
Problem 9. Solving Higher Order Constant-Coefficient Equations

The Algorithm applies to constant-coefficient homogeneous linear differential equations
of order N , for example equations like

y′′ + 16y = 0, y′′′′ + 4y′′ = 0,
d5y

dx5
+ 2y′′′ + y′′ = 0.

1. Find the N th degree characteristic equation by Euler’s substitution y = erx. For
instance, y′′+16y = 0 has characteristic equation r2+16 = 0, a polynomial equation
of degree N = 2.

2. Find all real roots and all complex conjugate pairs of roots satisfying the characteristic
equation. List the N roots according to multiplicity.

3. Construct N distinct Euler solution atoms from the list of roots. Then the general
solution of the differential equation is a linear combination of the Euler solution atoms
with arbitrary coefficients c1, c2, c3, . . ..

The solution space is then S = span(the N Euler solution atoms).

Examples: Constructing Euler Solution Atoms from roots.

Three roots 0, 0, 0 produce three atoms e0x, xe0x, x2e0x or 1, x, x2.

Three roots 0, 0, 2 produce three atoms e0x, xe0x, e2x.

Two complex conjugate roots 2± 3i produce two atoms e2x cos(3x), e2x sin(3x).

Explained. The Euler substitution y = erx produces a solution of the differential
equation when r is a complex root of the characteristic equation. Complex exponen-
tials are not used directly. Ever. They are replaced by sines and cosines times real
exponentials, which are Euler solution atoms. Euler’s formula eiθ = cos θ + i sin θ

implies e2x cos(3x) = e2x e
3xi+e−3xi

2 = 1
2e

2x+3xi+ 1
2e

2x−3xi, which is a linear combina-
tion of complex exponentials, solutions of the differential equation because of Euler’s
substitution. Superposition implies e2x cos(3x) is a solution. Similar for e2x sin(3x).
The independent pair e2x cos(3x), e2x sin(3x) replaces both e(2+3i)x and e(2−3i)x.

Four complex conjugate roots listed according to multiplicity as 2±3i, 2±3i produce four
atoms e2x cos(3x), e2x sin(3x), xe2x cos(3x), xe2x sin(3x).

Seven roots 1, 1, 3, 3, 3,±3i produce seven atoms ex, xex, e3x, xe3x, x2e3x, cos(3x), sin(3x).

Two conjugate complex roots a±bi (b > 0) arising from roots of (r−a)2+b2 = 0 produce
two atoms eax cos(bx), eax sin(bx).

The Problem

Solve for the general solution or the particular solution satisfying initial conditions.

(a) y′′ + 4y′ = 0

(b) y′′ + 4y = 0

(c) y′′′ + 4y′ = 0

(d) y′′ + 4y = 0, y(0) = 1, y′(0) = 2

(e) y′′′′ + 81y′′ = 0, y(0) = y′(0) = 0, y′′(0) = y′′′(0) = 1

(f) The characteristic equation is (r + 1)2(r2 − 1) = 0.

(g) The characteristic equation is (r − 1)2(r2 − 1)2((r + 1)2 + 9) = 0.

(h) The characteristic equation roots, listed according to multiplicity, are 0, 0,−1, 2, 2, 3+4i, 3−
4i, 3 + 4i, 3− 4i.
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Problem 10. Laplace Theory

Laplace theory collects theorems and transform tables to implement
the method of quadrature for higher order differential equations, lin-
ear systems of differential equations, and certain partial differential
equations.

Laplace’s method solves differential equations.

Laplace’s Quadrature Method: multiply the equation by the Laplace integrator e−st dt and
then integrate across the equation t = 0 to t =∞.

Laplace’s Method: multiply across the equation by symbol L, then manipulate the result as
though L is a matrix. Solve for the unknown(s) using Laplace tables and Laplace theorems.

Laplace Theory uses properties and tables, and almost never the Direct Laplace Transform
F (s) =

∫∞
0 f(t)e−st dt. See Sample Problem 10 for techniques and ideas which apply to the

problems below.

The Problem. Solve by table methods or Laplace’s method.

(a) Forward table. Find L(f(t)) for f(t) = 3(t+ 1)2e2t + 2et sin(3t).

(b) Backward table. Find f(t) for

L(f(t)) = 4s

s2 + 4
+

s− 1

s2 − 2s+ 5
.

(c) Solve the initial value problem x′′(t) + 2x′(t) + 5x(t) = et, x(0) = 0, x′(0) = 1.
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