Systems of Second Order Differential Equations Cayley-Hamilton-Ziebur

- Characteristic Equation
- Cayley-Hamilton
 - Cayley-Hamilton Theorem
 - An Example
- Euler's Substitution for $\vec{\mathrm{u}}'' = A\vec{\mathrm{u}}$
- The Cayley-Hamilton-Ziebur Method for $\vec{\mathbf{u}}'' = A\vec{\mathbf{u}}$
- Example: Spring-mass system $\vec{u}'' = A\vec{u}, A = \begin{pmatrix} -75 & 25 \\ 50 & -50 \end{pmatrix}$.

Characteristic Equation

Definition 1 (Characteristic Equation)

Given a square matrix A, the characteristic equation of A is the polynomial equation

$$\det(A - \lambda I) = 0.$$

The determinant $|A - \lambda I|$ is formed by subtracting λ from the diagonal of A. The polynomial p(x) = |A - xI| is called the **characteristic polynomial** of matrix A.

- If A is 2×2 , then p(x) is a quadratic.
- If A is 3×3 , then p(x) is a cubic.
- The determinant is expanded by the cofactor rule, in order to preserve factorizations.

Characteristic Equation Examples

Create |A - xI| by subtracting x from the diagonal of A. Evaluate by the cofactor rule.

$$A = \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix}, \quad p(x) = \begin{vmatrix} 2 - x & 3 \\ 0 & 4 - x \end{vmatrix} = (2 - x)(4 - x)$$
$$A = \begin{pmatrix} 2 & 3 & 4 \\ 0 & 5 & 6 \\ 0 & 0 & 7 \end{pmatrix}, \quad p(x) = \begin{vmatrix} 2 - x & 3 & 4 \\ 0 & 5 - x & 6 \\ 0 & 0 & 7 - x \end{vmatrix} = (2 - x)(5 - x)(7 - x)$$

Cayley-Hamilton

Theorem 1 (Cayley-Hamilton)

A square matrix A satisfies its own characteristic equation.

If
$$p(x)=(-x)^n+a_{n-1}(-x)^{n-1}+\cdots a_0$$
, then the result is the equation $(-A)^n+a_{n-1}(-A)^{n-1}+\cdots +a_1(-A)+a_0I=0,$

where I is the $n \times n$ identity matrix and 0 is the $n \times n$ zero matrix.

The
$$2 \times 2$$
 Case
Then $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and for $a_1 = \text{trace}(A)$, $a_0 = \det(A)$ we have $p(x) = x^2 + a_1(-x) + a_0$. The Cayley-Hamilton theorem says

$$A^2+a_1(-A)+a_0\left(egin{array}{cc} 1&0\0&1\end{array}
ight)=\left(egin{array}{cc} 0&0\0&0\end{array}
ight).$$

Cayley-Hamilton Example

Assume

$$A = \left(\begin{array}{rrr} 2 & 3 & 4 \\ 0 & 5 & 6 \\ 0 & 0 & 7 \end{array}\right)$$

Then

$$p(x) = egin{bmatrix} 2-x & 3 & 4 \ 0 & 5-x & 6 \ 0 & 0 & 7-x \end{bmatrix} = (2-x)(5-x)(7-x)$$

and the Cayley-Hamilton Theorem says that

$$(2I-A)(5I-A)(7I-A) = \left(egin{array}{cc} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \ \end{array}
ight).$$

Euler's Substitution and the Characteristic Equation

Definition. Euler's Substitution for the second order equation $\vec{u}'' = A\vec{u}$ is

$$\vec{\mathrm{u}} = \vec{\mathrm{v}} e^{rt}.$$

The symbol r is a real or complex constant and symbol \vec{v} is a constant vector.

Theorem 2 (Euler Solution Equation from Euler's Substitution) Euler's substitution applied to $\vec{u}'' = A\vec{u}$ leads directly to the equation

$$|A - r^2 I| = 0.$$

This is perhaps the premier method for remembering the characteristic equation for the second order vector-matrix equation $\vec{u}'' = A\vec{u}$.

Proof: Substitute $\vec{u} = \vec{v}e^{rt}$ into $\vec{u}'' = A\vec{u}$ to obtain $r^2e^{rt}\vec{v} = A\vec{v}e^{rt}$. Cancel the exponential, then $r^2\vec{v} = A\vec{v}$. Re-arrange to the homogeneous system $(A - r^2I)\vec{v} = \vec{0}$. This homogeneous linear algebraic equation has a nonzero solution \vec{v} if and only if the determinant of coefficients vanishes: $|A - r^2I| = 0$.

Cayley-Hamilton-Ziebur Method for Second Order Systems _

Theorem 3 (Cayley-Hamilton-Ziebur Structure Theorem for $\vec{u}'' = A\vec{u}$) The solution $\vec{u}(t)$ of second order equation $\vec{u}''(t) = A\vec{u}(t)$ is a vector linear combination of Euler solution atoms corresponding to roots of the equation $\det(A - r^2I) = 0$.

The equation $|A - r^2 I| = 0$ is formed by substitution of $\lambda = r^2$ into the eigenanalysis characteristic equation of A.

In symbols, the structure theorem says

$$ec{\mathrm{u}} = ec{\mathrm{d}}_1 A_1 + \dots + ec{\mathrm{d}}_k A_k,$$

where A_1, \ldots, A_k are Euler solution atoms corresponding to the roots r of the determining equation $|A - r^2 I| = 0$. Therefore, all vectors in the relation have real entries. However, only 2n entries of vectors $\vec{d}_1, \ldots, \vec{d}_k$ are arbitrary constants, the remaining entries being dependent on them.

Proof of the Cayley-Hamilton-Ziebur Theorem

Consider the case when A is 2×2 (n = 2), because the proof details are similar in higher dimensions. Expand |A - xI| = 0 to find the characteristic equation $x^2 + cx + d = 0$, for some constants c, d. The Cayley-Hamilton theorem says that $A^2 + cA + d\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Let \vec{u} be a solution of $\vec{u}''(t) = A\vec{u}(t)$. Multiply the Cayley-Hamilton identity by vector \vec{u} and simplify to obtain

$$A^2 ec{\mathrm{u}} + cA ec{\mathrm{u}} + d ec{\mathrm{u}} = ec{\mathrm{0}}.$$

Using equation $\vec{u}''(t) = A\vec{u}(t)$ backwards, we compute $A^2\vec{u} = A\vec{u}'' = \vec{u}'''$. Replace the terms of the displayed equation to obtain the relation

$$\vec{\mathrm{u}}^{\prime\prime\prime\prime\prime}+c\vec{\mathrm{u}}^{\prime\prime}+d\vec{\mathrm{u}}=\vec{0}.$$

Each component y of vector \vec{u} then satisfies the 4th order linear homogeneous equation $y^{(4)} + cy^{(2)} + dy = 0$, which has characteristic equation $r^4 + cr^2 + d = 0$. This equation is the expansion of determinant equation $|A - r^2I| = 0$. Therefore y is a linear combination of the Euler solution atoms found from the roots of this equation. It follows then that \vec{u} is a vector linear combination of the Euler solution atoms so identified. This completes the proof.

A 2×2 Illustration

Solve the system $\vec{u}'' = A\vec{u}, A = \begin{pmatrix} -75 & 25 \\ 50 & -50 \end{pmatrix}$, which is a spring-mass system with $k_1 = 100, k_2 = 50, m_1 = 2, m_2 = 1$.

Solution: The eigenvalues of A are $\lambda = -25$ and -100. Then the determining equation $|A - r^2 I| = 0$ has complex roots $r = \pm 5i$ and $\pm 10i$ with corresponding Euler solution atoms $\cos(4t)$, $\sin(5t)$, $\cos(10t)$, $\sin(10t)$. The eigenpairs of A are

$$\left(-25, \left(\begin{array}{c}1\\2\end{array}\right)\right), \quad \left(-100, \left(\begin{array}{c}1\\-1\end{array}\right)\right).$$

Then \vec{u} is a vector linear combination of the Euler solution atoms

$$ec{u}(t) = ec{d_1}\cos(5t) + ec{d_2}\sin(5t) + ec{d_3}\cos(10t) + ec{d_4}\sin(10t).$$

A 2×2 Illustration continued

How to Find \vec{d}_1 to \vec{d}_4

Substitute the formula

$$ec{u}(t) = ec{d_1}\cos(5t) + ec{d_2}\sin(5t) + ec{d_3}\cos(10t) + ec{d_4}\sin(10t)$$

into $\vec{u}'' = A\vec{u}$, then solve for the unknown vectors \vec{d}_j , j = 1, 2, 3, 4, by equating coefficients of Euler solution atoms matching left and right:

$$Aec{d_1} = -25ec{d_1}, \quad Aec{d_2} = -25ec{d_2}, \quad Aec{d_3} = -100ec{d_3}, \quad Aec{d_4} = -100ec{d_4}.$$

These eigenpair relationships imply formulas involving the eigenvectors of A. We get, for some constants a_1, a_2, b_1, b_2 ,

$$ec{d_1}=a_1\left(egin{array}{c}1\2\end{array}
ight), \hspace{0.3cm} ec{d_2}=b_1\left(egin{array}{c}1\2\end{array}
ight), \hspace{0.3cm} ec{d_3}=a_2\left(egin{array}{c}1\-1\end{array}
ight), \hspace{0.3cm} ec{d_4}=b_2\left(egin{array}{c}1\-1\end{array}
ight).$$

Summary for the 2 imes 2 Illustration _____

$$ec{u}(t) = ec{d_1}\cos(5t) + ec{d_2}\sin(5t) + ec{d_3}\cos(10t) + ec{d_4}\sin(10t)
onumber \ ec{u}(t) = (a_1\cos(5t) + b_1\sin(5t))\left(rac{1}{2}
ight) + (a_2\cos(10t) + b_2\sin(10t))\left(egin{array}{c} 1 \ -1 \end{array}
ight)$$