MATHEMATICS 6130

Quiz 4
Let $X \subset \mathbb{A}^{n}$ be an irreducible closed subset. Show that if $\phi \in k(X)$ is regular at all $x \in X$, then $\phi \in k[X]$.

Proof. For all $x \in X$ we can write $\phi=f_{x} / g_{x}$ where $f_{x}, g_{x} \in k[X]$ and $g_{x} \neq 0$. Let $J=\left(g_{x} \mid x \in X\right) \subset k[X]$. As $k[X]$ is Noetherian, $J=\left(g_{x_{1}}, \ldots, g_{x_{r}}\right)$ is finitely generated. Note that $V(J)=\emptyset$ (as for any $x \in X, g_{x} \in J$ and $\left.g_{x}(x) \neq 0\right)$. Thus $J=(1)$ so that $1=\sum_{i=1}^{r} h_{i} g_{x_{i}}$. But then

$$
\phi=\sum_{i=1}^{r} h_{i} g_{x_{i}} \phi=\sum_{i=1}^{r} h_{i} g_{x_{i}} f_{x_{i}} / g_{x_{i}}=\sum_{i=1}^{r} h_{i} f_{x_{i}} \in k[X] .
$$

