1) Let \(f(x) \) and \(g(x) \) be polynomials in \(F[x] \) such that \((f(x), g(x)) = 1 \). Prove that if \(h(x) = f(x)g(x) \), then \(F[x]/(h(x)) \cong F[x]/(g(x)) \oplus F[x]/(f(x)) \).

Proof. Let \(\phi : F[x] \rightarrow F[x]/(g(x)) \oplus F[x]/(f(x)) \) be the homomorphism defined by \(\phi(p(x)) = [p(x) + (f(x)), p(x) + (g(x))] \). By the First Homomorphism Theorem, it suffices to show that \(\ker(\phi) = (h(x)) \) and \(\phi \) is surjective.

The inclusion \(\ker(\phi) \supseteq (h(x)) \) is immediate. Suppose that \(p(x) \in \ker(\phi) \), then \(p(x) + (f(x)) = 0 + (f(x)) \) and \(p(x) + (g(x)) = 0 + (g(x)) \) so that \(p(x) \in (f(x)) \) and \(p(x) \in (g(x)) \). Thus \(f(x) \) and \(g(x) \) divide \(p(x) \). But as \(f(x) \) and \(g(x) \) are coprime, \(h(x) = f(x)g(x) \) divides \(p(x) \), so that \(p(x) \in (h(x)) \) as required.

To prove surjectivity, we must show that for any \([p(x) + (f(x)), q(x) + (g(x))] \in F[x]/(g(x)) \oplus F[x]/(f(x)) \), there exists \(r(x) \in F[x] \) such that \([r(x) + (f(x)), r(x) + (g(x))] = [p(x) + (f(x)), q(x) + (g(x))] \). Since \((f(x), g(x)) = 1 \), we have such that \(1 = f(x)\alpha(x) + g(x)\beta(x) \) for some \(\alpha(x), \beta(x) \in F[x] \). Thus \(p(x) - q(x) = f(x)\alpha'(x) + g(x)\beta'(x) \) where \(\alpha'(x) = \alpha(x)(p(x) - q(x)) \) and \(\beta'(x) = \beta(x)(p(x) - q(x)) \). Let \(r(x) = p(x) - f(x)\alpha'(x) = q(x) + g(x)\beta'(x) \), then \(\phi(r(x)) = [p(x) + (f(x)), q(x) + (g(x))] \) as required. \(\square \)

2) Let \(I \subset R \) be an ideal in a commutative ring with 1. Show that \(I \) is maximal if and only if \(R/I \) is a field.

Proof. If \(I \) is maximal and \(r + I \in R/I \) is non-zero, then \(r \not\in I \) so that \((r, I) = R \) and hence \(ar + bi = 1 \) for some \(a, b \in R \) and \(i \in I \). But then \((a + I)(r + I) = ar + I = (1 - bi) + I = 1 + I \). Thus all elements in \(R/I^* \) are invertible, and so \(R/I \) is a field.

Conversely, suppose that \(R/I \) is a field and let \(I \subset J \subset R \) be an ideal. We must show that \(J = I \) or \(J = R \). If \(I \not= J \), then pick \(j \in J \setminus I \) so that \(j + I \not= 0 + I \). Since \(R/I \) is a field, there is an element \(k \in R \) such that \((j + I)(k + I) = 1 + I \). It follows that \(jk - 1 = i \in I \). But then \(1 = jk - i \in J + I = J \) and so \(J = R \). \(\square \)

3) Let \(F \subset K \) be an inclusion of fields. Prove that \(k \in K \) is algebraic over \(F \) if and only if \(F(k) \cong F[x]/(f(x)) \) where \(f(x) \in F[x] \) is an irreducible polynomial. (Note, that the isomorphism is assumed to fix \(F \))

1
Proof. Suppose that \(k \) is algebraic over \(F \), then there is an irreducible polynomial \(f(x) \in F[x] \) such that \(f(k) = 0 \). We may assume that \(f(x) \) has minimal degree amongst all non-zero polynomials such that \(f(a) = 0 \). Let \(\phi : F[x] \to F(a) \) be the homomorphism defined by \(\phi(g(x)) = g(a) \). We claim that \(\text{Ker}(\phi) = (f(x)) \). Since \(f(a) = 0 \), we have the inclusion \(\text{Ker}(\phi) \supseteq (f(x)) \). Suppose on the other hand that \(\phi(g(x)) = 0 \) so that \(g(a) = 0 \). Write \(g(x) = g(x)q(x) + r(x) \) where \(\deg(r(x)) < \deg(f(x)) \). We have \(r(a) = g(a) - f(a)q(a) = 0 \) and so \(r(x) = 0 \), i.e. \(g(x) \in (f(x)) \). Finally, the image of \(\phi \) is a subfield of \(F(a) \) containing \(F \) and \(a \), hence \(\phi \) is onto and by the FHT, \(F(a) \cong F[x]/(f(x)) \).

Suppose now that \(F(k) \cong F[x]/(f(x)) \), then \(\dim_F F(k) = n \) where \(n = \deg f(x) \). But then \(1, k, k^2, \ldots, k^n \) are linearly dependent so that \(\sum_{i=0}^{n} a_i k^i = 0 \) for some \(a_i \in F \). But then \(k \) is a zero of the polynomial \(\sum_{i=0}^{n} a_i x^i \).

4) Let \(\overline{\mathbb{Q}} \) be the algebraic closure of \(\mathbb{Q} \) in \(\mathbb{C} \). Show that \([\overline{\mathbb{Q}} : \mathbb{Q}] \) is infinite.

Proof. Let \(a_p \) be a complex root of \(x^p - 2 \). By Eisenstein’s Criterion, this polynomial is irreducible and so \([\mathbb{Q}(a_p) : \mathbb{Q}] = p \). Since \(\overline{\mathbb{Q}} \supseteq \mathbb{Q}(a_p) \supseteq \mathbb{Q} \), we have \([\overline{\mathbb{Q}} : \mathbb{Q}] \geq p \) for all \(p \) and hence \([\overline{\mathbb{Q}} : \mathbb{Q}] \) is infinite.

5) Show that \(x^3 + 2x + 2 \) an irreducible polynomial of degree 3 in \(\mathbb{Z}_3[x] \). Find a generator of the multiplicative group \((\mathbb{Z}_3[x]/(x^3 + 2x + 2))^* \). How many generators does this group have?

Proof. Since \(x^3 + 2x + 2 \) has no roots and has degree 3, it is irreducible. Thus \(\mathbb{Z}_3[x]/(x^3 + 2x + 2) \) is the finite field with \(3^3 \) elements and \((\mathbb{Z}_3[x]/(x^3 + 2x + 2))^* \) is a cyclic group of order 22. There are \(\phi(26) = \phi(2)\phi(13) = 12 \) generators.

We have \((2x + 1)^3 = x^3 + x + 1\), \((2x + 1)^4 = x^2 + 2x = x + 2\), \((2x + 1)^5 = 2x^2 + x + 2\), \((2x + 1)^8 = 2x^2 + 2x + 1\), \((2x + 1)^{13} = 2\) and so the order of \(2x + 1 \) is 26.

6) Show that \(x^4 + x^3 + x^2 + x + 1 \) is irreducible in \(\mathbb{Q}(\sqrt[3]{3})[x] \).

Proof. \(\phi_4(x) = x^4 + x^3 + x^2 + x + 1 \) is irreducible in \(\mathbb{Q}[x] \) (as seen in class). Let \(\theta \) be a root of \(\phi_4(x) \). Then \([\mathbb{Q}(\theta) : \mathbb{Q}] = 4 \). Since \(x^5 - 3 \) is irreducible (Eisenstein’s Criterion), we have \([\mathbb{Q}(\sqrt[3]{3}) : \mathbb{Q}] = 5 \). Since 4 and 5 are coprime, \([\mathbb{Q}(\theta, \sqrt[3]{3}) : \mathbb{Q}] = 20 \). But then \(20 = [\mathbb{Q}(\theta, \sqrt[3]{3}) : \mathbb{Q}(\sqrt[3]{3}) \cdot \mathbb{Q}(\sqrt[3]{3})] = 4 \), and hence \(x^4 + x^3 + x^2 + x + 1 \) is irreducible in \(\mathbb{Q}(\sqrt[3]{3})[x] \).

7) Prove that \([\mathbb{Q}(\sqrt{2} + \sqrt{3}) : \mathbb{Q}] = 4 \).
Proof. Let \(a = \sqrt{2} + \sqrt{3} \), then \(a^2 = 5 + 2\sqrt{6} \) and \(a^3 = 5a + 4\sqrt{3} + 3\sqrt{2} = 8a + \sqrt{3} \). But then \(\sqrt{3} \in \mathbb{Q}(\sqrt{2} + \sqrt{3}) \) and hence \(\sqrt{2} \in \mathbb{Q}(\sqrt{2} + \sqrt{3}) \) so that \(\mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3}) \). It follows that \([\mathbb{Q}(\sqrt{2} + \sqrt{3}) : \mathbb{Q}] = [\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}(\sqrt{3})] | [\mathbb{Q}(\sqrt{3}) : \mathbb{Q}] \leq 4 \). To show equality, it suffices to show that \(\sqrt{2} \not\in \mathbb{Q}(\sqrt{3}) \). Suppose \(\sqrt{2} = a + b\sqrt{3} \) where \(a, b \in \mathbb{Q} \), then \(2 = a^2 + 3b^2 + 2ab\sqrt{3} \) and so \(\sqrt{3} = \frac{2-a^2-3b^2}{2ab} \in \mathbb{Q} \) which is impossible (if \(ab \neq 0 \), \(\sqrt{3} \in \mathbb{Q} \) which is impossible; if \(ab = 0 \) then either \(b = 0 \) so that \(\sqrt{2} = a \) or \(a = 0 \) so \(\sqrt{2} = b\sqrt{3} \) and both cases are easily seen to be impossible). \(\square \)

8) Show that if \(n \geq 3 \), then \(A_n \) is generated by 3-cycles.

Proof. Let \(t = (i, j) \) and \(t' = (i', j') \) be transpositions. We may assume \(i < j \) and \(i' \leq j' \). We claim that if \(t \neq t' \), then \(tt' \) is a product of two 3-cycles. If \(i, i', j, j' \) are all distinct, then \((i, j)(i', j') = (i, i')(i', j', j) \).

If \(i = i' \), then \((i, j)(i, j') = (i, j', j) = (i, j, j') \).

If \(g \in A_n \), then \(g = t_1 \cdots t_{2k} \) where \(t_i \) are transpositions. So the first claim follows since by what we have shown above, we have \(t_2t_{2i+1} = g_{2i}g_{2i+1} \) where \(g_{2i} \) and \(g_{2i+1} \) are 3-cycles. \(\square \)