
Instructions. Please prepare your own report on 8x11 paper, handwritten. Work alone or in
groups. Help is available by telephone, office visit or email. All problems in Part 2 of the semester
project reference Chapters 3, 7 in Edwards-Penney. Use the sample problems with solutions to
fully understand the required details:
http://www.math.utah.edu/~gustafso/s2019/2280/quiz/sampleQuizzes/project-part2.pdf

Visit the Math Center in building LCB for assistance on problem statements, references and
technical details.

Problem 1. Harmonic Vibration

A mass of m = 200 grams attached to a spring of Hooke’s constant k undergoes free undamped
vibration. At equilibrium, the spring is stretched 10 cm by a force of 4 Newtons. At time t = 0,
the spring is stretched 0.4 m and the mass is set in motion with initial velocity 3 m/s directed
away from equilibrium. Find:

(a) The numerical value of Hooke’s constant k.

(b) The initial value problem for vibration x(t).

(c) Show details for solving the initial value problem for x(t).
The answer is x(t) = 2

5 cos(
√

200t) + 3
20

√
2 sin(

√
200t), graphed below.
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Problem 2. Harmonic Vibration, continued.

Assume results (a), (b), (c) from Problem 1 above. In particular, assume

x(t) =
2

5
cos(
√

200t) +
3
√

2

20
sin(
√

200t).

Complete these parts.

(d) Plot the solution x(t) using technology, approximately matching the graphic below.

(e) Show trig details for conversion of x(t) to phase-amplitude form

x(t) =

√
82

20
cos(
√

200t− arctan(3
√

2/8)).

(f) Report from the answer in part (e) decimal values for the period, amplitude and phase
angle. Two-place decimal accuracy is sufficient.
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Problem 3. Undamped Spring-Mass System

x>0
x=0

m

k

A mass of 6 Kg is attached to a spring that elongates 40 centimeters due to a force of 12 Newtons.
The motion starts at equilibrium with velocity −10 m/s. Find an equation for x(t) using the free
undamped vibration model mx′′ + kx = 0.
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Problem 4. Beats

The physical phenomenon of beats refers to the periodic interference of two sound waves of
slightly different frequencies. A destructive interference occurs during a very brief interval, so our
impression is that the sound periodically stops, only briefly, and then starts again with a beat,
a section of sound that is instantaneously loud again. An illustration of the graphical meaning
appears in the figure below.

Beats

Shown in red is a periodic oscillation x(t) =
2 sin 4t sin 40t with rapidly–varying factor sin 40t
and the two slowly–varying envelope curves
x1(t) = 2 sin 4t (black), x2(t) = −2 sin 4t (grey).

The undamped, forced spring-mass problem
x′′ + 1296x = 640 cos(44t), x(0) = x′(0) = 0
has by trig identities the solution
x(t) = cos(36t)− cos(44t) = 2 sin 4t sin 40t.

The Problem. Solve the initial value problem

x′′ + 1444x = 1056 cos(50t), x(0) = x′(0) = 0

by undetermined coefficients and linear algebra, obtaining the solution x(t) = cos(38t) −
cos(50t). Then show the trig details for x(t) = 2 sin(6t) sin(44t). Finally, graph x(t) and
its slowly varying envelope curves on 0 ≤ t ≤ π.
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Problem 5. Vertical Motion Seismoscope

The 1875 horizontal motion seismoscope of F. Cecchi (1822-1887) reacted to an earthquake.
It started a clock, and then it started motion of a recording surface, which ran at a speed of 1 cm
per second for 20 seconds. The clock provided the observer with the earthquake hit time.

A Simplistic Vertical Motion Seismoscope

The apparently stationary heavy mass on a spring writes
with the attached stylus onto a rotating drum, as the
ground moves up. The generated trace is x(t).

The motion of the heavy mass m in the figure can be modeled initially by a forced spring-mass
system with damping. The initial model has the form

mx′′ + cx′ + kx = f(t)

where f(t) is the vertical ground force due to the earthquake. In terms of the vertical ground
motion u(t), we write via Newton’s second law the force equation f(t) = −mu′′(t) (compare to
falling body −mg). The final model for the motion of the mass is then





x′′(t) + 2βΩ0x
′(t) + Ω2

0x(t) = −u′′(t),
c

m
= 2βΩ0,

k

m
= Ω2

0,

x(t) = center of mass position measured from equilibrium,

u(t) = vertical ground motion due to the earthquake.

(1)

Terms seismoscope, seismograph, seismometer refer to the device in the figure. Some ob-
servations:

Slow ground movement means x′ ≈ 0 and x′′ ≈ 0, then (1) implies Ω2
0x(t) = −u′′(t). The

seismometer records ground acceleration.

Fast ground movement means x ≈ 0 and x′ ≈ 0, then (1) implies x′′(t) = −u′′(t). The
seismometer records ground displacement.

A release test begins by starting a vibration with u identically zero. Two successive maxima
(t1, x1), (t2, x2) are recorded. This experiment determines constants β,Ω0.

The objective of (1) is to determine u(t), by knowing x(t) from the seismograph.

The Problem.

Assume the seismograph trace can be modeled at time t = 0 (a time after the earthquake
struck) by x(t) = 10 cos(3t). Assume a release test determined 2βΩ0 = 16 and Ω2

0 = 80.
Explain how to find a formula for the ground motion u(t), then provide details for the
answer u(t) = 710

9
cos(3t)− 160

3
sin(3t) (assume integration constants are zero).
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Problem 6. Resistive Network with 2 Loops and DC Sources.

The Branch Current Method can be used to find a 3×3 linear system for the branch currents
I1, I2, I3.

I1 − I2 − I3 = 0 KCL, upper node
3I1 + 2I2 = 18 KVL, left loop

2I2 − 2I3 = 5 KVL, right loop

Symbol KCL means Kirchhoff’s Current Law, which says the algebraic sum of the currents at a
node is zero. Symbol KVL means Kirchhoff’s Voltage Law, which says the algebraic sum of the
voltage drops around a closed loop is zero.

(a) Solve the equations to find the currents I1, I2, I3 in the figure.

(b) Compute the voltage drops across resistors R1, R2, R3. Answer: 93
8 ,

51
8 ,

11
8 volts.

(c) Replace the 5 volt battery by a 4 volt battery. Solve the system again, and report the new
currents and voltage drops.

References. Edwards-Penney 3.7, electric circuits. All About Circuits Volume I – DC, by T.
Kuphaldt:
http://www.allaboutcircuits.com/.
Course slides on Electric Circuits:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/electricalCircuits.pdf

Solved examples of electrical networks can be found in the lecture notes of Ruye Wang:
http://fourier.eng.hmc.edu/e84/lectures/ch2/node2.html.
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Problem 7. RLC-Circuit

The Problem. Suppose E = sin(40t), L = 1 H, R = 50 Ω and C = 0.01 F. The model
for the charge Q(t) is LQ′′ +RQ′ + 1

C
Q = E(t).

(a) Differentiate the charge model and substitute I = dQ
dt

to obtain the current model
I ′′ + 50I ′ + 100I = 40 cos(40t).

(b) Find the reactance S = ωL− 1
ωC

, where ω = 40 is the input frequency, the natural
frequency of E = sin(40t) and E ′ = 40 cos(40t). Then find the impedance Z =√
S2 +R2.

(c) The steady-state current is I(t) = A cos(40t) + B sin(40t) for some constants A,B.
Substitute I = A cos(40t) +B sin(40t) into the current model (a) and solve for A,B.

Answers: A = − 6
625

, B = 8
625

.

(d) Write the answer in (c) in phase-amplitude form I = I0 sin(40t− δ) with I0 > 0 and
δ ≥ 0. Then compute the time lag δ/ω.

Answers: I0 = 0.016, δ = arctan(0.75), δ/ω = 0.0160875.

References

Course slides on Electric Circuits:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/electricalCircuits.pdf

Edwards-Penney Differential Equations and Boundary Value Problems, sections 3.4, 3.5, 3.6, 3.7.
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Problem 8. Heat Transfer and the Mean Value Property.

Consider the cross section of a long rectangular dam on a river, represented in the figure.

The boundaries of the dam are subject to three
factors: the temperature in degrees Celsius of the
air (20), the water (25), and the ground at its
base (30).

An analysis of the heat transfer from the three sources will be done from the equilibrium temper-
ature, which is found by the Mean Value Property below.

The Mean Value Property

If a plate is at thermal equilibrium, and C is a circle with
center P contained in the plate, then the temperature at P
is the average value of the temperature function over the
boundary of C.

A version of the Mean Value Property says that the temperature at center P of circle C is the
average of the temperatures at four equally-spaced points on C. We construct a grid as in the
figure below, label the unknown temperatures at interior grid points as x1, x2, x3, x4, then use the
property to obtain four equations.

Four-Point
Temperature Averages

x1 =
1

4
(20 + 25 + x2 + x3)

x2 =
1

4
(20 + 20 + x1 + x4)

x3 =
1

4
(25 + 30 + x1 + x4)

x4 =
1

4
(20 + 30 + x2 + x3)

The Problem

(a) Solve the equations for the four temperatures x1 = 23.125, x2 = 21.875, x3 = 25.625, x4 =
24.375. Use technology.

(b) Replace the temperatures 20, 25, 30 by 20, 16, 12 and re-compute x1 to x4.

(c) Using the temperatures from part (b), subdivide the grid to make it 6×6. Assign 25 unknown
temperatures xi at the interior grid points. Find equations for x1 to x25 and solve using technology.

References. EPH Chapters 12, 13, used for Partial Differential Equations 3150. The corre-
sponding material in the 2280 book by Edwards–Penney in in Chapter 9. A basic reference about
steady–state heat applications is http://cecs.wright.edu/~sthomas/htchapter03.pdf

Chris Tisdell has an elementary YouTube video on the subject, in which he discusses the Mean
Value Property: https://www.youtube.com/watch?v=p60dU_62KcQ
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Problem 8 Alternate. Archeology and the Dot Product.

Complete this problem in place of Mean Value Property Problem 8, if you prefer archeology to
heat conduction. Credit applies to only one Problem 8. There is no Sample Problem for this
archeology example.

Archeologist Sir Flinders Petrie collected and analyzed pottery fragments from 900 Egyp-
tian graves. He deduced from the data an historical ordering of the 900 sites. Petrie’s
ideas will be illustrated for 4 sites and 3 pottery types. The matrix rows below represent
sites 1, 2, 3, 4 and the matrix columns represent pottery types 1, 2, 3. A matrix entry is
1 if the site has that pottery type and 0 if not. This is an incidence matrix.

A =




0 1 0
0 1 1
1 0 1
1 0 0




Petrie Matrix. It is an incidence matrix in which the ones in each column appear
together, like the matrix above.

Counting Pottery Types. The dot product of row 2 and row 3 is

(
0, 1, 1

)
·
(

1, 0, 1
)

= 0 ∗ 1 + 1 ∗ 0 + 1 ∗ 1 = 1

which means sites 2 and 3 have one pottery type in common. Please pause on this
arithmetic, until you agree that the products 0 ∗ 1, 1 ∗ 0, 1 ∗ 1 add to the number of
pottery types in common.

Sites with pottery in common are expected to be historically close in time. Because
pottery types evolve, old types cease production when newly created pottery types begin
production, which gives meaning to the clustered ones in the columns of A.

The Problem. Find a sequence of row swaps which starts with the incidence matrix

C =




1 1 1
1 1 0
0 0 1
0 1 1
1 1 1
0 1 1
1 1 0




and ends with a Petrie matrix A. Express the swaps as elementary matrices E1, E2, . . . and
write A as the product of elementary matrices times C. There is not a unique set of swaps,
because of duplicate rows.

You may use Kendall’s ideas with Robinson matrices or the simple definition of a Petrie
matrix, given above. In any case, after finding Petrie matrix A, compute Robinson’s matrix
R = AAT and apply the ideas in sample quiz 7, to double-check the answer.

References. Edwards-Penney Differential Equations and Linear Algebra, Ch 3.
David Kendall’s 1969 work on incidence matrices, interval graphs and seriation in archeology:
https://projecteuclid.org/euclid.pjm/1102983306

W. S. Robinson, a method for chronologically ordering archeological deposits, in the April 1951
issue of American Antiquity: http://www.jstor.org/stable/276978

Incidence matrix C was invented as an archeology exercise on Seriation of 7 Maryland sites
based on 3 types of historical ceramics:
http://www.saa.org/publicftp/public/primarydocuments/Seriation.pdf
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Problem 9. Solving Higher Order Constant-Coefficient Equations

The Algorithm applies to constant-coefficient homogeneous linear differential equations
of order N , for example equations like

y′′ + 16y = 0, y′′′′ + 4y′′ = 0,
d5y

dx5
+ 2y′′′ + y′′ = 0.

1. Find the N th degree characteristic equation by Euler’s substitution y = erx. For
instance, y′′+16y = 0 has characteristic equation r2+16 = 0, a polynomial equation
of degree N = 2.

2. Find all real roots and all complex conjugate pairs of roots satisfying the characteristic
equation. List the N roots according to multiplicity.

3. Construct N distinct Euler solution atoms from the list of roots. Then the general
solution of the differential equation is a linear combination of the Euler solution atoms
with arbitrary coefficients c1, c2, c3, . . ..

The solution space is then S = span(the N Euler solution atoms).

Examples: Constructing Euler Solution Atoms from roots.

Three roots 0, 0, 0 produce three atoms e0x, xe0x, x2e0x or 1, x, x2.

Three roots 0, 0, 2 produce three atoms e0x, xe0x, e2x.

Two complex conjugate roots 2± 3i produce two atoms e2x cos(3x), e2x sin(3x).

Explained. The Euler substitution y = erx produces a solution of the differential
equation when r is a complex root of the characteristic equation. Complex exponen-
tials are not used directly. Ever. They are replaced by sines and cosines times real
exponentials, which are Euler solution atoms. Euler’s formula eiθ = cos θ + i sin θ

implies e2x cos(3x) = e2x e
3xi+e−3xi

2 = 1
2e

2x+3xi+ 1
2e

2x−3xi, which is a linear combina-
tion of complex exponentials, solutions of the differential equation because of Euler’s
substitution. Superposition implies e2x cos(3x) is a solution. Similar for e2x sin(3x).
The independent pair e2x cos(3x), e2x sin(3x) replaces both e(2+3i)x and e(2−3i)x.

Four complex conjugate roots listed according to multiplicity as 2±3i, 2±3i produce four
atoms e2x cos(3x), e2x sin(3x), xe2x cos(3x), xe2x sin(3x).

Seven roots 1, 1, 3, 3, 3,±3i produce seven atoms ex, xex, e3x, xe3x, x2e3x, cos(3x), sin(3x).

Two conjugate complex roots a±bi (b > 0) arising from roots of (r−a)2+b2 = 0 produce
two atoms eax cos(bx), eax sin(bx).

The Problem

Solve for the general solution or the particular solution satisfying initial conditions.

(a) y′′ + 4y′ = 0

(b) y′′ + 4y = 0

(c) y′′′ + 4y′ = 0

(d) y′′ + 4y = 0, y(0) = 1, y′(0) = 2

(e) y′′′′ + 81y′′ = 0, y(0) = y′(0) = 0, y′′(0) = y′′′(0) = 1

(f) The characteristic equation is (r + 1)2(r2 − 1) = 0.

(g) The characteristic equation is (r − 1)2(r2 − 1)2((r + 1)2 + 9) = 0.

(h) The characteristic equation roots, listed according to multiplicity, are 0, 0,−1, 2, 2, 3+4i, 3−
4i, 3 + 4i, 3− 4i.
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Problem 10. Laplace Theory

Laplace theory collects theorems and transform tables to implement
the method of quadrature for higher order differential equations, lin-
ear systems of differential equations, and certain partial differential
equations.

Laplace’s method solves differential equations.

Laplace’s Quadrature Method: multiply the equation by the Laplace integrator e−st dt and
then integrate across the equation t = 0 to t =∞.

Laplace’s Method: multiply across the equation by symbol L, then manipulate the result as
though L is a matrix. Solve for the unknown(s) using Laplace tables and Laplace theorems.

Laplace Theory uses properties and tables, and almost never the Direct Laplace Transform
F (s) =

∫∞
0 f(t)e−st dt. See Sample Problem 10 for techniques and ideas which apply to the

problems below.

The Problem. Solve by table methods or Laplace’s method.

(a) Forward table. Find L(f(t)) for f(t) = 3(t+ 1)2e2t + 2et sin(3t).

(b) Backward table. Find f(t) for

L(f(t)) = 4s

s2 + 4
+

s− 1

s2 − 2s+ 5
.

(c) Solve the initial value problem x′′(t) + 2x′(t) + 5x(t) = et, x(0) = 0, x′(0) = 1.
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