MATHEMATICS 6130

Homework 1

(1) Define curve, irreducible curve and rational curve.
(2) Show that if k is algebraically closed, then any curve has infinitely many points.
(3) Show that $y^{2}=x^{2}(x+1), x^{2}+2 x y=3$ and $y^{2}=x^{3}$ are rational (over an algebraically closed field).
(4) Show that (if k is algebraically closed) an irreducible curve determines its equations (up to units). (You may assume the following lemma: If $f \in k[x, y]$ is irreducible and does not divide $g \in k[x, y]$, then the set of common solutions is finite.)
(5) State Luroth's Theorem.
(6) Define the field of rational functions $k(X)$ of a plane curve X. When is a rational function regular at a point $p \in X$?
(7) Show that a plane curve X is rational if and only if $k(X) \cong k(t)$ $(k=\bar{k})$.
(8) Define rational map between two plane curves.

Homework 2

(1) Define nonsingular points, point of multiplicity r, cusps, node of a plane curve.
(2) What can you say about a plane curve of degree d with a point of multiplicity $d, d-1, d-2$?
(3) Show that irreducible plane curves have finitely many singular points.
(4) Define local parameter of an irreducible plane curve.
(5) Define the tangent line and the flex of a curve at a nonsingular point.
(6) Define \mathbb{P}^{n}. Explain why polynomial functions are not defined on \mathbb{P}^{n}, but the zeroes of homogeneous polynomials are defined.
(7) Show that all circles contain the point at infinity $(1, i, 0)$ and $(1,-i, 0)$.
(8) Show that a parabola is tangent to the line at infinity (eg. $y=$ x^{2} is tangent at the point $\left.[0: 1: 0]\right)$.
(9) Which rational functions in $k(x)$ are regular at the point at infinity $[1: 0] \in \mathbb{P}^{1}$?
(10) Show that if $f \in k(x)$ is regular at every point in \mathbb{P}^{1}, then f is constant.
(11) Prove that an irreducible cubic has at most 1 singular point.
(12) Show that if the characteristic of k is $p>0$, then every line through the origin is tangent to $y=x^{p+1}$.

Homework 3
(1) Define closed subsets of \mathbb{A}^{n} and show that they define a topology.
(2) Define the ring of rational functions $k[X]$ of a closed subset $X \subset \mathbb{A}^{n}$ and a regular map between closed subsets. When are two closed subsets isomorphic?
(3) Show how to recover a closed subset from its ring of regular function and the rational map $X \rightarrow Y$ between two closed subsets from a homomorphism between their rings of rational functions $k[Y] \rightarrow k[X]$.
(4) State the Nullstellensatz.
(5) Define the Frobenius map $\phi: \mathbb{A}^{n} \rightarrow \mathbb{A}^{n}$ and show that if X subset \mathbb{A}^{n} is defined over \mathbb{F}_{p} (i.e. it's ideal is generated by functions in $\left.\mathbb{F}_{p}\left[x_{1}, \ldots, x_{n}\right]\right)$ then ϕ defines a rational map from X to X.
(6) Let I_{X} be the ideal of a closed subset $X \subset \mathbb{A}^{n}$. Show that $k[X]=k\left[\mathbb{A}^{n}\right] / I_{X}$ has no nilpotents.

Homework 4

(1) Let $X \subset \mathbb{A}^{n}$ be an irreducible closed subset.Define the field of rational functions $k(X)$. When is $\phi \in k(X)$ regular at $p \in X$? Show that the domain of definition of $\phi \in k(X)$ is a non-empty open subset.
(2) Let $X \subset \mathbb{A}^{n}$ be an irreducible closed subset. Show that if $\phi \in k(X)$ is regular at all $x \in X$, then $\phi \in k[X]$.
(3) Define rational maps $\phi: X \rightarrow Y$ where $X \subset \mathbb{A}^{n}$ and $Y \subset \mathbb{A}^{m}$ are irreducible closed subsets. When is ϕ dominant? Prove that ϕ is dominant iff $\phi^{*}: k[Y] \rightarrow k(X)$ is injective.
(4) Define birational map and show that a map is birational iff it induces an isomorphism of function fields.
(5) Show that if $I \subset k\left[x_{0}, \ldots, x_{n}\right]$ is a homogeneous ideal defining the empty subset of \mathbb{P}^{n}, then $I \supset m^{s}$ where $m=\left(x_{0}, \ldots, x_{n}\right)$.

Homework 5

(1) Define quasi-projective variety, regular functions on quasi-projective varieties and rational map / regular map between quasi-projective varieties.
(2) Define principal affine open subsets and show that any quasiprojective variety can be covered by principal affine open subsets.
(3) Explain why a regular map of quasi-projective varieties is continuous.
(4) Define \mathcal{O}_{X} and $k(X)$ (the function field of X) for an irreducible quasi-projective variety X.
(5) Show that if X is an irreducible quasi-projective variety then $k(X)=k(\bar{X})$ (however $k[X] \neq k[\bar{X}]$ usually) and if X is an irreducible affine variety then.$k(X)$ is the field of rational functions of X.
(6) Show that $\mathbb{A}^{2} \backslash(0,0)$ is not affine.
(7) Define the projection from a linear subspace $E \subset \mathbb{P}^{n}$ and the Veronese embedding $\nu_{m}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{N}$ where $N=\binom{n+m}{n}-1$.

Homework 6

(1) Define a closed embedding $\phi: \mathbb{P}^{n} \times \mathbb{P}^{m} \rightarrow \mathbb{P}^{N}$ and show that $\phi\left(\mathbb{P}^{n} \times \mathbb{P}^{m}\right) \subset \mathbb{P}^{N}$ is closed. Explain why ϕ is closed.
(2) Explain why a regular map from a projective variety to an affine variety is constant (you may use the fact that the image of a projective variety under a regular map is closed).
(3) Explain why the set of reducible homogeneous polynomials of degree m in $n+1$ variables is a proper closed subset of the set of all homogeneous polynomials of degree m parametrized by \mathbb{P}^{N} where $N=\binom{m+m}{m}-1$.
(4) Define finite map of affine varieties. Show that all fibers of any such map have finite cardinality but the converse does not hold.
(5) Show that a finite map is surjective (you may use the fact that if B is a finite A module, $1_{B} \in A \subset B$ a subring, then for any proper ideal $(1) \neq a \subset A$ we have that $a B \neq B)$.
(6) Prove that $\mathbb{A}^{2} \backslash x, \mathbb{P}^{2} \backslash x$, and $\mathbb{P}^{1} \times \mathbb{A}^{1}$ are neither affine nor projective varieties.

Homework 7

(1) Prove that if $X \subset \mathbb{P}^{N}$ is a projective variety and $E \subset \mathbb{P}^{N}$ is a d-dimensional linear subspace such that $E \cap X=\emptyset$, then the projection $\pi: \mathbb{P}^{N} \rightarrow \mathbb{P}^{N-d-1}$ is finite on to its image.
(2) Deduce from the previous exercise that if F_{0}, \ldots, F_{s} are homogeneous of degree m and $X \subset \mathbb{P}^{N}$ is a projective variety such that $X \cap V\left(F_{0}, \ldots, F_{s}\right)=\emptyset$, then the rational map $\phi: X \rightarrow \mathbb{P}^{s}$ defined by $\left(F_{0}, \ldots, F_{s}\right)$ is finite.
(3) Let X be a quasi-projective variety. Define $\operatorname{dim} X$ and show that if X is irreducible then $\operatorname{dim} X$ is a birational invariant.
(4) Show that if $X \subset Y$ is an inclusion of quasi projective varieties, then $\operatorname{dim} X \leq \operatorname{dim} Y$.
(5) Show that every irreducible component of a hyprsurface in \mathbb{A}^{N} has codimension 1.
(6) Give alternative definitions of $\operatorname{dim} X$ in terms of the Noether Normalization theorem and by sequences of irreducible proper closed subsets.
(7) Let $X, Y \subset \mathbb{P}^{N}$ be irreducible quasi-projective varieties. Show that $\operatorname{codim}(X \cap Y) \leq \operatorname{codim}(X)+\operatorname{codim}(Y)$.
(8) Let $f: X \rightarrow Y$ be a regular map of irreducible quasi-projective varieties. Show that each (non-empty) fiber has dimension \geq $\operatorname{dim} X-\operatorname{dim} Y$. What can you say about the function $\operatorname{dim}\left(f^{-1}(y)\right.$ where $y \in Y$?

Homework $8+9$

(1) Let $x \in X$ be a point on an irreducible affine variety. Define $\mathcal{O}_{x, X}$.
(2) Let $x \in X$ be a point on an irreducible affine variety. Define $\Theta_{x, X}$ and show that $\Theta_{x, X} \cong\left(\mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}\right)^{\vee}$.
(3) Prove that the curve $C \subset \mathbb{A}^{N}$ given by $t \rightarrow\left(t^{N}, t^{N+1}, \ldots, t^{2 N-1}\right)$ can not be embedded in \mathbb{A}^{n} for any $n<N$.
(4) Explain why there exists an open subset $X_{s m} \subset X$ such that $\operatorname{dim} \Theta_{x, X}=\operatorname{dim} X$ for all $x \in U$ and $\operatorname{dim} \Theta_{x, X}>\operatorname{dim} X$ for all $x \notin U$.
(5) Define local parameters, dimension of a local ring, regular local ring and Taylor series expansion.
(6) Let X be a quasi-projective variety and x a nonsingular point of X. Show that X is irreducibe at x.
(7) Explain why the set of singular points on a quasi projective variety is closed.
(8) Explain why if $x \in X$ is a nonsingular point, then X is locally a complete intersection at x.
(9) Define local equations of a subvariety $Y \subset X$ at a point $x \in Y$.
(10) Explain why a rational map from a non-singular quasi projective variey to projective space is regular in codimension 1.

Homework 10
(1) Define the blow up $\pi: X \rightarrow \mathbb{P}^{n}$ centered at the point $p=$ (1:0:..: 0) and show that X is smooth and irreducible, $\pi^{-1}(p) \cong \mathbb{P}^{n-1}$ and $X \backslash \pi^{-1}(p) \cong \mathbb{P}^{n} \backslash p$.
(2) Define the normalization of an irreducible quasi projectve variety and compute an example where the induced map is not an isomorphism.
(3) Show that an irreducible quasi-projective variety X is normal if and only if \mathcal{O}_{x} is normal for all points $x \in X$.
(4) Show that smooth varieties are normal.
(5) Show that a normal variety is non-singular in codimension 1.

