Chapter 5

Linear Algebra

The subject of **linear algebra** includes the solution of linear equations, a topic properly belonging to college algebra. Earlier in this text, the theory of linear algebraic equations was presented, without the aid of vector-matrix notation. The project before us is to introduce specialized vector-matrix notation and to extend the methods used to solve linear algebraic equations. Enrichment includes a full study of rank, nullity and basis from the vector-matrix viewpoint.

Engineers can view linear algebra as the essential language interface between an application and a computer algebra system or a computer numerical laboratory. Without the language interface, computer assist would be impossibly tedious.

- Section 5.1 Vectors, vector spaces, matrices. Topics: matrix equations, change of variable, matrix multiplication, row operations, reduced row echelon form, matrix differential equation.
- Section 5.2 Matrix equations $A\mathbf{x} = \mathbf{b}$ solved by the **rref** method. Topics: *nullity*, *rank*, *inverse*, *elementary matrix*.
- Section 5.3 Determinant topics: an applied definition of determinant, the four rules, cofactor expansion, inverse and adjoint, Cramer's rule, elementary matrices, product rule, Cayley-Hamilton theorem. Enrichment includes a characterization of determinants from row and/or column properties.
- Section 5.4 Eigenanalysis for matrix equations I. Topics: eigenanalysis, eigenvalue, eigenvector, eigenpair, diagonalization.
- Section 5.5 Eigenanalysis for matrix equations II. Applications to geometry and differential equations. Topics: *ellipsoid and eigenanalysis, change of basis, uncoupled systems, coupled systems.*
- Section 5.6 Euclidean space \mathcal{R}^n , continuous function space C(E), the spaces $C^1(E)$ and $C^n(E)$, and general abstract vector spaces. Topics: independence, dependence, digital photos, basis, dimension, pivot column method, row space, column space, nullspace, equivalent bases.

5.1 Vectors and Matrices

The advent of computer algebra systems and computer numerical laboratories has precipitated a common need among engineers and scientists to learn the language of vectors and matrices, which is used heavily in applications.

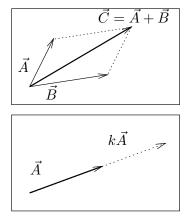
Fixed Vector Model. A fixed vector \vec{X} is a one-dimensional array called a column vector or a row vector, denoted correspondingly by

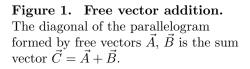
(1)
$$\vec{X} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 or $\vec{X} = \begin{pmatrix} x_1, x_2, \dots, x_n \end{pmatrix}$.

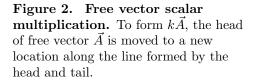
The entries or components x_1, \ldots, x_n are numbers and n is correspondingly called the column dimension or the row dimension of the vector in (1). The set of all *n*-vectors (1) is denoted \mathcal{R}^n .

Practical matters. A fixed vector is a **package** of application data items. The term **vector** means **data item package** and the collection of all data item packages is the **data set**. Data items are usually numbers. A fixed vector imparts an implicit ordering to the package. To illustrate, a fixed vector might have n = 6 components x, y, z, p_x, p_y, p_z , where the first three are space position and the last three are momenta, with respective associated units meters and kilogram-meters per second.

Vector addition and **vector scalar multiplication** are defined by componentwise operations as follows.


$\left(\begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array}\right) -$	$+\left(egin{array}{c} y_1\\ y_2\\ \vdots\\ y_n\end{array} ight)$	=	$\left(\begin{array}{c} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{array}\right)$, k	$\left(\begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array} \right)$	=	$\left(\begin{array}{c}kx_1\\kx_2\\\vdots\\kx_n\end{array}\right)$	
$\langle x_n \rangle$	$\langle y_n \rangle$		$\left(x_n + y_n \right)$		$\langle x_n \rangle$		$\langle kx_n \rangle$	


The Mailbox Analogy. Fixed vectors can be visualized as in Table 1, in which the fixed vector entries x_1, \ldots, x_n appear as contents of mailboxes with names 1, 2, ..., n.


x_1 x_2	mailbox 1 mailbox 2
\vdots	\vdots mailbox n

Free Vector Model. In the model, rigid motions from geometry are applied to directed line segments. A line segment \overline{PQ} is represented as an **arrow** with head at Q and tail at P. Two such arrows are considered **equivalent** if they can be **rigidly translated** to the same arrow whose tail is at the origin. The arrows are called **free vectors**. They are denoted by the symbol \overrightarrow{PQ} or sometimes \overrightarrow{A} , which labels the arrow whose tail is at P and whose head is at Q.

The parallelogram rule defines **free vector addition**, as in Figure 1. To define **free vector scalar multiplication** $k\vec{A}$, we change the location of the head of vector \vec{A} ; see Figure 2. If 0 < k < 1, then the head shrinks to a location along the segment between the head and tail. If k > 1, then the head moves in the direction of the arrowhead. If k < 0, then the head is reflected along the line and then moved.

Physics Vector Model. This model is also called the \vec{i} , \vec{j} , \vec{k} vector model and the orthogonal triad model. The model arises from the free vector model by inventing symbols \vec{i} , \vec{j} , \vec{k} for a mutually orthogonal triad of free vectors. Usually, these three vectors represent free vectors of unit length along the coordinate axes, although use in the literature is not restricted to this specialized setting; see Figure 3.

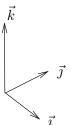


Figure 3. Fundamental triad. The free vectors \vec{i} , \vec{j} , \vec{k} are 90° apart and of unit length.

The advantage of the model is that any free vector can be represented as $a\vec{i} + b\vec{j} + c\vec{k}$ for some constants a, b, c, which gives an immediate connection to the free vector with head at (a, b, c) and tail at (0, 0, 0), as well as to the fixed vector whose components are a, b, c. Vector addition and salar multiplication are defined componentwise: if $\vec{A} = a_1\vec{i} + a_2\vec{j} + a_3\vec{k}$, $\vec{B} = b_1\vec{i} + b_2\vec{j} + b_3\vec{k}$ and c is a constant, then

$$\vec{A} + \vec{B} = (a_1 + b_1)\vec{\imath} + (a_2 + b_2)\vec{\jmath} + (a_3 + b_3)\vec{k},$$

$$c\vec{A} = (ca_1)\vec{\imath} + (ca_2)\vec{\jmath} + (ca_3)\vec{k}.$$

Formally, computations involving the **physics model** amount to fixed vector computations and the so-called *equalities* between free vectors and

fixed vectors:
$$\vec{i} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ \vec{j} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \ \vec{k} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Gibbs Vector Model. The model assigns physical properties to vectors, thus avoiding the pitfalls of free vectors and fixed vectors. Gibbs defines a vector as a **linear motion** that takes a point A into a point B. Visualize this idea as a workman who carries material from A to B: the material is loaded at A, transported along a straight line to B, and then deposited at B. Arrow diagrams arise from this idea by representing a motion from A to B as an arrow with tail at A and head at B.

Vector addition is defined as composition of motions: material is loaded at A and transported to B, then loaded at B and transported to C. Gibbs' idea in the plane is the parallelogram law; see Figure 4.

Vector scalar multiplication is defined so that 1 times a motion is itself, 0 times a motion is no motion and -1 times a motion loads at B and transports to A (the reverse motion). If k > 0, then k times a motion from A to B causes the load to be deposited at C instead of B, where kis the ratio of the lengths of segments \overline{AC} and \overline{AB} . If k < 0, then the definition is applied to the reverse motion from B to A using instead of k the constant |k|. Briefly, the load to be deposited along the direction to B is dropped earlier if 0 < |k| < 1 and later if |k| > 1.

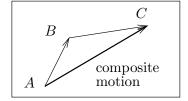


Figure 4. Planar composition of motions. The motion A to C is the composition of two motions or the *sum* of vectors AB and BC.

Comparison of Vector Models. It is possible to use free, physics and Gibbs vector models in free vector diagrams, almost interchangeably. In Gibbs' model, the negative of a vector and the zero vector are natural objects, whereas in the free and physics models they are problematic. To understand the theoretical difficulties, try to answer these questions:

- 1. What is the zero vector?
- 2. What is the meaning of the negative of a vector?

Some working rules which connect the free, physics and Gibbs models to the fixed model are the following.

Conversion	A fixed vector \vec{X} with components a, b, c converts to a free vector drawn from $(0,0,0)$ to (a,b,c) .
Addition	To add two free vectors, $\vec{Z} = \vec{X} + \vec{Y}$, place the tail of \vec{Y} at the head of \vec{X} , then draw vector \vec{Z} to form a triangle, from the tail of \vec{X} to the head of \vec{Y} .
Head–Tail	A free vector \vec{X} converts to a fixed vector whose com- ponents are the componentwise differences between the point at the head and the point at the tail. To subtract two free vectors, $\vec{Z} = \vec{Y} - \vec{X}$, place the tails of \vec{X} and \vec{Y} together, then draw \vec{Z} between the
	heads of \vec{X} and \vec{Y} , with the heads of \vec{Z} and \vec{Y} together.

The last item can be memorized as the phrase **head minus tail**. We shall reference both statements as the **head minus tail rule**.

Vector Spaces and the Toolkit. Consider any vector model: fixed, free, physics or Gibbs. Let V denote the **data set** of one of these models. The data set consists of packages of data items, called **vectors**.¹ Assume a particular dimension, n for fixed, 2 or 3 for the others. Let k, k_1, k_2 be constants. Let $\vec{X}, \vec{Y}, \vec{Z}$ represent three vectors in V. The following **toolkit** of eight (8) vector properties can be verified from the definitions.

Closure	The operations $\vec{X} + \vec{Y}$ and $k\vec{X}$ are defined and result in
	a new data item package [a vector] which is also in V .

Addition	$\begin{aligned} \vec{X} + \vec{Y} &= \vec{Y} + \vec{X} \\ \vec{X} + (\vec{Y} + \vec{Z}) &= (\vec{Y} + \vec{X}) + \vec{Z} \\ \text{Vector } \vec{0} \text{ is defined and } \vec{0} + \vec{X} &= \vec{X} \\ \text{Vector } -\vec{X} \text{ is defined and } \vec{X} + (-\vec{X}) &= \vec{0} \end{aligned}$	commutative associative zero negative
Scalar multiply	$\begin{split} k(\vec{X} + \vec{Y}) &= k\vec{X} + k\vec{Y} \\ (k_1 + k_2)\vec{X} &= k_1\vec{X} + k_2\vec{X} \\ k_1(k_2\vec{X}) &= (k_1k_2)\vec{X} \\ 1\vec{X} &= \vec{X} \end{split}$	distributive I distributive II distributive III identity

Definition 1 (Vector Space)

A data set V equipped with + and \cdot operations satisfying the closure law and the eight toolkit properties is called an **abstract vector space**.

¹If you think vectors are arrows, then re-tool your thoughts. Think of vectors as **data item packages**. A technical word, **vector** can also mean a graph, a matrix for a digital photo, a sequence, a signal, an impulse, or a differential equation solution.

What's a *space*? There is no intended geometrical implication in this term. The usage of **space** originates from phrases like **parking space** and **storage space**. An abstract vector space is a data set for an application, organized as packages of data items, together with + and \cdot operations, which satisfy the toolkit of eight manipulation rules. The packaging of individual data items is structured, or organized, by some scheme, which amounts to a *storage space*, hence the term *space*.

What does *abstract* mean? The technical details of the packaging and the organization of the data set are invisible to the toolkit rules. The toolkit acts on the formal packages, which are called **vectors**. Briefly, the toolkit is used **abstractly**, devoid of any details of the storage scheme.

A variety of data sets. The coordinate spaces are the sets \mathcal{R}^n of all fixed *n*-vectors. They are structured packaging systems which organize data sets from calculations, geometrical problems and physical vector diagrams. Similarly, **function spaces** are structured packages of graphs representing solutions to differential equations. Infinite sequence spaces are suited to organize the coefficients of series expansions, like Fourier series and Taylor series. Matrix spaces are structured systems which can organize two-dimensional data sets, like the set of pixels for a digital color photograph.

Subspaces and Data Analysis. Subspaces address the issue of how to do efficient data analysis on a smaller subset S of a data set V. We assume the larger data set V is equipped with + and \cdot and has the 8 property toolkit: it is an abstract vector space by assumption.

To illustrate the idea, consider a problem in planar kinematics and a laboratory data recorder that approximates the x, y, z location of an object in 3-dimensional space. The recorder puts the data set of the kinematics problem into fixed 3-vectors. After the recording, the data analysis begins.

From the beginning, the kinematics problem is planar, and we should have done the data recording using 2-vectors. However, the plane of action may not be nicely aligned with the axes set up by the data recorder, and this spin on the experiment causes the 3-dimensional recording.

The kinematics problem and its algebraic structure are exactly planar, but the geometry for the recorder data may be opaque. For instance, the plane might be given by a homogeneous restriction equation like

$$x + 2y - z = 0.$$

The restriction equation is preserved by [+] and $\overline{}$ (details later). Then data analysis on the smaller planar data set can proceed to use the toolkit at will, knowing that all calculations will be in the plane, hence physically relevant to the original kinematics problem.

Physical data in reality contains errors, preventing the data from exactly satisfying an ideal restriction equation like x + 2y - z = 0. Methods like **least squares** can construct the idealized equations. The physical data is then massaged by projection, making a new data set S that exactly satisfies x + 2y - z = 0.

Definition 2 (Subspace)

A subset S of an abstract vector space V is called a **subspace** if it is a nonempty vector space under the operations of addition and scalar multiplication inherited from V.

In applications, a subspace of V is a smaller data set S, recorded using the same data packages as V. The smaller set S contains at least the vector **0**. Required is that the algebraic operations of addition and scalar multiplication acting on S give answers back in S. Then the entire 8property toolkit is available for calculations in the smaller data set S. Applied scientists view the formalism of a subspace to be an essential **sanity check** for data analysis on the smaller set.

A subset S of a vector space V is verified to be a subspace of V by the

Subspace Criterion. The subset S contains 0 and for each pair \mathbf{v}_1 , \mathbf{v}_2 in S and constants c_1 , c_2 the combination $\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2$ belongs to S.

Most applications define a subspace S by a *restriction* on elements of V, normally realized as a set of linear homogeneous equations. For instance, the xy-plane is a subspace of \mathcal{R}^3 realized by the restriction equation z = 0.

Actual use of the subspace criterion is rare, because most restriction equations can be re-written so that the following key theorem can be applied. For instance, x + y + z = 0 can be re-written as the matrix equation

$$\left(\begin{array}{rrrr}1&1&1\\0&0&0\\0&0&0\end{array}\right)\left(\begin{array}{r}x\\y\\z\end{array}\right) = \left(\begin{array}{r}0\\0\\0\end{array}\right).$$

If A denotes the displayed matrix, then the equation x + y + z = 0 is equivalent to the vector-matrix equation $A\mathbf{x} = \mathbf{0}$.

Theorem 1 (Subspaces and Restriction Equations)

Let V be one of the vector spaces \mathcal{R}^n and let A be an $m\times n$ matrix. Define the data set

$$S = \{ \mathbf{x} : \mathbf{x} \text{ in } V \text{ and } A\mathbf{x} = \mathbf{0} \}.$$

Then S is a subspace of V, that is, operations of addition and scalar multiplication applied to data in S give data back in S and the 8-property toolkit applies to S-data.

Proof: Zero is in S because $A\mathbf{0} = \mathbf{0}$ for any matrix A. To verify the subspace criterion, we verify that, for \mathbf{x} and \mathbf{y} in S, the vector $\mathbf{z} = c_1\mathbf{x} + c_2\mathbf{y}$ also belongs to S. The details:

 $\begin{aligned} A\mathbf{z} &= A(c_1\mathbf{x} + c_2\mathbf{y}) \\ &= A(c_1\mathbf{x}) + A(c_2\mathbf{y}) \\ &= c_1A\mathbf{x} + c_2A\mathbf{y} \\ &= c_1\mathbf{0} + c_2\mathbf{0} \\ &= \mathbf{0} \end{aligned}$ Because $A\mathbf{x} = A\mathbf{y} = \mathbf{0}$, due to \mathbf{x} , \mathbf{y} in S.

The proof is complete.

When does Theorem 1 apply? A vector space of functions, used as data sets in differential equations, does not satisfy the hypothesis of Theorem 1, because V is not one of the spaces \mathcal{R}^n . This is why a subspace sanity check for a function space uses the basic subspace criterion, and not Theorem 1.

How to apply Theorem 1. Let V be the vector space \mathcal{R}^4 of all fixed 4-vectors with components x_1, x_2, x_3, x_4 and let S be the subspace of V defined by the *restriction equation* $x_4 = 0$.

The matrix equation $A\mathbf{x} = \mathbf{0}$ of the theorem can be taken to be

$\left(\begin{array}{c} 0 \end{array} \right)$	0	0	1	(x_1)		$\left(\begin{array}{c} 0 \end{array} \right)$
0	0	0	0	x_2		0
0	0	0	0	x_3	=	0.
$\int 0$	0	0	0 /	$\left(x_4 \right)$		$\left(0 \right)$

The following test enumerates three common conditions for which S fails to pass the sanity test for a subspace. It is justified from the subspace criterion.

Theorem 2 (Testing *S* not a Subspace)

Let V be an abstract vector space and assume S is a subset of V. Then S is not a subspace of V provided one of the following holds.

- (1) The vector 0 is not in S.
- (2) Some \mathbf{x} and $-\mathbf{x}$ are not both in S.
- (3) Vector $\mathbf{x} + \mathbf{y}$ is not in S for some \mathbf{x} and \mathbf{y} in S.

Linear Combinations and Closure. A linear combination of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ is defined to be a sum

$$\mathbf{x} = c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k,$$

where c_1, \ldots, c_k are constants. The **closure** property for a subspace S can be stated as *linear combinations of vectors in S are again in S*.

Therefore, according to the subspace criterion, S is a subspace of V provided **0** is in S and S is closed under the operations + and \cdot inherited from the larger data set V.

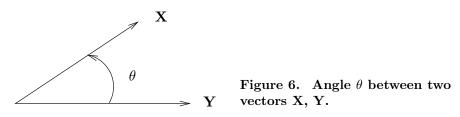
The Parking Lot Analogy. A useful visualization for vector space and subspace is a parking lot with valet parking. The large lot represents the storage space of the larger data set associated with a vector space V. The parking lot rules, such as display your ticket, park between the lines, correspond to the toolkit of 8 vector space rules. The valet parking lot, which is a smaller roped-off area within the larger lot, is also storage space, subject to the same rules as the larger lot: it's data set corresponds to a subspace S of V. Just as additional restrictions apply to the valet lot, a subspace S is generally defined by equations, relations or restrictions on the data items of V.

Figure 5. Parking lot analogy. An abstract vector space V and one of its subspaces S can be visualized through the analogy of a parking lot (V) containing a valet lot (S).

Vector Algebra. The norm or length of a fixed vector \vec{X} with components x_1, \ldots, x_n is given by the formula

$$|\vec{X}| = \sqrt{x_1^2 + \dots + x_n^2}.$$

This measurement can be used to quantify the numerical error between two data sets stored in vectors \vec{X} and \vec{Y} :


norm-error = $|\vec{X} - \vec{Y}|$.

The **dot product** $\vec{X} \cdot \vec{Y}$ of two fixed vectors \vec{X} and \vec{Y} is defined by

$$\begin{pmatrix} x_1\\ \vdots\\ x_n \end{pmatrix} \cdot \begin{pmatrix} y_1\\ \vdots\\ y_n \end{pmatrix} = x_1y_1 + \dots + x_ny_n.$$

If n = 3, then $|\vec{X}||\vec{Y}|\cos\theta = \vec{X} \cdot \vec{Y}$ where θ is the **angle between** \vec{X} and \vec{Y} . In analogy, two *n*-vectors are said to be **orthogonal** provided $\vec{X} \cdot \vec{Y} = 0$. It is usual to require that $|\vec{X}| > 0$ and $|\vec{Y}| > 0$ when talking about the angle θ between vectors, in which case we *define* θ to be the acute angle $(0 \le \theta < \pi)$ satisfying

$$\cos\theta = \frac{\vec{X} \cdot \vec{Y}}{|\vec{X}||\vec{Y}|}$$

The **shadow projection** of vector \vec{X} onto the direction of vector \vec{Y} is the number d defined by

$$d = \frac{\vec{X} \cdot \vec{Y}}{|\vec{Y}|}.$$

The triangle determined by \vec{X} and $(d/|\vec{Y}|)\vec{Y}$ is a right triangle.

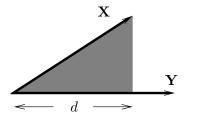


Figure 7. Shadow projection d of vector X onto the direction of vector Y.

Matrices are vector packages. A matrix A is a package of so many fixed vectors, considered together, and written as a 2-dimensional array

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ & & \vdots & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}.$$

The packaging can be in terms of **column vectors** or **row vectors**:

$$\begin{pmatrix} a_{11} \\ a_{21} \\ \cdots \\ a_{n1} \end{pmatrix} \cdots \begin{pmatrix} a_{1m} \\ a_{2m} \\ \cdots \\ a_{nm} \end{pmatrix} \text{ or } \begin{cases} (a_{11}, a_{12}, \dots, a_{1n}) \\ (a_{21}, a_{22}, \dots, a_{2n}) \\ \vdots \\ (a_{m1}, a_{m2}, \dots, a_{mn}) \end{cases}$$

Equality of matrices. Two matrices A and B are said to be equal provided they have identical row and column dimensions and corresponding entries are equal. Equivalently, A and B are equal if they have identical columns, or identical rows.

Mailbox analogy. A matrix A can be visualized as a rectangular collection of so many mailboxes labeled (i, j) with contents a_{ij} , where the row index is i and the column index is j; see Table 2.

Table 2. The mailbox analogy.

A matrix A is visualized as a block of mailboxes, each located by row index i and column index j. The box at (i, j) contains data a_{ij} .

a_{11}	a_{12}		a_{1n}
a_{21}	a_{22}		a_{2n}
:	:	:	:
a_{m1}	a_{m2}		a_{mn}

Computer Storage. Computer programs store matrices as a long single array. Array contents are fetched by computing the index into the long array followed by retrieval of the numeric content a_{ij} . From a computer viewpoint, vectors and matrices are the same objects.

For instance, a 2×2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ can be stored by stacking its rows into a column vector, the mathematical equivalent being the one-to-one and onto mapping

$$\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\quad\longleftrightarrow\quad \left(\begin{array}{cc}a\\b\\c\\d\end{array}\right).$$

This mapping uniquely associates the 2×2 matrix A with a vector in \mathcal{R}^4 . Similarly, a matrix of size $m \times n$ is associated with a column vector in \mathcal{R}^k , where k = mn.

Matrix Addition and Scalar Multiplication. Addition of two matrices is defined by applying fixed vector addition on corresponding columns. Similarly, an organization by rows leads to a second definition of matrix addition, which is exactly the same:

$$\begin{pmatrix} a_{11} \cdots a_{1n} \\ a_{21} \cdots a_{2n} \\ \vdots \\ a_{m1} \cdots a_{mn} \end{pmatrix} + \begin{pmatrix} b_{11} \cdots b_{1n} \\ b_{21} \cdots b_{2n} \\ \vdots \\ b_{m1} \cdots b_{mn} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} \cdots a_{1n} + b_{1n} \\ a_{21} + b_{21} \cdots a_{2n} + b_{2n} \\ \vdots \\ a_{m1} + b_{m1} \cdots a_{mn} + b_{mn} \end{pmatrix}.$$

Scalar multiplication of matrices is defined by applying scalar multiplication to the columns or rows:

$$k \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2n} \\ \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} = \begin{pmatrix} ka_{11} & \cdots & ka_{1n} \\ ka_{21} & \cdots & ka_{2n} \\ \vdots \\ ka_{m1} & \cdots & ka_{mn} \end{pmatrix}.$$

Both operations on matrices are motivated by considering a matrix to be a long single array or *vector*, to which the standard fixed vector definitions are applied. The operation of addition is properly defined exactly when the two matrices have the same row and column dimensions.

Digital Photographs. A digital camera stores image sensor data as a matrix A of numbers corresponding to the color and intensity of tiny sensor sites called **pixels** or **dots**. The pixel position in the print is given by row and column location in the matrix A.

A visualization of the image sensor is a checkerboard. Each square is stacked with a certain number of checkers, the count proportional to the number of electrons knocked loose by light falling on the photodiode site.²

In 24-bit color, a pixel is represented in the matrix A by a coded integer a = r + (256)g + (65536)b. Symbols r, g, b are integers between 0 and 255 which represent the intensity of colors red, green and blue, respectively. For example, r = g = b = 0 is the color **black** while r = g = b = 255 is the color **white**. Grander schemes exist, e.g., 32-bit and 128-bit color.³

Matrix addition can be visualized through matrices representing color separations.⁴ When three monochrome transparencies of colors red, green and blue (RGB) are projected simultaneously by a projector, the colors add to make a full color screen projection. The three transparencies can be associated with matrices R, G, B which contain pixel data for the monochrome images. Then the projected image is associated with the matrix sum R + G + B.

Scalar multiplication of matrices has a similar visualization. The pixel information in a monochrome image (red, green or blue) is coded for intensity. The associated matrix A of pixel data when multiplied by a scalar k gives a new matrix kA of pixel data with the intensity of each pixel adjusted by factor k. The photographic effect is to adjust the range of intensities. In the checkerboard visualization of an image sensor, factor k increases or decreases the checker stack height at each square.

²Some digital cameras have three image sensors, one for each of colors red, green and blue (RGB). Other digital cameras integrate the three image sensors into one array, interpolating color-filtered sites to obtain the color data.

³A typical beginner's digital camera makes low resolution color photos using 24bit color. The photo is constructed of 240 rows of dots with 320 dots per row. The associated storage matrix A is of size 240×320 . The identical small format is used for video clips at up to 30 frames per second in video-capable digital cameras.

The storage format **BMP** stores data as bytes, in groups of three b, g, r, starting at the lower left corner of the photo. Therefore, 240×320 photos have 230, 400 data bytes. The storage format **JPEG** reduces file size by compression and quality loss.

⁴James Clerk Maxwell is credited with the idea of color separation.

Matrix Multiply. College algebra texts cite the definition of matrix multiplication as the product AB equals a matrix C given by the relations

$$c_{ij} = a_{i1}b_{1j} + \dots + a_{in}b_{nj}, \quad 1 \le i \le m, \ 1 \le j \le k.$$

Below, we motivate the definition of matrix multiplication from an applied point of view, based upon familiarity with the dot product. Microcode implementations in vector supercomputers make use of a similar viewpoint.

Matrix multiplication as a dot product extension. To illustrate the basic idea by example, let

$$A = \begin{pmatrix} -1 & 2 & 1 \\ 3 & 0 & -3 \\ 4 & -2 & 5 \end{pmatrix}, \quad \vec{X} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}.$$

The product equation $A\vec{X}$ is displayed as the *dotless juxtaposition*

$$\left(\begin{array}{rrrr}
-1 & 2 & 1 \\
3 & 0 & -3 \\
4 & -2 & 5
\end{array}\right)
\left(\begin{array}{r}
2 \\
1 \\
3
\end{array}\right),$$

which represents an *unevaluated request* to **gang** the dot product operation onto the rows of the matrix on the left:

$$(-121) \cdot \begin{pmatrix} 2\\1\\3 \end{pmatrix} = 3, \quad (30-3) \cdot \begin{pmatrix} 2\\1\\3 \end{pmatrix} = -3, \quad (4-25) \cdot \begin{pmatrix} 2\\1\\3 \end{pmatrix} = 21.$$

The *evaluated request* produces a column vector containing the dot product answers, called the **product of a matrix and a vector** (no mention of dot product), written as

$$\begin{pmatrix} -1 & 2 & 1 \\ 3 & 0 & -3 \\ 4 & -2 & 5 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \\ -3 \\ 21 \end{pmatrix}$$

The general scheme which gangs the dot product operation onto the matrix rows can be written as

$$\begin{pmatrix} \cdots & \operatorname{row} 1 & \cdots \\ \cdots & \operatorname{row} 2 & \cdots \\ \cdots & \vdots & \cdots \\ \cdots & \operatorname{row} m & \cdots \end{pmatrix} \vec{X} = \begin{pmatrix} (\operatorname{row} 1) \cdot \vec{X} \\ (\operatorname{row} 2) \cdot \vec{X} \\ \vdots \\ (\operatorname{row} m) \cdot \vec{X} \end{pmatrix}$$

The product is properly defined only in case the number of matrix columns equals the number of entries in \vec{X} , so that the dot products on the right are defined.

Matrix multiply as a linear combination of columns. The identity

$$\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\left(\begin{array}{c}x_1\\x_2\end{array}\right) = x_1\left(\begin{array}{c}a\\c\end{array}\right) + x_2\left(\begin{array}{c}b\\d\end{array}\right)$$

implies that $A\mathbf{x}$ is a linear combination of the columns of A, where A is the 2×2 matrix on the left.

This result holds in general. Assume $A = \mathbf{aug}(\mathbf{v}_1, \dots, \mathbf{v}_n)$ and \vec{X} has components x_1, \dots, x_n . Then the definition of matrix multiply implies

$$A\dot{X} = x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_n\mathbf{v}_n.$$

This relation is used so often, that we record it as a formal result.

Theorem 3 (Linear Combination of Columns)

The product of a matrix A and a vector \mathbf{x} satisfies

$$A\mathbf{x} = x_1 \operatorname{col}(A, 1) + \dots + x_n \operatorname{col}(A, n)$$

where col(A, i) denotes column *i* of matrix *A*.

General matrix product AB. The evaluation of matrix products $A\vec{Y}_1$, $A\vec{Y}_2, \ldots, A\vec{Y}_k$ is a list of k column vectors which can be packaged into a matrix C. Let B be the matrix which packages the columns $\vec{Y}_1, \ldots, \vec{Y}_k$. Define C = AB by the dot product definition

$$c_{ij} = (\text{row } i \text{ of } A) \cdot (\text{col } j \text{ of } B).$$

This definition makes sense provided the column dimension of A matches the row dimension of B. It is consistent with the earlier definition from college algebra and the definition of $A\vec{Y}$, therefore it may be taken as the basic definition for a matrix product.

How to multiply matrices on paper. Most persons make arithmetic errors when computing dot products

$$\left(\begin{array}{ccc} -7 & 3 & 5 \end{array}\right) \cdot \left(\begin{array}{c} -1 \\ 3 \\ -5 \end{array}\right) = -9,$$

because alignment of corresponding entries must be done mentally. It is visually easier when the entries are aligned.

On paper, persons often arrange their work for a matrix times a vector as below, so that the entries align. The boldface transcription above the columns is temporary, erased after the dot product step.

$$\begin{pmatrix} -1 & 3 & -5 \\ -7 & 3 & 5 \\ -5 & -2 & 3 \\ 1 & -3 & -7 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 3 \\ -5 \end{pmatrix} = \begin{pmatrix} -9 \\ -16 \\ 25 \end{pmatrix}$$

Special matrices. The **zero matrix**, denoted **0**, is the $m \times n$ matrix all of whose entries are zero. The **identity matrix**, denoted I, is the $n \times n$ matrix with ones on the diagonal and zeros elsewhere: $a_{ij} = 1$ for i = j and $a_{ij} = 0$ for $i \neq j$.

$$\mathbf{0} = \begin{pmatrix} 0 \ 0 \ \cdots \ 0 \\ 0 \ 0 \ \cdots \ 0 \\ \vdots \\ 0 \ 0 \ \cdots \ 0 \end{pmatrix}, \quad I = \begin{pmatrix} 1 \ 0 \ \cdots \ 0 \\ 0 \ 1 \ \cdots \ 0 \\ \vdots \\ 0 \ 0 \ \cdots \ 1 \end{pmatrix}$$

The **negative** of a matrix A is (-1)A, which multiplies each entry of A by the factor (-1):

$$-A = \begin{pmatrix} -a_{11} \cdots -a_{1n} \\ -a_{21} \cdots -a_{2n} \\ \vdots \\ -a_{m1} \cdots -a_{mn} \end{pmatrix}$$

Square matrices. An $n \times n$ matrix A is said to be **square**. The entries a_{kk} , k = 1, ..., n of a square matrix make up its **diagonal**. A square matrix A is **lower triangular** if $a_{ij} = 0$ for i > j, and **upper triangular** if $a_{ij} = 0$ for i < j; it is **triangular** if it is either upper or lower triangular. Therefore, an upper triangular matrix has all zeros below the diagonal and a lower triangular matrix has all zeros above the diagonal. A square matrix A is a **diagonal matrix** if $a_{ij} = 0$ for $i \neq j$, that is, the off-diagonal elements are zero. A square matrix A is a **scalar matrix** if A = cI for some constant c.

$$\begin{array}{l} {}_{\text{upper}} \\ {}_{\text{triangular}} \end{array} = \begin{pmatrix} a_{11} a_{12} \cdots a_{1n} \\ 0 & a_{22} \cdots a_{2n} \\ \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}, \quad {}_{\text{lower}} \\ {}_{\text{triangular}} \end{array} = \begin{pmatrix} a_{11} 0 & \cdots & 0 \\ a_{21} a_{22} \cdots & 0 \\ \vdots \\ a_{n1} a_{n2} \cdots & a_{nn} \end{pmatrix}, \\ {}_{\text{diagonal}} = \begin{pmatrix} a_{11} 0 & \cdots & 0 \\ 0 & a_{22} \cdots & 0 \\ \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}, \quad {}_{\text{scalar}} = \begin{pmatrix} c & 0 \cdots & 0 \\ 0 & c & \cdots & 0 \\ \vdots \\ 0 & 0 & \cdots & c \end{pmatrix}.$$

Matrix algebra. A matrix can be viewed as a single long array, or fixed vector, therefore the toolkit for fixed vectors applies to matrices. Let A, B, C be matrices of the same row and column dimensions and let k_1, k_2, k be constants. Then

Closure The operations A + B and kA are defined and result in a new matrix of the same dimensions.

Addition	A + B = B + A	commutative
rules	A + (B + C) = (A + B) + C	associative
	Matrix 0 is defined and $0 + A = A$	zero
	Matrix $-A$ is defined and $A + (-A) = 0$	negative
Scalar	k(A+B) = kA + kB	distributive I
multiply	$(k_1 + k_2)A = k_1A + k_2B$	distributive II
rules	$k_1(k_2A) = (k_1k_2)A$	distributive III
	1 A = A	identity

These rules collectively establish that the set of all $m \times n$ matrices is an abstract vector space.

The operation of matrix multiplication gives rise to some new matrix rules, which are in common use, but do not qualify as vector space rules.

Associative	A(BC) = (AB)C, provided products BC and AB
	are defined.
Distributive	A(B+C) = AB + AC, provided products AB and
	AC are defined.
Right Identity	AI = A, provided AI is defined.
Left Identity	IA = A, provided IA is defined.

Transpose. Swapping rows and columns of a matrix A results in a new matrix B whose entries are given by $b_{ij} = a_{ji}$. The matrix B is denoted A^T (pronounced "A-transpose"). The transpose has these properties:

$(A^T)^T = A$	Identity
$(A+B)^T = A^T + B^T$	Sum
$(AB)^T = B^T A^T$	Product
$(kA)^T = kA^T$	Scalar

A matrix A is said to be **symmetric** if $A^T = A$, which implies that the row and column dimensions of A are the same and $a_{ij} = a_{ji}$.

Inverse matrix. A square matrix B is said to be an **inverse** of a square matrix A provided AB = BA = I. The symbol I is the identity matrix of matching dimension. A given matrix A may not have an inverse, for example, **0** times any square matrix B is **0**, which prohibits a relation $\mathbf{0}B = B\mathbf{0} = I$. When A does have an inverse B, then the notation A^{-1} is used for B, hence $AA^{-1} = A^{-1}A = I$. The following properties of inverses will be proved on page 262.

Theorem 4 (Inverses)

Let A, B, C denote square matrices. Then

- (a) A matrix has at most one inverse, that is, if AB = BA = I and AC = CA = I, then B = C.
- (b) If A has an inverse, then so does A^{-1} and $(A^{-1})^{-1} = A$.
- (c) If A has an inverse, then $(A^{-1})^T = (A^T)^{-1}$.
- (d) If A and B have inverses , then $(AB)^{-1} = B^{-1}A^{-1}$.

Left to be discussed is how to find the inverse A^{-1} . For a 2 × 2 matrix, there is an easily justified formula, which is to be used enough to be committed to memory.

Theorem 5 (Inverse of a 2×2)

$$\left(\begin{array}{cc}a&b\\c&d\end{array}\right)^{-1} = \frac{1}{ad-bc} \left(\begin{array}{cc}d&-b\\-c&a\end{array}\right).$$

In words, the theorem says:

Swap the diagonal entries, change signs on the off-diagonal entries, then divide by the determinant ad - bc.

There is a generalization of this formula to $n \times n$ matrices, which is equivalent to the formulas in **Cramer's rule**. It will be done during the study of determinants; the statement is paraphrased as follows:

$$A^{-1} = \frac{\text{adjugate matrix of } A}{\text{determinant of } A}.$$

A general and efficient method for computing inverses, based upon **rref** methods, will be presented in the next section. The method can be implemented on hand calculators, computer algebra systems and computer numerical laboratories.

Proof of Theorem 4: (a) If AB = BA = I and AC = CA = I, then B = BI = BAC = IC = C.

(b) Let $B = A^{-1}$. Given AB = BA = I, then by definition A is an inverse of B, but by (a) it is the only one, so $(A^{-1})^{-1} = B^{-1} = A$.

(c) Let $B = A^{-1}$. We show $B^T = (A^T)^{-1}$ or equivalently $C = B^T$ satisfies $A^T C = CA^T = I$. Start with AB = BA = I, take the transpose to get $B^T A^T = A^T B^T = I$. Substitute $C = B^T$, then $CA^T = A^T C = I$, which was to be proved.

(d) The formula is proved by showing that $C = B^{-1}A^{-1}$ satisfies (AB)C = C(AB) = I. The left side is $(AB)C = ABB^{-1}A^{-1} = I$ and the right side $C(AB) = B^{-1}A^{-1}AB = I$, proving LHS = RHS.

Exercises 5.1

Fixed vectors. Perform the indicated operation(s).

1. $\begin{pmatrix} 1 \\ -1 \end{pmatrix} + \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ **2.** $\begin{pmatrix} 2 \\ -2 \end{pmatrix} - \begin{pmatrix} 1 \\ -3 \end{pmatrix}$ **3.** $\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + \begin{pmatrix} -2 \\ 1 \\ -1 \end{pmatrix}$ 4. $\begin{pmatrix} 2 \\ -2 \\ 9 \end{pmatrix} - \begin{pmatrix} 1 \\ -3 \\ 7 \end{pmatrix}$ **5.** $2\begin{pmatrix} 1\\ -1 \end{pmatrix} + 3\begin{pmatrix} -2\\ 1 \end{pmatrix}$ **6.** $3\begin{pmatrix} 2\\ -2 \end{pmatrix} - 2\begin{pmatrix} 1\\ -3 \end{pmatrix}$ **7.** $5\begin{pmatrix} 1\\ -1\\ 2 \end{pmatrix} + 3\begin{pmatrix} -2\\ 1\\ -1 \end{pmatrix}$ **8.** $3\begin{pmatrix} 2\\ -2\\ 0 \end{pmatrix} - 5\begin{pmatrix} 1\\ -3\\ 7 \end{pmatrix}$ **9.** $\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + \begin{pmatrix} -2 \\ 1 \\ -1 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$ **10.** $\begin{pmatrix} 2\\-2\\4 \end{pmatrix} - \begin{pmatrix} 1\\-3\\5 \end{pmatrix} - \begin{pmatrix} 1\\3\\-2 \end{pmatrix}$

Parallelogram Rule. Determine the resultant vector in two ways: (a) the parallelogram rule, and (b) fixed vector addition.

14. $(2i - 2j + 3\mathbf{k}) + (i - 3j - \mathbf{k})$

Toolkit. Let V be the data set of all fixed 2-vectors, $V = \mathcal{R}^2$. Define addition and scalar multiplication componentwise. Verify the following toolkit rules by direct computation.

15. (Commutative)

$$\vec{X} + \vec{Y} = \vec{Y} + \vec{X}$$

16. (Associative)
 $\vec{X} + (\vec{Y} + \vec{Z}) = (\vec{Y} + \vec{X}) + \vec{Z}$

- 17. (Zero) Vector $\vec{0}$ is defined and $\vec{0} + \vec{X} = \vec{X}$
- 18. (Negative) Vector $-\vec{X}$ is defined and $\vec{X} + (-\vec{X}) = \vec{0}$
- 19. (Distributive I) $k(\vec{X}+\vec{Y})=k\vec{X}+k\vec{Y}$
- 20. (Distributive II) $(k_1+k_2)\vec{X}=k_1\vec{X}+k_2\vec{X}$

21. (Distributive III)
$$k_1(k_2\vec{X}) = (k_1k_2)\vec{X}$$

22. (Identity) $1\vec{X} = \vec{X}$

Subspaces. Verify that the given restriction equation defines a subspace Sof $V = \mathcal{R}^3$. Use Theorem 1, page 252. 23. z = 0

24.
$$y = 0$$

25. $x + z = 0$
26. $2x + y + z = 0$
27. $x = 2y + 3z$
28. $x = 0, z = x$
29. $z = 0, x + y = 0$
30. $x = 3z - y, 2x = z$

Length of a Vector. Find the length **31.** x + y + z = 0, x + y = 0of the vector \mathbf{v} . **32.** x + y - z = 0, x - z = y**49.** $\mathbf{v} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Not a Subspace. Test the following restiction equations for $V = \mathcal{R}^3$ and show that the corresponding subset S**50.** $\mathbf{v} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$. is not a subspace of V. **33.** x = 1**51.** $\mathbf{v} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ **34.** x + z = 1**35.** xz = 2**52.** $\mathbf{v} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$ **36.** xz + y = 1**37.** xz + y = 0**38.** xyz = 0Shadow Projection. Find the shadow projection $d = \mathbf{a} \cdot \mathbf{b} / |\mathbf{b}|$. **39.** $z \ge 0$ **53.** $\mathbf{a} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 0 \\ -2 \end{pmatrix}$. **40.** $x \ge 0$ and $y \ge 0$ 41. Octant I **54.** $\mathbf{a} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$. **42.** The interior of the unit sphere Dot Product. Find the dot product **55.** $\mathbf{a} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}$. of **a** and **b**. **43.** $\mathbf{a} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 0 \\ -2 \end{pmatrix}$. **56.** $\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$. **44.** $\mathbf{a} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$. **45.** $\mathbf{a} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}$. Acute Angle. Find the acute angle θ bewteen the given vectors. **57.** $\mathbf{a} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 0 \\ -2 \end{pmatrix}$. **46.** $\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$. **58.** $\mathbf{a} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$. 47. **a** and **b** are in \mathcal{R}^{169} , **a** has all components 1 and \mathbf{b} has all compo-**59.** $\mathbf{a} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}$. nents -1, except four, which all equal 5. 48. **a** and **b** are in \mathcal{R}^{200} , **a** has all components -1 and **b** has all compo-**60.** $\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$. nents -1 except three, which are zero.

Matrix Multiply. Find the given matrix product or else explain why it does not exist.	
61. $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$	71.
62. $\begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$	
63. $\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$	72.
64. $\begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix}$	Ma
65. $\begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$	73.
66. $\begin{pmatrix} 1 & 0 & 1 \\ 1 & -1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$	74.
67. $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$	14.
68. $\begin{pmatrix} 1 & 2 & 1 \\ 1 & -2 & 0 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$	75.
$69. \ \left(\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & 0 \end{array}\right) \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right)$	

 $70. \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $71. \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 2 \end{pmatrix}$ $72. \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$

Matrices. Verify the result.

- 73. Let C be an $m \times n$ matrix. Let \vec{X} be column i of the $n \times n$ identity I. Define $\vec{Y} = C\vec{X}$. Verify that \vec{Y} is column i of C.
- 74. Let A and C be an $m \times n$ matrices such that $AC = \mathbf{0}$. Verify that each column \vec{Y} of C satisfies $A\vec{Y} = \vec{\mathbf{0}}$.
- **'5.** Let A be an $m \times n$ matrix and let $\vec{Y}_1, \ldots, \vec{Y}_n$ be column vectors packaged into an $n \times n$ matrix C. Assume each column vector \vec{Y}_i satisfies the equation $A\vec{Y}_i = \vec{0}$, $1 \le i \le n$. Show that AC = 0.