MATHEMATICS 6130

Quiz 2
(1) Let X be a plane curve. When is $P \in X$ a point of multiplicity r ? What can you say about curves of degree d with points of multiplicity d or $d-1$?

Solution: Suppose $P=(\alpha, \beta)$ and X is defined by $f(x, y)=0$ where $f \in k[x, y]$ is a non-zero polynomial. The multiplicity of $P \in X$ is the lowest degree of a monomial with non-zero coefficient in the polynomial $f(x+\alpha, y+\beta)$. (Equivalently, expand f as a polynomial in $(x-\alpha)$ and $(y-\beta)$, the multiplicity is then given by the degree of the leading term. In characteristic 0 , the degree is given by the smallest order of a derivative not vanishing at P.)

If $r=d$, then $f(x+\alpha, y+\beta)$ is homogeneous of degree d and hence (assuming $k=\bar{k}$) it splits as a product of linear terms. Thus X is the union of d lines counted with multiplicity.

If $r=d-1$ and X is irreducible, then X is rational. To see this project from the point P by letting $y-\beta=t(x-\alpha) . f(x, \beta+t(x-\alpha))=$ $c(x-\alpha)^{d-1}\left(x-x_{1}(t)\right)$ so that $t \rightarrow\left(x_{i}(t), \beta+t\left(x_{1}-\alpha\right)\right)$ is the required parametrization.
(2) Show that if $f \in k(X)$ is regular at every point of \mathbb{P}^{1} then f is constant. (Assume $k=\bar{k}$.)

Solution: Let $f=a(x) / b(x)$ where $a(x), b(x) \in k[x]$ are coprime. It follows that if $b(\alpha)=0$, then $a(\alpha) \neq 0$ (or else $(x-\alpha)$ divides both polynomials). Suppose that $b(\alpha)=0$ for some $\alpha \in k$. Since f is regular at α, we have $f=c(x) / d(x)$ where $d(\alpha) \neq 0$ and $c(x), d(x) \in k[x]$ are coprime. But then $a(x) d(x)=b(x) c(x)$. Substituting $x=\alpha$ we have $0 \neq a(\alpha) d(\alpha)=b(\alpha) c(\alpha)=0$. Therefore, $b(\alpha) \neq 0$ for all $\alpha \in k$ and so $b(x) \in k$ and hence we may assume that $f=a(x) \in k[x]$. We have also assumed that f is regular at infinity. This is equivalent to $a(1 / y)$ being regular at 0 . Let d be the degree of $a(x)$, then $a(1 / y)=a^{\prime}(y) / y^{d}$ where $a^{\prime}(y) \in k[y]$ has degree d. By what we have seen above, $d=0$ and hence $f=a(x)$ is constant.

