1) Determine all abelian groups of order 400.

 400 = 2^4 \times 5^2. The possibilities are 1) \(\mathbb{Z}_{16} \times \mathbb{Z}_{25} \), 2) \(\mathbb{Z}_2 \times \mathbb{Z}_8 \times \mathbb{Z}_{25} \), 3) \(\mathbb{Z}_4 \times \mathbb{Z}_{25} \), 4) \(\mathbb{Z}_2^2 \times \mathbb{Z}_4 \times \mathbb{Z}_{25} \), 5) \(\mathbb{Z}_2 \times \mathbb{Z}_{125} \), 6) \(\mathbb{Z}_{16} \times \mathbb{Z}_5 \), 7) \(\mathbb{Z}_2 \times \mathbb{Z}_8 \times \mathbb{Z}_5 \), 8) \(\mathbb{Z}_4^2 \times \mathbb{Z}_2 \), 9) \(\mathbb{Z}_2^2 \times \mathbb{Z}_8 \times \mathbb{Z}_5 \), 10) \(\mathbb{Z}_2^4 \times \mathbb{Z}_5 \).

2) To which of the following groups is \(\mathbb{Z}_{20} \times \mathbb{Z}_{50} \times \mathbb{Z}_2 \) isomorphic to?

\(\mathbb{Z}_2^2 \times \mathbb{Z}_4 \times \mathbb{Z}_5 \), \(\mathbb{Z}_{2000} \), \(\mathbb{Z}_2^2 \times \mathbb{Z}_4 \times \mathbb{Z}_{25} \times \mathbb{Z}_{25} \), \(\mathbb{Z}_4^2 \times \mathbb{Z}_5 \times \mathbb{Z}_2 \), or \(\mathbb{Z}_4^2 \times \mathbb{Z}_5 \times \mathbb{Z}_{25} \)?

\(\mathbb{Z}_{20} \times \mathbb{Z}_{50} \times \mathbb{Z}_2 \cong \mathbb{Z}_4 \times \mathbb{Z}_5 \times \mathbb{Z}_2 \times \mathbb{Z}_{25} \times \mathbb{Z}_2 \cong \mathbb{Z}_2^2 \times \mathbb{Z}_4 \times \mathbb{Z}_5 \times \mathbb{Z}_{25} .

3) Prove that there is no surjective homomorphism \(\phi : \mathbb{Z}_4^2 \rightarrow \mathbb{Z}_8 \).

Find a surjective homomorphism \(\psi : D_4 \rightarrow \mathbb{Z}_2^2 \) (Hint: find a normal subgroup \(N \) of index 4 and show that \(G/N \cong \mathbb{Z}_2^2 \).)

\(\mathbb{Z}_8 \) is cyclic and so the image of \(\mathbb{Z}_2^2 \) is cyclic hence generated by an element say \(\phi(x) \) of order 8. Since every element \(x \in \mathbb{Z}_4^2 \) has order \(\leq 4 \), this is impossible.

Let \(N = Z(G) \), then \(|Z(G)| = 2 \) and in fact \(Z(G) = \{ e, \rho^2 \} \). We must show that \(D_4/Z(G) \cong \mathbb{Z}_2^2 \) i.e. that elements in \(D_4/Z(G) \) have order at most 2. Let \(Z = Z(G) \). We have \(D_4/Z = \{ \rho \rho Z, \sigma \rho Z, \rho \sigma Z \} \). Clearly \((\rho \rho Z)^2 = \rho^2 Z = Z \), \((\sigma \rho Z)^2 = \sigma^2 Z = Z \) and \((\rho \sigma Z)^2 = \rho \sigma \rho \sigma Z = \rho \rho^3 Z = Z \).

4) Write \((1,7,3)(2,3,4)(5,8,6)(8,9) \) as a product of disjoint cycles and as a product of transpositions. What is its order and sign?

\[
(1,7,3)(2,3,4)(5,8,6)(8,9) = (1,7,3,4,2)(5,8,9,6) = (1,2)(1,4)(1,3)(1,7)(5,6)(5,9)(5,8).
\]

The order is 20 and the sign is odd.

5) Define \(U_m \), prove that it is a group and show that if \(a \) and \(m \) are two positive integers such that \((a, m) = 1 \) then \(a^{\varphi(m)} = 1 \) modulo \(m \).

We let \(U_m = \{ [x] | 0 < x < m \text{ and } (x, m) = 1 \} \) where \([x] \) denotes the equivalence class of \(x \) modulo \(m \). \(U_m \) is a group with respect to multiplication. It is closed under multiplication since \((x, m) = 1 \) and \((y, m) = 1 \) implies \((xy, m) = 1 \). The identity element is \([1] \), associativity follows from associativity in \(\mathbb{Z} \): \(([a] \cdot [b]) \cdot [c] = [a \cdot b] \cdot [c] = ([a \cdot b] \cdot c) = [a \cdot (b \cdot c)] = [a] \cdot [b \cdot c] = [a] \cdot ([b] \cdot [c]) \). To prove the existence of the inverse of \([x] \in U_m \), note that as \((x, m) = 1 \), we can write \(ax + bm = 1 \) for some integers \(a, b \). But then \((a, m) = 1 \) so that \([a] \in U_m \) and \([x][a] = [xa] = [xa + bm] = [1] \) as required.

Since \(|U_m| = \varphi(m)\), the order of any element \([a] \in U_m \) divides \(\varphi(m) \).

But then \([a^{\varphi(m)}] = [a]^{\varphi(m)} = [1] \) as required.
6) Let G be a group of order p^n where p is prime. Show that $Z(G) \neq \{e\}$.

By the Class Equation we have

$$G = \sum_{a \in G} \text{cl}(a) = \sum_{a \in G} \frac{|G|}{|C(a)|} = |Z(G)| + \sum_{a \in G - Z(G)} \frac{|G|}{|C(a)|}.$$

Note that p divides G and $\frac{|G|}{|C(a)|}$ for any $a \in G - Z(G)$. Therefore p divides $|Z(G)|$. Since $e \in Z(G)$, we have $|Z(G)| \geq p$ so that $Z(G) \neq \{e\}$.

7) Let p be a prime. Prove that any group of order p^2 is abelian (you may use ex. 6).

We know that $|Z(G)| \in \{1, p, p^2\}$. By ex. 6) $|Z(G)| \neq 1$. If $|Z(G)| = p$, then G is abelian and so we may assume that $|Z(G)| = p$. Let $x \in G - Z(G)$ and consider the subgroup $C(x)$. We have $Z(G) \subset C(x)$ and $x \in C(x)$ so that $|C(x)| > p$. Since $|C(x)|$ divides p^2, we have $|C(x)| = p^2$ and so $C(x) = G$ i.e. $x \in Z(G)$ which is impossible.

8) If M and N are normal subgroups of a group G, such that $M \cap N = \{e\}$ and $MN = G$, then show that $mn = nm$ for any $n \in N$ and $m \in M$ and that $M \times N$ is isomorphic to G.

Let $n \in N$ and $m \in M$. As N, M are normal subgroups, $mn^{-1}m^{-1} \in N$, and $nmm^{-1} \in M$. But then $nmm^{-1}m^{-1} = n(mn^{-1}m^{-1}) \in N$ and $nmm^{-1}m^{-1} = (nmm^{-1})m^{-1} \in M$ so that $nmm^{-1}m^{-1} \in M \cap N = \{e\}$. Thus $nmm^{-1}m^{-1} = e$ and so $nm = mn$.

Define $\phi : M \times N \to G$ by $\phi(n, m) = n \cdot m$. Then ϕ is a homomorphism because

$$\phi((n, m)(n', m')) = \phi(n, m, n', m') = nmnm' = nmm'n' = \phi(n, m)\phi(n', m').$$

ϕ is injective because $\phi(n, m) = e$ implies $nm = e$ so that $n = m^{-1} \in N \cap M = \{e\}$. Thus $n = m^{-1} = e$ i.e. $(n, m) = (e, e)$ is the identity.

ϕ is surjective because (as $G = NM$) for any $g \in G$ we have $g = nm = \phi(n, m)$.

9) State and prove Lagrange’s Theorem.

Theorem. Let H be a subgroup of a finite group G, then the order of H divides the order of G.

Proof. Define the equivalence relation $a \sim b$ if $ab^{-1} \in H$. (Symmetric: $a \sim a$ as $aa^{-1} = e \in H$; Reflexive: $a \sim b$ implies $ab^{-1} \in H$ so that $ba^{-1} = (ab^{-1})^{-1} \in H$ and hence $b \sim a$; Transitive: if $a \sim b$ and $b \sim c$, then $ab^{-1} \in H$ and $bc^{-1} \in H$ so that $ac^{-1} = ab^{-1}bc^{-1} \in H$. Thus $a \sim c$.)
It is easy to see that $|a| = Ha$ and that $|Ha| = |H|$ for any $a \in G$. But then since $G = \bigcup_{a \in G} Ha$, we have that the order of G is the product of $|H|$ times the number of equivalence classes.

10) State and prove Cayley’s Theorem.

Theorem. Let G be any group, then there is a set S such that G is a subgroup of $A(S)$.

Proof. Let $S = G$ and define $\phi : G \to S$ by $\phi(g) = \sigma_g$ where $\sigma_g(x) = gx$.

We check that ϕ is a homomorphism i.e. that $\phi(gg') = \phi(g) \circ \phi(g')$ for all $g, g' \in G$, i.e. that $\phi(gg')(x) = (\phi(g) \circ \phi(g'))(x)$ for all $x \in S$. In fact $\phi(gg')(x) = \sigma_{gg'}(x) = (gg')x = g(g'x) = \sigma_g(\sigma_{g'}(x)) = \phi(g)(\phi(g')(x)) = (\phi(g) \circ \phi(g'))(x)$.

Finally we check that ϕ is injective. Suppose that $\phi(g) = id$, then $\phi(g)(e) = id(e)$ so that $g = ge = e$.

\[\square\]