
Chapter 5

Linear Algebra

The subject of linear algebra includes the solution of linear equations,
a topic properly belonging to college algebra. Earlier in this text, the
theory of linear algebraic equations was presented, without the aid of
vector-matrix notation. The project before us is to introduce specialized
vector-matrix notation and to extend the methods used to solve linear
algebraic equations. Enrichment includes a full study of rank, nullity
and basis from the vector-matrix viewpoint.

Engineers can view linear algebra as the essential language interface
between an application and a computer algebra system or a computer
numerical laboratory. Without the language interface, computer assist
would be impossibly tedious.

Section 5.1 Vectors, vector spaces, matrices. Topics: matrix equations,

change of variable, matrix multiplication, row operations,

reduced row echelon form, matrix differential equation.

Section 5.2 Matrix equations Ax = b solved by the rref method. Top-

ics: nullity, rank, inverse, elementary matrix.

Section 5.3 Determinant topics: an applied definition of determinant,

the four rules, cofactor expansion, inverse and adjoint,

Cramer’s rule, elementary matrices, product rule, Cayley-

Hamilton theorem. Enrichment includes a characterization

of determinants from row and/or column properties.

Section 5.4 Eigenanalysis for matrix equations I. Topics: eigenanalysis,

eigenvalue, eigenvector, eigenpair, diagonalization.

Section 5.5 Eigenanalysis for matrix equations II. Applications to ge-

ometry and differential equations. Topics: ellipsoid and

eigenanalysis, change of basis, uncoupled systems, coupled

systems.

Section 5.6 Euclidean space Rn, continuous function space C(E), the

spaces C1(E) and Cn(E), and general abstract vector

spaces. Topics: independence, dependence, digital photos,

basis, dimension, pivot column method, row space, column

space, nullspace, equivalent bases.

5.1 Vectors and Matrices 247

5.1 Vectors and Matrices

The advent of computer algebra systems and computer numerical labo-
ratories has precipitated a common need among engineers and scientists
to learn the language of vectors and matrices, which is used heavily in
applications.

Fixed Vector Model. A fixed vector ~X is a one-dimensional array
called a column vector or a row vector, denoted correspondingly by

~X =













x1

x2

...
xn













or ~X =
(

x1, x2, . . . , xn

)

.(1)

The entries or components x1, . . . , xn are numbers and n is corre-
spondingly called the column dimension or the row dimension of
the vector in (1). The set of all n-vectors (1) is denoted Rn.

Practical matters. A fixed vector is a package of application data
items. The term vector means data item package and the collection of
all data item packages is the data set. Data items are usually numbers.
A fixed vector imparts an implicit ordering to the package. To illustrate,
a fixed vector might have n = 6 components x, y, z, px, py, pz, where
the first three are space position and the last three are momenta, with
respective associated units meters and kilogram-meters per second.

Vector addition and vector scalar multiplication are defined by
componentwise operations as follows.













x1

x2

...
xn













+













y1

y2

...
yn













=













x1 + y1

x2 + y2

...
xn + yn













, k













x1

x2

...
xn













=













kx1

kx2

...
kxn













.

The Mailbox Analogy. Fixed vectors can be visualized as in Table
1, in which the fixed vector entries x1, . . . , xn appear as contents of
mailboxes with names 1, 2, . . . , n.

Table 1. The mailbox analogy: box i has contents xi.

x1

x2

...
xn

mailbox 1
mailbox 2

...
mailbox n

248 Linear Algebra

Free Vector Model. In the model, rigid motions from geometry
are applied to directed line segments. A line segment PQ is represented
as an arrow with head at Q and tail at P . Two such arrows are consid-
ered equivalent if they can be rigidly translated to the same arrow
whose tail is at the origin. The arrows are called free vectors. They

are denoted by the symbol
−→

PQ or sometimes ~A, which labels the arrow
whose tail is at P and whose head is at Q.

The parallelogram rule defines free vector addition, as in Figure 1. To
define free vector scalar multiplication k ~A, we change the location
of the head of vector ~A; see Figure 2. If 0 < k < 1, then the head shrinks
to a location along the segment between the head and tail. If k > 1,
then the head moves in the direction of the arrowhead. If k < 0, then
the head is reflected along the line and then moved.

~A

~B

~C = ~A + ~B

Figure 1. Free vector addition.
The diagonal of the parallelogram
formed by free vectors ~A, ~B is the sum
vector ~C = ~A + ~B.

~A

k ~A Figure 2. Free vector scalar
multiplication. To form k ~A, the head
of free vector ~A is moved to a new
location along the line formed by the
head and tail.

Physics Vector Model. This model is also called the~ı, ~, ~k vector
model and the orthogonal triad model. The model arises from the
free vector model by inventing symbols ~ı, ~, ~k for a mutually orthogonal
triad of free vectors. Usually, these three vectors represent free vectors
of unit length along the coordinate axes, although use in the literature
is not restricted to this specialized setting; see Figure 3.

~k

~ı

~

Figure 3. Fundamental triad. The free
vectors ~ı, ~, ~k are 90◦ apart and of unit length.

The advantage of the model is that any free vector can be represented
as a~ı + b~ + c~k for some constants a, b, c, which gives an immediate
connection to the free vector with head at (a, b, c) and tail at (0, 0, 0), as
well as to the fixed vector whose components are a, b, c.

5.1 Vectors and Matrices 249

Vector addition and salar multiplication are defined componentwise: if
~A = a1~ı + a2~ + a3

~k, ~B = b1~ı + b2~ + b3
~k and c is a constant, then

~A + ~B = (a1 + b1)~ı + (a2 + b2)~ + (a3 + b3)~k,

c ~A = (ca1)~ı + (ca2)~ + (ca3)~k.

Formally, computations involving the physics model amount to fixed
vector computations and the so-called equalities between free vectors and

fixed vectors: ~ı =







1
0
0






, ~ =







0
1
0






, ~k =







0
0
1






.

Gibbs Vector Model. The model assigns physical properties to vec-
tors, thus avoiding the pitfalls of free vectors and fixed vectors. Gibbs
defines a vector as a linear motion that takes a point A into a point B.
Visualize this idea as a workman who carries material from A to B: the
material is loaded at A, transported along a straight line to B, and then
deposited at B. Arrow diagrams arise from this idea by representing a
motion from A to B as an arrow with tail at A and head at B.

Vector addition is defined as composition of motions: material is loaded
at A and transported to B, then loaded at B and transported to C.
Gibbs’ idea in the plane is the parallelogram law; see Figure 4.

Vector scalar multiplication is defined so that 1 times a motion is itself,
0 times a motion is no motion and −1 times a motion loads at B and
transports to A (the reverse motion). If k > 0, then k times a motion
from A to B causes the load to be deposited at C instead of B, where k
is the ratio of the lengths of segments AC and AB. If k < 0, then the
definition is applied to the reverse motion from B to A using instead of
k the constant |k|. Briefly, the load to be deposited along the direction
to B is dropped earlier if 0 < |k| < 1 and later if |k| > 1.

B

A

C

composite
motion

Figure 4. Planar composition of
motions. The motion A to C is the
composition of two motions or the sum

of vectors AB and BC.

Comparison of Vector Models. It is possible to use free, physics
and Gibbs vector models in free vector diagrams, almost interchangeably.
In Gibbs’ model, the negative of a vector and the zero vector are natural
objects, whereas in the free and physics models they are problematic.
To understand the theoretical difficulties, try to answer these questions:

1. What is the zero vector?

2. What is the meaning of the negative of a vector?

250 Linear Algebra

Some working rules which connect the free, physics and Gibbs models to
the fixed model are the following.

Conversion A fixed vector ~X with components a, b, c converts to
a free vector drawn from (0, 0, 0) to (a, b, c).

Addition To add two free vectors, ~Z = ~X + ~Y , place the tail
of ~Y at the head of ~X, then draw vector ~Z to form a
triangle, from the tail of ~X to the head of ~Y .

Head–Tail A free vector ~X converts to a fixed vector whose com-
ponents are the componentwise differences between the
point at the head and the point at the tail.
To subtract two free vectors, ~Z = ~Y − ~X , place the
tails of ~X and ~Y together, then draw ~Z between the
heads of ~X and ~Y , with the heads of ~Z and ~Y together.

The last item can be memorized as the phrase head minus tail. We
shall reference both statements as the head minus tail rule.

Vector Spaces and the Toolkit. Consider any vector model: fixed,
free, physics or Gibbs. Let V denote the data set of one of these mod-
els. The data set consists of packages of data items, called vectors.1

Assume a particular dimension, n for fixed, 2 or 3 for the others. Let
k, k1, k2 be constants. Let ~X , ~Y , ~Z represent three vectors in V . The
following toolkit of eight (8) vector properties can be verified from the
definitions.

Closure The operations ~X + ~Y and k ~X are defined and result in
a new data item package [a vector] which is also in V .

Addition ~X + ~Y = ~Y + ~X commutative
~X + (~Y + ~Z) = (~Y + ~X) + ~Z associative

Vector ~0 is defined and ~0 + ~X = ~X zero

Vector − ~X is defined and ~X + (− ~X) = ~0 negative

Scalar

multiply

k(~X + ~Y) = k ~X + k~Y distributive I

(k1 + k2) ~X = k1
~X + k2

~X distributive II

k1(k2
~X) = (k1k2) ~X distributive III

1 ~X = ~X identity

Definition 1 (Vector Space)
A data set V equipped with + and · operations satisfying the closure
law and the eight toolkit properties is called an abstract vector space.

1If you think vectors are arrows, then re-tool your thoughts. Think of vectors as
data item packages. A technical word, vector can also mean a graph, a matrix for
a digital photo, a sequence, a signal, an impulse, or a differential equation solution .

5.1 Vectors and Matrices 251

What’s a space? There is no intended geometrical implication in this
term. The usage of space originates from phrases like parking space
and storage space. An abstract vector space is a data set for an ap-
plication, organized as packages of data items, together with + and ·
operations, which satisfy the toolkit of eight manipulation rules. The
packaging of individual data items is structured, or organized, by some
scheme, which amounts to a storage space, hence the term space.

What does abstract mean? The technical details of the packaging and
the organization of the data set are invisible to the toolkit rules. The
toolkit acts on the formal packages, which are called vectors. Briefly, the
toolkit is used abstractly, devoid of any details of the storage scheme.

A variety of data sets. The coordinate spaces are the sets Rn of
all fixed n-vectors. They are structured packaging systems which or-
ganize data sets from calculations, geometrical problems and physical
vector diagrams. Similarly, function spaces are structured packages
of graphs representing solutions to differential equations. Infinite se-
quence spaces are suited to organize the coefficients of series expan-
sions, like Fourier series and Taylor series. Matrix spaces are struc-
tured systems which can organize two-dimensional data sets, like the set
of pixels for a digital color photograph.

Subspaces and Data Analysis. Subspaces address the issue of
how to do efficient data analysis on a smaller subset S of a data set V .
We assume the larger data set V is equipped with + and · and has
the 8 property toolkit: it is an abstract vector space by assumption.

To illustrate the idea, consider a problem in planar kinematics and a
laboratory data recorder that approximates the x, y, z location of an
object in 3-dimensional space. The recorder puts the data set of the
kinematics problem into fixed 3-vectors. After the recording, the data
analysis begins.

From the beginning, the kinematics problem is planar, and we should
have done the data recording using 2-vectors. However, the plane of ac-
tion may not be nicely aligned with the axes set up by the data recorder,
and this spin on the experiment causes the 3-dimensional recording.

The kinematics problem and its algebraic structure are exactly planar,
but the geometry for the recorder data may be opaque. For instance,
the plane might be given by a homogeneous restriction equation like

x + 2y − z = 0.

The restriction equation is preserved by + and · (details later). Then
data analysis on the smaller planar data set can proceed to use the
toolkit at will, knowing that all calculations will be in the plane, hence
physically relevant to the original kinematics problem.

252 Linear Algebra

Physical data in reality contains errors, preventing the data from exactly
satisfying an ideal restriction equation like x + 2y− z = 0. Methods like
least squares can construct the idealized equations. The physical data
is then massaged by projection, making a new data set S that exactly
satisfies x + 2y − z = 0.

Definition 2 (Subspace)
A subset S of an abstract vector space V is called a subspace if it is
a nonempty vector space under the operations of addition and scalar
multiplication inherited from V .

In applications, a subspace of V is a smaller data set S, recorded using
the same data packages as V . The smaller set S contains at least the
vector 0. Required is that the algebraic operations of addition and scalar
multiplication acting on S give answers back in S. Then the entire 8-
property toolkit is available for calculations in the smaller data set S.
Applied scientists view the formalism of a subspace to be an essential
sanity check for data analysis on the smaller set.

A subset S of a vector space V is verified to be a subspace of V by the

Subspace Criterion. The subset S contains 0 and for

each pair v1, v2 in S and constants c1, c2 the combination

v = c1v1 + c2v2 belongs to S.

Most applications define a subspace S by a restriction on elements of V ,
normally realized as a set of linear homogeneous equations. For instance,
the xy-plane is a subspace of R3 realized by the restriction equation
z = 0.

Actual use of the subspace criterion is rare, because most restriction
equations can be re-written so that the following key theorem can be
applied. For instance, x + y + z = 0 can be re-written as the matrix
equation







1 1 1
0 0 0
0 0 0













x
y
z






=







0
0
0






.

If A denotes the displayed matrix, then the equation x + y + z = 0 is
equivalent to the vector-matrix equation Ax = 0.

Theorem 1 (Subspaces and Restriction Equations)
Let V be one of the vector spaces Rn and let A be an m×n matrix. Define

the data set

S = {x : x in V and Ax = 0}.

Then S is a subspace of V , that is, operations of addition and scalar multi-

plication applied to data in S give data back in S and the 8-property toolkit

applies to S-data.

5.1 Vectors and Matrices 253

Proof: Zero is in S because A0 = 0 for any matrix A. To verify the subspace
criterion, we verify that, for x and y in S, the vector z = c1x+c2y also belongs
to S. The details:

Az = A(c1x + c2y)

= A(c1x) + A(c2y)

= c1Ax + c2Ay

= c10 + c20 Because Ax = Ay = 0, due to x, y in S.

= 0 Therefore, Az = 0, and z is in S.

The proof is complete.

When does Theorem 1 apply? A vector space of functions, used
as data sets in differential equations, does not satisfy the hypothesis of
Theorem 1, because V is not one of the spacesRn. This is why a subspace
sanity check for a function space uses the basic subspace criterion, and
not Theorem 1.

How to apply Theorem 1. Let V be the vector space R4 of all fixed
4-vectors with components x1, x2, x3, x4 and let S be the subspace of V
defined by the restriction equation x4 = 0.

The matrix equation Ax = 0 of the theorem can be taken to be










0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0





















x1

x2

x3

x4











=











0
0
0
0











.

The following test enumerates three common conditions for which S fails
to pass the sanity test for a subspace. It is justified from the subspace
criterion.

Theorem 2 (Testing S not a Subspace)
Let V be an abstract vector space and assume S is a subset of V . Then S
is not a subspace of V provided one of the following holds.

(1) The vector 0 is not in S.

(2) Some x and −x are not both in S.

(3) Vector x + y is not in S for some x and y in S.

Linear Combinations and Closure. A linear combination of
vectors v1,. . . ,vk is defined to be a sum

x = c1v1 + · · ·+ ckvk,

where c1,. . . ,ck are constants. The closure property for a subspace S
can be stated as linear combinations of vectors in S are again in S.

254 Linear Algebra

Therefore, according to the subspace criterion, S is a subspace of V
provided 0 is in S and S is closed under the operations + and · inherited
from the larger data set V .

The Parking Lot Analogy. A useful visualization for vector space

and subspace is a parking lot with valet parking. The large lot represents
the storage space of the larger data set associated with a vector space
V . The parking lot rules, such as display your ticket, park between the

lines, correspond to the toolkit of 8 vector space rules. The valet parking
lot, which is a smaller roped-off area within the larger lot, is also storage
space, subject to the same rules as the larger lot: it’s data set corresponds
to a subspace S of V . Just as additional restrictions apply to the valet lot,
a subspace S is generally defined by equations, relations or restrictions
on the data items of V .

Valet lot

Hotel Parking Lot Figure 5. Parking lot analogy.
An abstract vector space V and one
of its subspaces S can be visualized
through the analogy of a parking lot
(V) containing a valet lot (S).

Vector Algebra. The norm or length of a fixed vector ~X with
components x1, . . . , xn is given by the formula

| ~X| =
√

x2
1
+ · · · + x2

n.

This measurement can be used to quantify the numerical error between
two data sets stored in vectors ~X and ~Y :

norm-error = | ~X − ~Y |.

The dot product ~X · ~Y of two fixed vectors ~X and ~Y is defined by







x1

...
xn






·







y1

...
yn






= x1y1 + · · ·+ xnyn.

If n = 3, then | ~X ||~Y | cos θ = ~X · ~Y where θ is the angle between ~X
and ~Y . In analogy, two n-vectors are said to be orthogonal provided
~X · ~Y = 0. It is usual to require that | ~X | > 0 and |~Y | > 0 when talking
about the angle θ between vectors, in which case we define θ to be the
acute angle (0 ≤ θ < π) satisfying

cos θ =
~X · ~Y

| ~X ||~Y |
.

5.1 Vectors and Matrices 255

Y

X

θ
Figure 6. Angle θ between two
vectors X, Y.

The shadow projection of vector ~X onto the direction of vector ~Y is
the number d defined by

d =
~X · ~Y

|~Y |
.

The triangle determined by ~X and (d/|~Y |)~Y is a right triangle.

d

X

Y Figure 7. Shadow projection d of
vector X onto the direction of
vector Y.

Matrices are vector packages. A matrix A is a package of so
many fixed vectors, considered together, and written as a 2-dimensional
array

A =













a11 a12 · · · a1n

a21 a22 · · · a2n

...
am1 am2 · · · amn













.

The packaging can be in terms of column vectors or row vectors:











a11

a21

· · ·
an1











· · ·











a1m

a2m

· · ·
anm











or























(a11, a12, . . . , a1n)
(a21, a22, . . . , a2n)

...
(am1, am2, . . . , amn)

.

Equality of matrices. Two matrices A and B are said to be equal pro-
vided they have identical row and column dimensions and corresponding
entries are equal. Equivalently, A and B are equal if they have identical
columns, or identical rows.

Mailbox analogy. A matrix A can be visualized as a rectangular col-
lection of so many mailboxes labeled (i, j) with contents aij , where the
row index is i and the column index is j; see Table 2.

256 Linear Algebra

Table 2. The mailbox analogy.

A matrix A is visualized as a block of mailboxes, each located by row index i

and column index j. The box at (i, j) contains data aij .

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
...

am1 am2 · · · amn

Computer Storage. Computer programs store matrices as a long
single array. Array contents are fetched by computing the index into
the long array followed by retrieval of the numeric content aij . From a
computer viewpoint, vectors and matrices are the same objects.

For instance, a 2 × 2 matrix A =

(

a b
c d

)

can be stored by stacking

its rows into a column vector, the mathematical equivalent being the
one-to-one and onto mapping

(

a b
c d

)

←→











a
b
c
d











.

This mapping uniquely associates the 2 × 2 matrix A with a vector in
R4. Similarly, a matrix of size m×n is associated with a column vector
in Rk, where k = mn.

Matrix Addition and Scalar Multiplication. Addition of two
matrices is defined by applying fixed vector addition on corresponding
columns. Similarly, an organization by rows leads to a second definition
of matrix addition, which is exactly the same:












a11 · · · a1n

a21 · · · a2n

...
am1· · · amn













+













b11 · · · b1n

b21 · · · b2n

...
bm1· · · bmn













=













a11 + b11 · · · a1n + b1n
a21 + b21 · · · a2n + b2n

...
am1 + bm1· · · amn + bmn













.

Scalar multiplication of matrices is defined by applying scalar multipli-
cation to the columns or rows:

k













a11 · · · a1n

a21 · · · a2n

...
am1 · · · amn













=













ka11 · · · ka1n

ka21 · · · ka2n

...
kam1 · · · kamn













.

5.1 Vectors and Matrices 257

Both operations on matrices are motivated by considering a matrix to be
a long single array or vector, to which the standard fixed vector defini-
tions are applied. The operation of addition is properly defined exactly
when the two matrices have the same row and column dimensions.

Digital Photographs. A digital camera stores image sensor data as
a matrix A of numbers corresponding to the color and intensity of tiny
sensor sites called pixels or dots. The pixel position in the print is given
by row and column location in the matrix A.

A visualization of the image sensor is a checkerboard. Each square is
stacked with a certain number of checkers, the count proportional to
the number of electrons knocked loose by light falling on the photodiode
site.2

In 24-bit color, a pixel is represented in the matrix A by a coded integer
a = r+(256)g+(65536)b. Symbols r, g, b are integers between 0 and 255
which represent the intensity of colors red, green and blue, respectively.
For example, r = g = b = 0 is the color black while r = g = b = 255 is
the color white. Grander schemes exist, e.g., 32-bit and 128-bit color.3

Matrix addition can be visualized through matrices representing color
separations.4 When three monochrome transparencies of colors red,
green and blue (RGB) are projected simultaneously by a projector, the
colors add to make a full color screen projection. The three transparen-
cies can be associated with matrices R, G, B which contain pixel data for
the monochrome images. Then the projected image is associated with
the matrix sum R + G + B.

Scalar multiplication of matrices has a similar visualization. The pixel
information in a monochrome image (red, green or blue) is coded for
intensity. The associated matrix A of pixel data when multiplied by
a scalar k gives a new matrix kA of pixel data with the intensity of
each pixel adjusted by factor k. The photographic effect is to adjust
the range of intensities. In the checkerboard visualization of an image
sensor, factor k increases or decreases the checker stack height at each
square.

2Some digital cameras have three image sensors, one for each of colors red, green
and blue (RGB). Other digital cameras integrate the three image sensors into one
array, interpolating color-filtered sites to obtain the color data.

3A typical beginner’s digital camera makes low resolution color photos using 24-
bit color. The photo is constructed of 240 rows of dots with 320 dots per row. The
associated storage matrix A is of size 240 × 320. The identical small format is used
for video clips at up to 30 frames per second in video-capable digital cameras.

The storage format BMP stores data as bytes, in groups of three b, g, r, starting
at the lower left corner of the photo. Therefore, 240× 320 photos have 230, 400 data
bytes. The storage format JPEG reduces file size by compression and quality loss.

4James Clerk Maxwell is credited with the idea of color separation.

258 Linear Algebra

Matrix Multiply. College algebra texts cite the definition of matrix
multiplication as the product AB equals a matrix C given by the relations

cij = ai1b1j + · · ·+ ainbnj, 1 ≤ i ≤ m, 1 ≤ j ≤ k.

Below, we motivate the definition of matrix multiplication from an ap-
plied point of view, based upon familiarity with the dot product. Mi-
crocode implementations in vector supercomputers make use of a similar
viewpoint.

Matrix multiplication as a dot product extension. To illustrate
the basic idea by example, let

A =







−1 2 1
3 0 −3
4 −2 5






, ~X =







2
1
3






.

The product equation A ~X is displayed as the dotless juxtaposition







−1 2 1
3 0 −3
4 −2 5













2
1
3






,

which represents an unevaluated request to gang the dot product oper-
ation onto the rows of the matrix on the left:

(−1 2 1) ·





2
1
3



 = 3, (3 0 − 3) ·





2
1
3



 = −3, (4 − 2 5) ·





2
1
3



 = 21.

The evaluated request produces a column vector containing the dot prod-
uct answers, called the product of a matrix and a vector (no mention
of dot product), written as







−1 2 1
3 0 −3
4 −2 5













2
1
3






=







3
−3
21






.

The general scheme which gangs the dot product operation onto the
matrix rows can be written as













· · · row 1 · · ·
· · · row 2 · · ·

· · ·
... · · ·

· · · row m · · ·













~X =













(row 1) · ~X

(row 2) · ~X
...

(row m) · ~X













.

The product is properly defined only in case the number of matrix
columns equals the number of entries in ~X , so that the dot products
on the right are defined.

5.1 Vectors and Matrices 259

Matrix multiply as a linear combination of columns. The identity
(

a b
c d

)(

x1

x2

)

= x1

(

a
c

)

+ x2

(

b
d

)

implies that Ax is a linear combination of the columns of A, where A is
the 2× 2 matrix on the left.

This result holds in general. Assume A = aug(v1, . . . ,vn) and ~X has
components x1, . . . , xn. Then the definition of matrix multiply implies

A ~X = x1v1 + x2v2 + · · ·+ xnvn.

This relation is used so often, that we record it as a formal result.

Theorem 3 (Linear Combination of Columns)
The product of a matrix A and a vector x satisfies

Ax = x1 col(A, 1) + · · ·+ xn col(A,n)

where col(A, i) denotes column i of matrix A.

General matrix product AB. The evaluation of matrix products A~Y1,
A~Y2, . . . , A~Yk is a list of k column vectors which can be packaged into a
matrix C. Let B be the matrix which packages the columns ~Y1, . . . , ~Yk.
Define C = AB by the dot product definition

cij = (row i of A) · (col j of B).

This definition makes sense provided the column dimension of A matches
the row dimension of B. It is consistent with the earlier definition from
college algebra and the definition of A~Y , therefore it may be taken as
the basic definition for a matrix product.

How to multiply matrices on paper. Most persons make arithmetic
errors when computing dot products

(

−7 3 5
)

·







−1
3
−5






= −9,

because alignment of corresponding entries must be done mentally. It is
visually easier when the entries are aligned.

On paper, persons often arrange their work for a matrix times a vector
as below, so that the entries align. The boldface transcription above the
columns is temporary, erased after the dot product step.

−1 3 −5






−7 3 5
−5 −2 3

1 −3 −7






·







−1
3
−5






=







−9
−16

25







260 Linear Algebra

Special matrices. The zero matrix, denoted 0, is the m×n matrix
all of whose entries are zero. The identity matrix, denoted I, is the
n× n matrix with ones on the diagonal and zeros elsewhere: aij = 1 for
i = j and aij = 0 for i 6= j.

0 =













0 0 · · · 0
0 0 · · · 0

...
0 0 · · · 0













, I =













1 0 · · · 0
0 1 · · · 0

...
0 0 · · · 1













.

The negative of a matrix A is (−1)A, which multiplies each entry of A
by the factor (−1):

−A =













−a11 · · · −a1n

−a21 · · · −a2n

...
−am1· · · −amn













.

Square matrices. An n × n matrix A is said to be square. The
entries akk, k = 1, . . . , n of a square matrix make up its diagonal. A
square matrix A is lower triangular if aij = 0 for i > j, and upper
triangular if aij = 0 for i < j; it is triangular if it is either upper
or lower triangular. Therefore, an upper triangular matrix has all zeros
below the diagonal and a lower triangular matrix has all zeros above the
diagonal. A square matrix A is a diagonal matrix if aij = 0 for i 6= j,
that is, the off-diagonal elements are zero. A square matrix A is a scalar
matrix if A = cI for some constant c.

upper

triangular

=













a11 a12 · · · a1n

0 a22 · · · a2n

...
0 0 · · · ann













,
lower

triangular

=













a11 0 · · · 0
a21 a22 · · · 0

...
an1 an2 · · · ann













,

diagonal =













a11 0 · · · 0
0 a22 · · · 0

...
0 0 · · · ann













, scalar =













c 0 · · · 0
0 c · · · 0

...
0 0 · · · c













.

Matrix algebra. A matrix can be viewed as a single long array, or
fixed vector, therefore the toolkit for fixed vectors applies to matrices.

Let A, B, C be matrices of the same row and column dimensions and
let k1, k2, k be constants. Then

Closure The operations A + B and kA are defined and result in a
new matrix of the same dimensions.

5.1 Vectors and Matrices 261

Addition

rules

A + B = B + A commutative

A + (B + C) = (A + B) + C associative

Matrix 0 is defined and 0 + A = A zero

Matrix −A is defined and A + (−A) = 0 negative

Scalar

multiply

rules

k(A + B) = kA + kB distributive I

(k1 + k2)A = k1A + k2B distributive II

k1(k2A) = (k1k2)A distributive III

1A = A identity

These rules collectively establish that the set of all m× n matrices is an
abstract vector space.

The operation of matrix multiplication gives rise to some new matrix
rules, which are in common use, but do not qualify as vector space rules.

Associative A(BC) = (AB)C, provided products BC and AB
are defined.

Distributive A(B + C) = AB + AC, provided products AB and
AC are defined.

Right Identity AI = A, provided AI is defined.

Left Identity IA = A, provided IA is defined.

Transpose. Swapping rows and columns of a matrix A results in a new
matrix B whose entries are given by bij = aji. The matrix B is denoted
AT (pronounced “A-transpose”). The transpose has these properties:

(AT)T = A Identity

(A + B)T = AT + BT Sum

(AB)T = BTAT Product

(kA)T = kAT Scalar

A matrix A is said to be symmetric if AT = A, which implies that the
row and column dimensions of A are the same and aij = aji.

Inverse matrix. A square matrix B is said to be an inverse of a
square matrix A provided AB = BA = I. The symbol I is the identity
matrix of matching dimension. A given matrix A may not have an
inverse, for example, 0 times any square matrix B is 0, which prohibits
a relation 0B = B0 = I. When A does have an inverse B, then the
notation A−1 is used for B, hence AA−1 = A−1A = I. The following
properties of inverses will be proved on page 262.

Theorem 4 (Inverses)
Let A, B, C denote square matrices. Then

262 Linear Algebra

(a) A matrix has at most one inverse, that is, if AB = BA = I and

AC = CA = I, then B = C.

(b) If A has an inverse, then so does A−1 and (A−1)−1 = A.

(c) If A has an inverse, then (A−1)T = (AT)−1.

(d) If A and B have inverses , then (AB)−1 = B−1A−1.

Left to be discussed is how to find the inverse A−1. For a 2× 2 matrix,
there is an easily justified formula, which is to be used enough to be
committed to memory.

Theorem 5 (Inverse of a 2× 2)

(

a b
c d

)

−1

=
1

ad− bc

(

d −b
−c a

)

.

In words, the theorem says:

Swap the diagonal entries, change signs on the off-diagonal

entries, then divide by the determinant ad− bc.

There is a generalization of this formula to n × n matrices, which is
equivalent to the formulas in Cramer’s rule. It will be done during the
study of determinants; the statement is paraphrased as follows:

A−1 =
adjugate matrix of A

determinant of A
.

A general and efficient method for computing inverses, based upon rref
methods, will be presented in the next section. The method can be im-
plemented on hand calculators, computer algebra systems and computer
numerical laboratories.

Proof of Theorem 4: (a) If AB = BA = I and AC = CA = I, then
B = BI = BAC = IC = C.
(b) Let B = A−1. Given AB = BA = I, then by definition A is an inverse of
B, but by (a) it is the only one, so (A−1)−1 = B−1 = A.
(c) Let B = A−1. We show BT = (AT)−1 or equivalently C = BT satisfies
AT C = CAT = I. Start with AB = BA = I, take the transpose to get
BT AT = AT BT = I. Substitute C = BT , then CAT = AT C = I, which was
to be proved.
(d) The formula is proved by showing that C = B−1A−1 satisfies (AB)C =
C(AB) = I. The left side is (AB)C = ABB−1A−1 = I and the right side
C(AB) = B−1A−1AB = I, proving LHS = RHS.

5.1 Vectors and Matrices 263

Exercises 5.1

Fixed vectors. Perform the indicated
operation(s).

1.

(

1
−1

)

+

(

−2
1

)

2.

(

2
−2

)

−

(

1
−3

)

3.





1
−1

2



+





−2
1
−1





4.





2
−2

9



−





1
−3

7





5. 2

(

1
−1

)

+ 3

(

−2
1

)

6. 3

(

2
−2

)

− 2

(

1
−3

)

7. 5





1
−1

2



+ 3





−2
1
−1





8. 3





2
−2

9



− 5





1
−3

7





9.





1
−1

2



+





−2
1
−1



−





1
2
−3





10.





2
−2

4



−





1
−3

5



−





1
3
−2





Parallelogram Rule. Determine the
resultant vector in two ways: (a) the
parallelogram rule, and (b) fixed vec-
tor addition.

11.

(

2
−2

)

+

(

1
−3

)

12. (2ı− 2) + (ı− 3)

13.





2
2
2



+





1
3
0





14. (2ı− 2 + 3k) + (ı− 3− k)

Toolkit. Let V be the data set of all
fixed 2-vectors, V = R2. Define addi-
tion and scalar multiplication compo-
nentwise. Verify the following toolkit
rules by direct computation.

15. (Commmutative)
~X + ~Y = ~Y + ~X

16. (Associative)
~X + (~Y + ~Z) = (~Y + ~X) + ~Z

17. (Zero)

Vector ~0 is defined and ~0+ ~X = ~X

18. (Negative)

Vector − ~X is defined and
~X + (− ~X) = ~0

19. (Distributive I)

k(~X + ~Y) = k ~X + k~Y

20. (Distributive II)

(k1 + k2) ~X = k1
~X + k2

~X

21. (Distributive III)

k1(k2
~X) = (k1k2) ~X

22. (Identity)

1 ~X = ~X

Subspaces. Verify that the given re-
striction equation defines a subspace S
of V = R3. Use Theorem 1, page 252.

23. z = 0

24. y = 0

25. x + z = 0

26. 2x + y + z = 0

27. x = 2y + 3z

28. x = 0, z = x

29. z = 0, x + y = 0

30. x = 3z − y, 2x = z

264 Linear Algebra

31. x + y + z = 0, x + y = 0

32. x + y − z = 0, x− z = y

Not a Subspace. Test the following
restiction equations for V = R3 and
show that the corresponding subset S
is not a subspace of V .

33. x = 1

34. x + z = 1

35. xz = 2

36. xz + y = 1

37. xz + y = 0

38. xyz = 0

39. z ≥ 0

40. x ≥ 0 and y ≥ 0

41. Octant I

42. The interior of the unit sphere

Dot Product. Find the dot product
of a and b.

43. a =

(

1
−1

)

and b =

(

0
−2

)

.

44. a =

(

1
2

)

and b =

(

1
−2

)

.

45. a =





1
−1

0



 and b =





0
−2

1



.

46. a =





1
2
1



 and b =





1
−2

0



.

47. a and b are inR169, a has all com-
ponents 1 and b has all compo-
nents −1, except four, which all
equal 5.

48. a and b are inR200, a has all com-
ponents −1 and b has all compo-
nents −1 except three, which are
zero.

Length of a Vector. Find the length
of the vector v.

49. v =

(

1
−1

)

.

50. v =

(

2
−1

)

.

51. v =





1
−1

2



.

52. v =





2
0
2



.

Shadow Projection. Find the
shadow projection d = a · b/|b|.

53. a =

(

1
−1

)

and b =

(

0
−2

)

.

54. a =

(

1
2

)

and b =

(

1
−2

)

.

55. a =





1
−1

0



 and b =





0
−2

1



.

56. a =





1
2
1



 and b =





1
−2

0



.

Acute Angle. Find the acute angle θ
bewteen the given vectors.

57. a =

(

1
−1

)

and b =

(

0
−2

)

.

58. a =

(

1
2

)

and b =

(

1
−2

)

.

59. a =





1
−1

0



 and b =





0
−2

1



.

60. a =





1
2
1



 and b =





1
−2

0



.

5.1 Vectors and Matrices 265

Matrix Multiply. Find the given ma-
trix product or else explain why it does
not exist.

61.

(

1 1
1 −1

)(

1
−2

)

62.

(

1 −1
1 0

)(

1
−2

)

63.

(

1 1
1 2

)(

1
−1

)

64.

(

1 2
3 1

)(

2
−1

)

65.





1 1 1
1 −1 1
1 0 0









1
−2

0





66.





1 0 1
1 −1 0
1 1 0









1
2
0





67.





1 1 1
1 0 2
1 2 0









1
3
1





68.





1 2 1
1 −2 0
1 1 −1









1
2
1





69.





1 1 1
1 −1 1
1 0 0









1 0 0
0 −1 0
0 0 1





70.





1 1 1
1 −1 1
1 0 0









1 1 0
0 −1 0
0 0 1





71.

(

1 1
−1 1

)





1 1
1 0
1 2





72.





1 1 1
1 0 2
1 2 0





(

1 1
−1 1

)

Matrices. Verify the result.

73. Let C be an m×n matrix. Let ~X
be column i of the n× n identity
I. Define ~Y = C ~X . Verify that ~Y
is column i of C.

74. Let A and C be an m × n ma-
trices such that AC = 0. Verify
that each column ~Y of C satisfies
A~Y = ~0.

75. Let A be an m × n matrix and
let ~Y1, . . . , ~Yn be column vectors
packaged into an n × n matrix
C. Assume each column vector
~Yi satisfies the equation A~Yi = ~0,
1 ≤ i ≤ n. Show that AC = 0.

