MATHEMATICS 6130

Quiz 3

(1) Show how to recover a closed subset from its ring of regular function and the rational map $X \to Y$ between two closed subsets from a homomorphism between their rings of rational functions Ψ : $k[Y] \to k[X]$.

Solution: If A is a finitely generated commutative ring, then there is a surjective homomorphism $\phi: k[x_1, \ldots, x_N] \to A$ (which sends $x_i \to f_i$ where f_1, \ldots, f_N generate A over k). Let I be the kernel of ϕ , then X is the zero set of the ideal I and $k[X] = A = k[x_1, \ldots, x_N]/I$. Assume that $X \subset \mathbb{A}^n$ and $Y \subset \mathbb{A}^m$ so that we have surjective homomorphisms $\phi: k[x_1, \ldots, x_n] \to k[X]$ and $\psi: k[y_1, \ldots, y_m] \to k[X]$. Given $\Psi:$ $k[Y] \to k[X]$, let $f_i = \Psi(\psi(y_i)) \in k[X]$, then $X \to Y$ is defined by (f_1, \ldots, f_m) .

(2) Let I_X be the ideal of a closed subset $X \subset \mathbb{A}^n$. Show that $k[X] = k[\mathbb{A}^n]/I_X$ has no nilpotents.

Solution: Let $f \in k[x_1, \ldots, x_n]$ such that $f^m = 0 \in k[X]$ for some m > 0, then $f^m(P) = 0$ for all $P \in X$ and so f(P) = 0 (note that $f(P) \in k$ which is a field). But then $f \in I_X = \{g \in k[x_1, \ldots, x_n] | g(P) = 0 \ \forall P \in X\}.$