Name \qquad
Total $=100$ points
(print)
Please show all your work.

1. (25 pts) One in four adults say he/she has no trouble sleeping at night. You randomly select five adults and ask if he/she has no trouble sleeping at night.
a)(15 pts) Construct the binomial probability distribution (for this sample of five adults, where x represents the number of adults that have no trouble sleeping at night).

b) (5 pts) Find the probability that the number of people (from this group of five randomly selected adults) who say that they have no trouble sleeping is at most 2 .

Answer \qquad
c) (5 pts) Find the mean and standard deviation for this binomial distribution.
2. (15 pts) Use the Standard Normal Distribution Table to find:

$$
\text { a) } \begin{aligned}
P(0.27<z<1.24)=P(z<1.24)-P(z<.27) & =.8925-.6064 \\
& =.7861
\end{aligned}
$$

3. (25 pts) A study found that the mean height of men (ages 20-29) s is 69.9 inches with a standard deviation of 3.0 inches. Assume that the heights are normally distributed. a) (10 pts) Find the probability that the height of a randomly selected man (age 20-29) is between 64 and 71 inches?
b)(7 pts) If you randomly select 300 men (ages 20-29), about how many of them will be over

$$
\text { i } x=69,9+803 \rightarrow(-2)
$$

72.4 isachos

$$
\begin{aligned}
& 76 \text { inches tall? } \\
& P(x \geqslant 76)=P(z>2.03)=1-9788 \quad 0428 \times 300=866.86 \sim 6 \\
& =.0212 \text { 年 }
\end{aligned}
$$

$$
\begin{aligned}
& z=.84 \quad x=69.9+8.84 \times 3.0=72.42
\end{aligned}
$$

$$
\begin{aligned}
& P(64 \leqslant x \leqslant 71) \\
& z_{64}=\frac{64-69.9}{3.0}=-1.97 \\
& =P(-1.97 \leq z \leq .37) \\
& =P(z \leq .37)-P(E-1.97) \\
& =.6443-.0244=.6199 \\
& \text { Answer. } 6194 \text { an 61.94\% }
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } P(z<1.5 \text { or } z>1.74)=P(z<1.5)+(1-P(z<1.74)) \\
& =.9332+(1-.9591)=.9741 \\
& \text { if } 9332-2409 \rightarrow(-1)
\end{aligned}
$$

4. (20 pts) The average number of cans of soda per day that each student drinks is given below. Construct a probability distribution and then find the mean and the standard deviation of the probability distribution.

Cups	Students	$P(x)$	$x-\bar{x}$	$(x-\bar{x})^{2}$
0	21	$21 / 80=.26$	-1.67	2.8
1	16	$16 / 80=.20$	-.67	.4
2	20	$20 / 80=.25$.33	.1
3	15	$15 / 80=.19$	1.33	1.8
4	$\frac{8}{80}$	$8 / 80=.10$	2.33	5.4

$$
\bar{x}=0+.76+1 \times .20+2 \times .25+3+.19+4 \times .10=1.67
$$

$$
\sigma=\sqrt{2.8 \times .76+.4 \times .20+.1 \times .25+1.8 \times .19+5.4 \times .1}=\sqrt{1.715} \hat{=1.3}
$$

$$
\text { Mean } \frac{1.62}{\text { Standard deviation } 1.3}
$$

5. (15 pts) 1,500 raffle tickets are sold at $\$ 2$ each for 4 prizes valued at $\$ 800, \$ 600, \$ 500$, and $\$ 300$. You buy one ticket. What is the expected value of your gain/loss?

$$
\begin{aligned}
& 798 \times \frac{1}{1500}+598 \times \frac{1}{1500}+498 \times \frac{1}{1500}+798 \times \frac{1}{1500}+(-2) \times \frac{1496}{1500}=-.532 \\
& \text { is Agent subtract } \\
& \text { Answer }-.53 \\
& =1048 \text { of } 53 \text { 中 }
\end{aligned}
$$

