MATHEMATICS 6130

Quiz 1
(1) Show that $x^{2}+2 x y=3$ is rational (over an algebraically closed field of characteristic $\neq 2,3$).

Solution: Project from the point $P=(1,1)$. So $y-1=t(x-1)$ and hence

$$
0=x^{2}+2 x(t(x-1)+1)-3=(1+2 t) x^{2}+2(1-t) x-3 .
$$

Since one solution is $x=1$, the other solution satisfies $-x-1=$ $\frac{2-2 t}{1+2 t}$ and hence $x=\frac{-3}{1+2 t}$. Finally $y=t\left(\frac{-3}{1+2 t}-1\right)+1=-\frac{2 t^{2}+2 t-1}{2 t-1}$. (Alternatively, let $x=t$ and $y=\frac{3-x^{2}}{2 x}=\frac{3-t^{2}}{2 t}$.)

We must exclude $p=2,3$ because if this is the case then the curve is reducible (Thanks to Todd Harry Reeb for pointing out a typo in the previous version.)
(2) Define the field of rational functions $k(X)$ of a plane curve X. When is a rational function regular at a point $P \in X$?

Solution: Suppose $X=\{f(x, y)=0\}$, where $f=f(x, y) \in k[x, y]$ is irreducible. If $a, b, c, d \in k[x, y]$ and $b, d \notin(f)$, then we will say that $\frac{a}{b} \equiv \frac{c}{d}$ if $a d-b c \in(f)$ (i.e. $a d-b c$ is divisible by f). Then

$$
k(X):=\left\{\left.\frac{p}{q} \right\rvert\, p, q \in k[x, y], q \notin(f)\right\} / \equiv
$$

is the field of rational functions $k(X)$.
Let $P \in X$ and $u \in k(X)$, then we say that u is regular at p if there is a representative $u=\frac{p}{q}$ such that $q(P) \neq 0$.

