Mg such that Z] = X’. Let B’ be the
Q-divisor such that B; = B’. By Theorem 5.48, we have

vol(Kx + B) = vol(Kx/ + B') = vol(Kz + B)) = VOl(KgéO + Bj,).

It follows that we may assume that (X, B) is obtained from a fixed pair
(Z, Bz) via a finite sequence of blow ups (here we assume that By is
reduced, the support of B is contained in Bp, x, and the coefficients
of B belong to I U {1}).

Suppose now by way of contradiction that we have a sequence of
pairs (X;, B;) and morphisms f; : X; — Z such that f; .B; < Bz and
vol(Kx, + B;) is strictly decreasing. Since the coefficients of B; are in
a DCC set, we may assume that (after passing to a subsequence) the
coefficients of f; .B; are non decreasing and in particular they admit
a limit. Let A = lim f;.B; be this limit. Suppose that |[A] = 0
and let Z' — Z be a terminalization of (Z, A). We may assume that
v: Z'"— Z is given by a sequence of blow ups along strata of M and
writing Kz + A" = v*(Kz + A), then A’ > 0 and (Z', A’) is terminal.
Replacing X; by a higher model, we may assume that f/ : X; --» 2’ is
a morphism. Passing to another subsequence, we may assume that the
coefficients of f; B; are non-decreasing. Since (2, A’) is terminal and

fz’l,*Bi A Lfi,*Bi,Z/ < Alu
we have that (Z', f{ . B; A Ly, B, ) is also terminal and hence
VOl(KXZ—l—BJ S VOI(KZ/—Ffi/’*Bi) = V01<KZ’+fi/7*Bi/\Lfiy*Bi,Z/) S VOI(KXZ—l—Bl)

(the second equality follows as in Claim 6.13 and the last inequality
since Kz + f; ,Bi ALy, B, 7 is terminal and (O 4 1 .BiNLy, B, z) <
B;.) Since f B; > fi, . Bit1, it follows that

VOl(KXi—i-Bi) = VOI(KZ/—l-fi/’*Bi) > VOl(KZ/—l-f-/Jrl’*BH_l) = VOI(KXZ._‘_l—i-Bi_H).

(3

This contradicts the fact that vol(Ky, + B;) is decreasing.

Finally, we prove (3). Fix v = vol(Kxe + Bf). Assume by way
of contradiction that (X¢, Bf) (and any infinite subsequence thereof)
is an unbounded sequence. Arguing as above (replacing X{ by an
appropriate birational model X; — X¢) |, we may assume that f; :
X, — 2, is a birational morphism and f;.B; is supported on B;,.
passing to a subsequence, we assume that all ¢; belong to the same
component of T'. We define A; on Z as the divisor supported on B
such that A,| 2, = fi«B;. Passing to a subsequence, we may assume
that A; < Ajyq. let A = lim A;. Assume that (Z,A) is terminal (see
[HMX14b] for details of the log canonical case). Let v : Z" — Z be a
terminalization so that Kz + A’ = v*(Kz + A) where (2, A’ > 0) is

57



terminal. We may assume that f/ : X; --» Z{ is also morphism. As
observed above,

v = VOI(KXZ. + Bz) = VOl(Kzé + (Az)tz) = VOI(KZ&) + (Az’>to>
and so
VOI(Kzéi +A) = VOl(Kgéo + Ay) = lim VOl(Kgéi + (A))¢,) = .

By Lemma 5.45, X7 coincides with the log canonical model of (Z;,, Ay,).
Consider now the log canonical model g : Z --» Z¢ for (Z,A) over
T. This log canonical model exists by Theorem 5.48 and (X¢, Bf) =
(ZC> g*Ati ) . 0

7. RATIONAL CURVES ON VARIETIES WITH NEGATIVE Kx

We follow the treatment of [KM98, §1]

Theorem 7.1. Let X be a smooth variety and f : Y — X a projective
birational morphism. For any x € X, the fiber f~(z) is either a point
or 1s covered by rational curves.

Proof. Suppose that dim X = 2. Consider the rational map f=! :
X --+ Y and resolve its indeterminacies by a finite sequence of blow
ups (at smooth points), v : X’ — X so that g : X’ — Y is a morphism.
Then v~!(z) is a union of rational curves and so f~(z) = g(v~!(z))
is also a union of (possibly singular) rational curves. The general case
was shown by Abhyankar (in 1956). O

Corollary 7.2. Let g : X --» Y be a rational map and Z C X XY
be the closure of the graph of g, and p,q the projections. If x € X 1is
a smooth point such that g is not a morphism at x, then q(p~'(z)) is
covered by rational curves.

Proof. By Theorem 7.1, p~!(z) is either a point or is covered by rational
curves. If p~'(x) is a point, then it is easy to see that X is isomorphic
to Z on a neighborhood of x and hence that ¢ is a morphism at z € X.
Therefore q(p~!(z)) is covered by rational curves. O

Corollary 7.3. Let g : X --+ Y be a rational map which is not every-
where defined. If X is smooth and Y 1is projective, then Y contains a
rational curve.

Proof. Immediate from Corollary 7.2. O

Lemma 7.4. Let f : Y — Z be a projective morphism such that'Y is
irreducible, f is surjective and every fiber is connected of dimension n.
If g: Y — X is a morphism such that g(f~'(20)) is a point for some
20 € Z, then g(f~'(2)) is a point for every z € Z.
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Proof. Let W be the image of f x g : Y — Z x X and f = poh :
Y — W — Z be the induced morphism, then dimp~!(z)) = 0 and
so by semicontinuity of the fiber dimension, there is a neighborhood
29 € U C Z such that dimp~!(z) = 0. But then the fibers of Y — W
over points of p~1(U) are n-dimensional and thus every fiber of Y — W
has dimension > n. Since h™!(w) C f~'(p(w)) while dimh~'(w) > n
and dim f~!(p(w)) = n, it follows that h~!(w) is a union of components
of f~1(p(w)). But then since A~ (p~!(p(w))) = f~H(p(w)) it follows
that each component of f~(p(w)) maps to a point in (p~(p(w)) and
so (p~!(p(w)) is finite and hence a single point (since f has connected
fibers).

U

Corollary 7.5. [Bend and Break| let X be a projective variety, p €
C a point on a projective curve and gy : C' — X be a non-constant
morphism. Suppose that there is a smooth pointed curve 0 € D and a
morphism G : C' x D — X such that

(1) Glexo = 9o,
(2) G{p}t x D) = go(p), and
(3) Glexgey # 9o for general t € D,

then there is a morphism g, : C — X, and a positive linear combination
of rational curves Z =Y a;Z; such that

(1) (90)«(C) = (91)+(C) + Z, and
(2) 90(p) € UiZ;.

Therefore X contains a rational curve through go(p).

Proof. We may assume that D C D is projective (after compactifying)
and we have a rational map G : C' x D --» X. We claim that G is not
defined at some point of p x D. If this were not the case, then there is
a neighborhood p € U C C, such that G is defined on U x D. Since
G(px D) is a point, by Lemma 7.4, G(p' x D) is a point for any p’ € U.
But then G is constant on U x D which is impossible.

Let S be the normalization of the closure of the graph of G, 7 : S —
CxD,Gg:S—=Xandh:S— CxD— D. By what we have secen
above, there is a point (p, d) € C'x D such that 7 is not an isomorphism
over (p,d). Let h™}(d) = C' + E where C' = n;'C x {d} and E is -
exceptional and hence a union of rational curves by Theorem 7.1. we
let g1 = Gsler and Z = Gg(E). Then go.(C) is algebraically equivalent
to g1..(C) + Z. O

Note that if C' is rational, Corollary 7.5 gives no new information.
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Lemma 7.6. [Bend and Break for rational curves] let X be a projective
variery and g : P* — X a nonconstant morphism. Suppose that there
is a smooth pointed curve 0 € D and a morphism G : P! x D — X
such that

(1) GlIP’lXO = 9o,
(2) G({0} x D) = go(0), G({o0} x D) = go(oc), and
(3) Glpixp # go 1s a surface.

Then go .(P') is algebraically equivalent to a reducible curve or a mul-
tiple curve.

Proof. We may assume that D C D is projective (after compactify-
ing) and ¢ : S — D is a P! bundle containing P* x D extending the
projection P! x D — D. Let G : S --» X be the induced rational
map and 7 : S — S a sequence of blow ups such that the induced map
G : S — X is a morphism. We proceed by induction on the number &
of blow ups in r.

If k = 0, then G is a morphism. Let H be ample on X and Cy, Cs C
S be the closures of {0} x D and {oco} x D. We have

(G*H)* >0, (Co-G*H)=0=(Cx -G*H).

But then (Cy)? < 0 and (Cy)? < 0 (by the Hodge Index Theorem) and
so G*H,Cy, Cy are linearly independent in NS(X). However, S is a
P! bundle and so this group is 2 dimensional (generated by a fiber and
a section). This is the required contradiction.

Therefore k£ > 0 and we let 7 : S — S be the first blow up (say at
P e ¢ '(y)) and 7' : S — S the induced morphism. We may assume
that G.((go7)*(y)) is irreducible and reduced (otherwise the statement
holds). Let Fj be the exceptional curve of r and Fy the strict transform
of ¢*y so that (qor)*(y) = F1+ F is the union of two -1 curves meeting
transversely at ) = F} N Fs.

We claim that G’ : S” — X is a morphism along F,. Otherwise G is
undefined at P’ € F,. If P’ # @), then

G.((go7)*(y)) = Gured(7H(P)) 4+ G,red(7~1(P') 4 (effective cycle),

which is a contradiction. Thus P’ = @), and r’ extracts divisors over
(). However each one of these divisors must appear with multiplicity
> 2 in #¢*(y) and hence must be contracted by G. Thus G : &' — X
is a morphism.

Let S — 5" be the contraction of the -1 curve F3, then the indeter-
minacies of S” --» X can be resolved via k — 1 blow ups and so we are
done by induction. O
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Theorem 7.7. [Mori82] let X be a smooth projective variety such that
—Kx 1s ample, then through every point x € X there is a rational curve
D such that

0<—(D-Kx)<dimX + 1.

Proof. Let 0 € C' be a pointed curve and f : C' — X be a non constant
morphism such that f(0) = x. The morphism f admits a deformation
space of dimension

Z hO(C’ f*TX) - h1(07 f*TX) = X(C7 f*TX) =
—(f.C - Kx) + (1= g(C)) - dim X.

Suppose that this dimension is > m, then there exists an m-dimensional
pointed affine variety 0 € Z and a morphism F': C'x Z — X such that
Floxqoy = f and Floxgzy # Floxqoy for 0 # 2z € Z. Fixing the image
of the base point 0 € C' is at most dim X conditions, the deformation
space of morphisms f : (C,0) — (X, z) has dimension

> h(C, f*Tx) — h'(C, f*Tx) —dim X = —(f.C - Kx) — g(C) - dim X.

This means that if —Kx - f,C > ¢(C) - dim X, then there is a non-
trivial one parameter family of deformations of C' fixing f(0) = =z.
This inequality is automatically satisfied by rational curves C' = P!, If
C'is an elliptic curve, then let n : C' — C' be the morphism induced by
multiplication by an integer n € N. We have

_((f on)*C’ : KX) = nz(f*c : Kx) > dim X

as soon as n > vdim X. Thus a multiple of C' moves with a fixed
point. If g(C') > 2 then there are no endomorphisms of degree > 1 so
a similar approach does not work. However, in charactersitic p > 0 we
can use the Frobenius morphism.

Suppose for simplicity that X and C' are defined by equations

hi,..., h, € Zlxo, ..., x,)], Cly vy Cs € LYoy - - s Ym)-

In this case we have morphisms X — Spec(Z) and C' — Spec(Z). Note
that these morphisms are generically flat. Reducing modulo p (i.e.
taking the fiber over (p) € Spec(Z) we get equations in F, [z, ..., ;)
and F,[yo, - .., ym] which define projective varieties

X, C PR, Cp C PR

Note that for all but finitely many p € Spec(Z), X, and C, are

smooth. The Frobenius morphism F' = Fpn : P™ — P™ is defined

by F(Yo,---,Ym) = (45,...,y%) and similarly for F : P* — P". No-

tice that h;(yo, ..., ym)? = hi(yh,...,4E) and so we get a morphism
61



Fe, : C, = C,. Note that F¢, induces a morphism of degree p which
is an isomorphism of topological spaces. The values of

(fp)<Cp - Kx,, 9(Cy), X(Txlcp)

are constant for almost all p. Consider the morphism
fpoFg;:Cp—>Cp—>Xp,
then
(fo o FC)+(Cp) - Kx, = Cp - (FE)" [ Kx, = p"Cp - [ Kx,-

Note that C), - f; Kx, is a fixed negative number for almost all p. But
then the space of deformations of f, o FE with a fixed point has di-
mension at least

—p"Cy - fr Kx, — g(Cp)dim X > 0, for m > 1.

Fix x € X, then arguing as above, we obtain a rational curve x € X, C
Xp. If ¥, (—Kx,) > dim X + 1, we have that the deformation space
of the corresponding morphism from the normalization X, — X, that
fixes two points p, p’ has dimension at least 2. Since automorphisms of
P! fixing two points deform in a 1 parameter family, the image ¥, must
move in X, and so ¥, is algebraically equivalent to a sum of rational
curves of lower degree. Therefore we may assume that 3, - (—Kx,) <
dim X +1. It follows by standard arguments that there exists a rational
curve X C X such that ¥ - —Kx <dim X + 1.

To see the last claim, note that a morphism IP’Ile — X,. Since —Kx
is ample, we may assume that a fixed multiple is very ample and hence
so is the corresponding multiple of —K,. Since the degree of X, is
bounded (by dim X + 1), we may assume that ¥, — X, C P7 s

defined by homogeneous forms (g,0,- .-, gpn) such that

hi(9p0, - - Gpin) 1<i<r.

We view this as a system of polynomial equations in the coefficients
of the polynomials g,.. Since these polynomials have a common solu-

tion for infinitely many primes p, they have a solution over Q (or any
algebraically closed field).? O

Theorem 7.8. Let X be a smooth Fano variety of dimension d and
Picard number p(X) = 1, then there is an open subset U C X such
that if x,y € U, then x,y can be joined by an irreducible rational curve
of anticanonical degree at most d(d + 1).

2These equations define a closed subset of ]P’évpecz. The projection to SpecZ is

proper and the image is dense and hence must contain the generic point.
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Proof. See [Kollar96, V Proposition 2.6]. The idea is to show that we
can connect x,y by a chain of rational curves of degree < d(d+ 1) and
then show that this chain can be smoothed. 0

Theorem 7.9. Fiz d € N then there exists a constant ¢ = ¢(d) such
that if X be a smooth Fano variety of dimension d, then there is an
open subset U C X such that if z,y € U, then x,y can be joined by a
chain of rational curves of anticanonical degree at most c.

Proof. See [KMM92]. O

7.1. Boundedness of smooth Fano varieties.

Theorem 7.10. Let X be a smooth complex projective variety of di-
mension d such that —Kx is ample, then (—Kx)? < ¢(d) where c(d) is
the constant from Theorem 7.9. If moreover p(X) = 1, then (—Kx)? <
(d(d+ 1))

Proof. Let x € X be a general point. Assume that p(X) = 1. If
(—Kx)4 > (d(d + 1))%, then we may find a divisor D ~ —kKx such
that mult,(D) > kd(d + 1) + 1. (In order to assume that k does
not depend on x € X, we use the fact that C is uncountable.) By
Theorem 7.8, there is a rational curve C' C X of anticanonical degree
< d(d + 1) passing through z and not contained in the support of D.
Since mult, (D) > d(d + 1), then

kd(d+1)+1

1
C-(~Kx)=C-D> >d+1.

This is the required contradiction. 0

Theorem 7.11. The set of smooth complex projective Fano varieties
of dimension d is bounded.

Proof. By the result of Anhern-Siu (Theorem 2.56), we know that B :=
Kx—(1+ (dgl))KX is generated by global sections. Let n = 1—d(d'2H),
then by Kodaira vanishing nKx is O-regular i.e. H'(nKx —iB) = 0
forv =1,2,...,d = dim X. By Lemma 7.12 below, it follows that
nKy+ B =—((d+1)("") — 1)Ky is very ample. By Theorem 7.11,
InK x + B| embeds X as a subvariety PV of bounded degree. The claim
now follows from a Hilbert scheme type argument. (l

Lemma 7.12. Let B be an ample and generated line bundle and A a
line bundle such that H'(A —iB) =0 for all i > 0, then A+ B is very
ample.
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Proof. We must show that A+ B is generated and for any point x € X,
Ox(A + B) ® m, is also generated. The first statement follows from
the arguments of Lemma 2.35 and so we focus on the second part. Let
V C H°(B) be a general d dimensional subset of sections vanishing
at © € X. We may assume that if s;,...,s; is a basis of V', then
Z =V(s1,...,84) is a zero dimensional scheme containing =. Consider
the corresponding Koszul complex E*

0 — Ox(A—(d—1)B)RAYW — Ox(A—(d—2)B)RAV — ... — Ox(A)V

which is exact with cokernel Ox (A + B) ® I. It suffices to show that
Ox(A + B) ® Iz is O-regular. Notice in fact that since m, /I is zero
dimensional and so the short exact sequence

0-0x(A+B)®I; - Ox(A+B)@m, »m,/I; -0

easily implies that Ox (A + B) ® m,, is also 0-regular.

Since H'(A—iB) = 0 for i > 0, it follows easily that H'(A—jB) =0
for i > 0 and j < i. Notice that H(Ox(A — (i — 1)B) ® Iz) =
H(E*® Ox(—iB)). We have H*(E~7 @ Ox(—iB)) = H*(Ox(A— (i +
J)B)) @ NNV =0 for k > i+ j. An easy spectral sequence argument
shows that H(E* ® Ox(—iB)) for all i > 0. O

8. THE PSEUDO-EFFECTIVE CONE

In this section we recall the proof of the following fundamental result
of Boucksom-Demailly-Paun-Peternell.

Theorem 8.1. Let X be a normal irreducible complex projective vari-
ety of dimension d, then the cones Mov(X) and Eff(X) are dual.

Recall that the pseudo-effective cone Eff(X) € N'(X)g is the clo-
sure of the big cone. A Q divisor G is big iff limsuph®(mG)/m? > 0. It
is known that if G and G’ are numerically equivalent then G is big iff G’
is big. It is also known that if G is big, then the limit limh°(mG)/m?
exists. We set vol(G) = limd!h°(mG)/m?. The volume function can
be extended to a continuous function on the big cone and to a semi-
continuous function vol : N*(X)g — Rsg. We refer the reader to
[Lazarsfeld04] for a detailed discussion.

The cone of movable (or mobile) curve Mov(X) C N;(X)g is the
closure of the convex cone spanned by all curves of the for

Je(Ar---Agq)

where f : Y — X is a projective birational morphism and the A; are

ample divisors on Y.
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Corollary 8.2. Let X be a smooth projective variety, then X is unir-
uled if and only if Kx is not pseudo-effective.

Proof. By the arguments in the proof of Theorem 3.3, it is easy to see
that if X is uniruled, then Ky is not pseudo-effective. Suppose in fact
that X is uniruled, then there exists a projective morphism f : Z —
T whose generic fiber is a rational curve and a dominant morphism
g:Z — X. Since K is pseudo-effective and Ky = ¢g*Kx + R where
R > 0, it follows that Ky is also pseudo-effective. But then K|z, is
also pseudo-effective. However this is impossible since K|z, = Kp1 =
Op1(—2) is not pseudo-effective.

Suppose now that Ky is not pseudo-effective. By Theorem 8.1, there
is a curve v € Mov(X) such that Kx -y < 0 and hence we may find a
covering family of curves C; such that Ky - C; < 0. By an argument
similar to the proof of Theorem 7.7, it follows that X is covered by
rational curves. [

Before proving the above theorem, we will need to recall several
results of independent interest. First of all we recall the notation of
asymptotic multiplier ideal sheaves. Let L be a line bundle on a smooth
projective variety and ¢ > 0. The multiplier ideal shef J(c - |L|) is
computed as follows. let f : Y — X be a resolution of |L| so that
f*|L| = M + E where M is base point free and F plus the exceptional
divisor has simple normal crossings support. Then

For any k € N, we may assume that f is also a log resolution of |kL]|.
Writing f*|kL| = My, + Fy it is easy to see that Fj, < k- F and so

c c
J(e|Ll) = fOy (Kyyx—[eF]) € LOv(Kyyx—[7-Fil) = T (5 |kL]).
Since X is Noetherian, the inclusions

c c c
J(c-|L]) C .7(5-]2L\) C J(E-\Q!L\) C J(g-\S!L\) C...
eventually stabilizes and we let
c

(eIl = T

It is easy to see that J(c - ||L||) = J(§ - |kL|) for any k sufficiently
divisible. These asymptotic multiplier ideals satisfy many useful prop-
erties.

Lemma 8.3. J(|L|) C J(||L||) and in particular

H(L® J(|IL])) = H(L).
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Proof. The inclusion J(|L]) C J(||L||) was established above. It suf-
fices to check that H°(L®J(|L|)) = H°(L). The inclusion C is obvious.
Conversely, J(|L|) = f.Oy(Ky)x — F) C f.Oy(—F) = b(L) where
b(L) is the base locus ideal of |L| given by the image of H(L)® Ox —
L®b(L)C L. O

Proposition 8.4. If M — Kx — cL is nef and big, then H'(M @ J(c-
I|1L|])) =0 fori >0 and if M — Kx —cL — (d+1)B is nef for an ample
and generated divisor B, then M & J(c-||Ll||) is generated.

Proof. We have J (c:||L||) = J(5-|kL]|) for some k sufficiently divisible.
The vanishing H (M ® J(c-||L]|)) = 0 for i > 0 then follows immedi-
ately from Nadel vanishing and the global generation of M ® J (c-||L||)
follows from Castelnuovo Mumford regularity. 0

Theorem 8.5. [Subadditivity of multiplier ideal sheaves| Let L be a
divisor on X with k(L) > 0. For l,m € N and ¢ > 0, we have

J(e-l[(m+0L|[) € J(e-[[mL]]) - T (e [IL]])
and in particular J(c - ||mL||) C J(c- ||L]]|)™.
Proof. We refer the reader to [Lazarsfeld04]. O

Theorem 8.6. [Fujita’s approximation Theorem] Let L be a big Q-
divisor on X an irreducible projective variety of dimension d. For
every € > 0 there exists a projective birational morphism f : Y — X, an
ample Q-divisor A and an effective Q-divisor B such that f*L ~o A+B
and

vol(A) > vol(L) — e.

Proof. We follow [Lazarsfeld04]. After resolving the singularities of X,
we may assume that X is smooth and L is nef and big. It suffices to
show that there exists a nef Q-divisor A with the above properties. If
this is the case, then A is nef and big so that A ~o H + F where H is
ample and F' > 0. but then A —0F ~¢ (1 —9)A + 0H is ample and
lim vol(A — dF) = vol(A).

Let B be a very ample divisor on X such that Kx + (d + 1)B is
very ample. For any p > 0 we set M, = pL — Kx — (d + 1)B and
Iy, = J(||M,]]). Note that M, is big for p > 0. In fact we have

% =L- Rx + <Z + 1B so that limvol(%) = vol(L).

In particular

vol(M,) > p*(vol(L) — ¢) for p > 0.
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L,®J, is generated by global sections (by Proposition 8.4).By Theorem
8.5 J(||IM,]]) € T(||M,|])". Tt follows that
H°(Ox(IMy)) = HY(Ox (IM,) T (|IM,]])) € H(Ox(IpL)oJ (|| M,|])')
and so
H°(Ox(IM,)) C H(Ox(lpL® J})) VI >0.
Let f: Y — X be a log resolution of 7, so that J, - Oy = Oy (—E,)
where E, > 0. Then f*(pL) — E, is generated by global sections and
hence nef. Notice that
H(Oy (I(f*(pL) = E,))) D H(Ox(plL) @ ;) D H(Ox (IM,)),
and so
(f*(pL) = B,)* = vol(f*(pL) — E,) > vol(M,) > p*(vol(L) — e).
But then the result follows letting A = (1/p)(f*(pL) — E,) and B =
(1/p)Ep. O
The final result that we will need is the following.
Theorem 8.7. Let L be a big Q-divisor on a normal irreducible pro-
jective variety of dimension d. let f 1Y — X be a projective birational
morphism, A an ample Q-divisor and B an effective Q-divisor such
that f*L = A+ B. If H is a Q-divisor such that H + L is ample, then
(A1 B2 < C - H*- (vol(L) — vol(A)).
Proof. See [Lazarsfeld04, §11]. d
Proof of Theorem 8.1. 1t is clear that if D > 0 is an effective R-divisor,
then D - f.(A;---Ag—1) > 0 and so
Mov(X) C Eff(X)".

We will now prove the reverse inclusion. Suppose by way of contradic-
tion thet there is a class ¢ on the boundary of Eff(X) which is in the
interior of Mov(X)". Note that vol(¢) = 0. Pick h an ample class such
that h + ¢ are ample and note that & — eh € Mov(X)Y for 0 < e < 1
and so

s
)

v

€

=Y
+ 6h is big, for any 1 > 6 > 0, by

rn S

for any mobile class 7. Since
Theorem 8.6, there is

fo:Ys = X, f5(§+0h) = As + Bs

where As is ample, Bs > 0, and
1 o
(%) vol(As) > vol(€ 4 6h) — 62 > 5vol(,s + 6h) > o he.
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The class v5 = (f5)«(A$ ") is movable and we have
(1) hovs=fhe AT (RN (Ag) 0
by the generalized Hodge inequalities. One sees that
-7 < (§+0h) %5 = [5(E+0h) - AT = Af+ Bs - A5
By Theorem 8.7 and equation (x) above, we have that
Bs- ALt < (Cy - ke - (vol(€ + 0h) — vol(As)))V? < Cy - 67

where C, Cy are constants independent of . Inequalities (x) and (f)
imply that

(b) Evs . A+ Gy o
hos = (hd)Ud. (Ag)@dD7/d

where C3, Cy are constants independent of §. Since vol(§) = 0, we have
(as 6 — 0) that

lim A¢ = lim vol(A$) = lim vol(¢ + 0h) = 0.
By (b), it then follows that

< Cs- (AHYI L0y 0

! £

im
h-vs

which is the required contradiction. O

=0

9. RATIONALLY CONNECTED FIBRATIONS

Definition 9.1. Let X be a smooth complex projective variety, then
(1) X is rational if it is birational to Pg i.e. C(X) = C(xy,...,z,).
(2) X is unirational if there is a dominant morphism P --» X
i.e. if there are inclusions C C C(X) C C(z1,...,Tm).

(3) X is rationally connected if there is a variety T and a morphism
w:U =P x T — X such that

W UxrU— X x X is dominant.

In other words for any two general points p and q there is a
rational curve C' passing through p and q.

(4) X is rationally chain connected if there is a family of proper
connected algebraic curves g : U — T whose geometric fibers
have only rational components with cycle morphism u : U — X
such that

u? U xpU— X xX is dominant.

In other words for any two general points p and q there is a

chain of rational curves C' passing through p and q.
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(5) X s uniruled if for any general point p € X there is a rational
curve p € C' C X.

It is clear that if X is rational then it is unirational and if it is
rationally connected then it is rationally chain connected. Note that
the cone over an elliptic curve is rationally chain connected but not
rationally connected. Next we recall the following result of Kollar Mori
and Miyaoka.

Theorem 9.2. Let X be a smooth projective variety of dimension < 2,
then X is rational iff it is unirational iff it is rationally chain connected.

Proof. Rational implies unirational implies rationally chain connected.
Now suppose that X is rationally chain connected, then Ky is not
pseudo-effective and so running the minimal model program we arrive
at a Mori fiber space X’ — Z. If dim Z = 0, then X’ = P? and so X is
rational. Otherwise dim Z = 1 and Z is rationally chain connected so
that Z = P!. But then X is birational to a P! bundle over P! so that
X is rational. U

Theorem 9.3. If X is a smooth projective variety, then X is rationally
connected iff it is rationally chain connected.

Proof. See [?, §IV]. O

Rational curves on a variety X define an interesting equivalence re-
lation.

Definition 9.4. Let X be a smooth complex projective variety. The
maximally rationally connected fibration (MRC' fibration) is a mor-
phism [ : X' — Z where X' is birational to X, the fibers of f are
rationally chain connected and if z € Z is general and C' is a rational
curve intersecting X., then C is contained in X].

Theorem 9.5 (Graber-Harris-Starr). Let f : X — B be a morphism
of smooth projective varieties where dim B = 1 and f,.Ox = Opg. If the
general fibers of f are rationally connected, then f has a section.

Corollary 9.6. The image of the MRC' fibration X' — Z is not unir-
uled.

Theorem 9.7. Let X be a Q-factorial kit variety such that Kx is not
pseudo-effective, then X is uniruled.

Proof. We run the Kx mmp with scaling. Since Kx is not pseudo-
effective, this ends with a Mori fiber space X’ — Z. The general fiber
X’ is Fano since —Kx; = (—=Kx)|x;. Let C be a general curve in X/

obtained by intersecting general very ample divisors. Since X' is klt, it
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is normal and hence smooth in codimension 1. But then C'is contained
in the smooth locus of X and K, - C' < 0 so that by Bend and Break
there is a rational curve through any point of C' and hence through a
general point of X’. Note moreover that X --» X’ is an isomorphism
in a neighborhood of C' and hence —Kx -C < 0. By the same argument
X is uniruled. U

Theorem 9.8. Let (X, B) be a kit variety.

(1) If —(Kx + B) is ample then X is rationally connected, and
(2) if f Y — X a resolution, then every fiber of is rationally chain
connected.

Proof. We proceed by induction on the dimension. Suppose that we
have already shown (1) in dimension d — 1 and (2) in dimension d. For
simplicity we assume that B is 0.

We begin by proving (1) in dimension d. Suppose that — K x is ample.
Pick H ~g —Kx a general element so that Kx + H is klt. Passing to a
Q-factorialization and using (2) in dimension d we may assume that X
is Q-factorial. Since Kx is not pseudo-effective, arguing as above we
may run the Kx mmp with scaling. This ends with a Mori fiber space
g : X' — Z whose fibers are klt Fano varieties so that by induction on
the dimension X is rationally connected. Note that if H' is the strict
transform of H then Kx + H' ~q 0 is also klt. Let G be an general
ample divisor on Z. Since H' is big, we may write H' ~ eg*G+ B where
0<e< land B > 0. But then Kx'+ (1 —6)H' +(eg*G+ B) ~q 0 is
klt. But then by Kawamata’s canonical bundle formula, we have that

0~g Kx 4+ (1—0)H +6(eg”G + B) ~q g"(Kz + Bz + d¢G + My

where (Z, By) is klt, and M is the pushforward of a nef divisor. More
precisely there is a proper birational morphism v : Z" — Z such that

V*(Kz+Bz+Mz) =Kz + By —|—MZ/)

where My is nef and (Z’, By/) is sub-klt with v, Bz = By and v, My =
My. Note that v*G is semi-ample and big and so it is easy to see that
By + My + %eév*G ~ Ay where (Z',Ay) is klt. But then if Ay =
vy, it follows that (Z, Ayz) is klt and —(Kz+Ayz) ~g 210G which is
ample. By induction on the dimension Z is rationally chain connected.
By a result of Graber-Harris-Starr, it follows that X’ is rationally chain
connected. To show that X is rationally chain connected, consider the
individual steps of the minimal model program X; --+ X,;,; and we
show that if X, is rationally chain connected then so is X;. Suppose
fi + Xi --» X4 is a divisorial contraction, then by (2) in dimension

d, the fibers of f; are rationally chain connected and hence so is X;.
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Suppose instead that f; is a flip and let X; — Z;, X;.1 — Z; be the
corresponding contractions. If X;,; is rationally chain connected then
so is Z;. By (2) in dimension d, the fibers of X; — Z; are rationally
chain connected and hence X; is rationally chain connected.

We will now prove (2) in dimension d+1. We are free to replace Y by
a higher model and hence we may assume that it is a log resolution, in
particular £ = Ex(f) is a simple normal crossings divisor. Assume for
simplicity that p € X is an isolated singularity and f is an isomorphism
on X \ {p}. Let G be a general divisor through p. Working locally
over p € X there is an effective exceptional divisor ® such that —®
is relatively ample and hence —® ~g A where A is a general ample
Q-divisor. We write

Ky + By = f*(Kx +tG) + ® + A.

W may assume that (Y, Ey) is klt. Let £ = Fy + ...+ F, be the irre-
ducible components of the exceptional divisor. Let ¢; be the smallest
rational number such that multg, (E;,) = 1. Perturbing G and rela-
belling the F; we may assume t; < ty < ... < t,.. It suffices to show
that F; is rationally chain connected modulo F; + ... + F;_; meaning
that for general p,q € F; there is a chain of curves connecting p,q
which are either rational or contained in F; + ... 4+ F;_;. Proceeding
by induction, it follows that F} 4. ..+ F; is rationally chain connected.
Note that
(KY + Etl)’F1 = KFI + AFl

is klt and Ap, > A|p. By (1) in dimension d, F} is rationally chain

connected. We now consider Ey, = Eél + 7F. By the connectedness
lemma F; N Fy # (. Let

(KY + E15§21>’F2 = KF2 + Aan

then Kg, +Ap, ~g —7Fi|p, is dlt but not pseudo-effective. We run the
Kp, + Ap, minimal model program with scaling which terminates with
a Mori fiber space g : Fy — Z. Since Fi|p, is g-ample, it dominates
Z. Since —(Kg, + Ap,) is g-ample, the fibers of ¢ are rationally chain
connected and so (following the arguments above) we see that Fy is
rationally chain connected modulo F5 N F}. Repeating this argument
the claim follows. U

Corollary 9.9. If (X, B) is kit, then

(1) X is rationally connected iff it is rationally chain connected.
(2) If —(Kx + B) is nef and big, then X is rationally connected.

Proof. (1) Assume that X is rationally chain connected. By the previ-

ous Theorem 9.8, every fiber of a resolution ¥ — X is rationally chain
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connected and hence Y is rationally chain connected. By Theorem 9.3,
Y is rationally connected but then so is X.

(2) Since —(Kx + B) is big we may write —(Kx + B) ~g A+ G
where A is ample and G > 0. But then

—(Kx +B+0G) ~q (1 -90)(Kx +B)+0A is ample

and (X, B4+0G) is klt. By Theorem 9.8 X is rationally chain connected.
We conclude by (1).
O
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