

Total $=100$ points
Please show all your work.

1. (20 pts) The data represents the number of vacation days used by a sample of 20 employees in a recent year. Find the first, second, third quartile, and interquartile range. Identify any outliers. Then, draw a box-and-whisker plot.

What percentile corresponds to 11 days of vacation?

$$
16 / 20=80 \text { th percentile }
$$

How many vacation days correspond to the 40 -th percentile?

$$
\begin{aligned}
& \text { How many vacation days correspond to the 40-th percentile? } \\
& .40=\frac{m}{20} \Rightarrow m=70 \times 4=8 \Rightarrow 6 \text { days }
\end{aligned}
$$

2. (15 pts) The average airline pilot salary is $\$ 114,000$ with a standard deviation of $\$ 29,000$ (assume a bell-shaped distribution).
a) Compute the Z-score for salaries of $\$ 67,000, \$ 125,000$ and $\$ 179,000$ to determine which salary is unusual.
b) Using the empirical rule, find the percentiles corresponding to $\$ 56,000$ and $\$ 143,000$.

$$
\begin{aligned}
& z(67,000)=\frac{67000-114000}{29,000}=-1.62 \quad z(125,000)=\frac{125000-114000}{1,000}=.38 \\
& z(179,000)=\frac{179000-114000}{29}=2.24 \quad 179,000 \$ / \text { year is the } \\
& \text { only un us un solon } \\
& z(56,000)=\frac{56000-114000}{29}=-2 \quad \rightarrow 2.5 \text {-th percentile } \\
& z(143,000)=\frac{143000-114000}{29}=1 \Rightarrow 84 \text { th percentile } \\
& 3 .(20 \mathrm{pts})
\end{aligned}
$$

A student is selected at random. Find the following probabilities:
a) the student is a male or not sociology major

$$
\begin{aligned}
& \frac{150+12350+11000}{150+325+12350+11000}=\frac{23500}{23825}=98.6 \%
\end{aligned}
$$

b) the student is a female and sociology major

$$
\frac{325}{23825}=1.4 \%
$$

c) Given that the student is a male, what is the probability that he is sociology major?

$$
\frac{150}{150+12350}=\frac{150}{12500}=1.2 \%
$$

d) If we select 3 students at random (without replacement), what is the probability that all 3 students are men majoring in sociology?

$$
\left(\frac{12350}{23825}\right)^{3}=13.9 \%
$$

4. (15 pts) According to the World Factbook website, as of July $2008,67.1 \%$ of the U.S. population was 15-64 years old. Suppose that in a survey, 6 people are chosen at random from the population.
a) What is the probability that all 6 are 15-64 years old?

$$
(6671)^{6} \simeq .09=9 \%
$$

b) What is the probability that at least one person is $15-64$ years old? $\quad P(\operatorname{mot} \quad(5-64)=1-0621$

$$
\begin{aligned}
1-(1-.671)^{6}=1-.329^{6}-99.9 \%
\end{aligned} \quad P(\geqslant 1 \text { is } 14-64 \% 0)
$$

5. (20 pts) Five people are selected at random from a group of twenty women and fifteen men.
a) What is the probability that all five are women?
b) What is the probability that at least one of the five is a woman?
c) what is the probability that exactly three of the five is a woman?
c) $\frac{20 C_{3} * 15 C_{2}}{33 C_{5}}=.369=38.9 \%$
6. (10 pts) The scholarships committee is considering 30 applicants for 5 awards ($\$ 3,500$, $\$ 2,000, \$ 1,000, \$ 800, \$ 500$). How many different ways are possible to award these scholarships?

$$
{ }_{30} P_{5}=17,100,720
$$

