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Characteristic Equation

Definition 1 (Characteristic Equation)
Given a square matrix A, the characteristic equation of A is the polynomial equation

det(A — rI) = 0.

The determinant | A — 71| is formed by subtracting  from the diagonal of A.
The polynomial p(r) = |A — r1| is called the characteristic polynomial.

o If Ais2 X 2, then p(r) is a quadratic.
o If Ais3 X 3, then p(7) is a cubic.

e The determinant is generally expanded by the cofactor rule, in order to preserve factor-
1zations.

e If A is triangular, then |A — 7| is the product of diagonal entries.



Characteristic Equation Examples

Create the determinant | A — rI| by subtracting 7 from the diagonal of A.

Evaluate by the cofactor rule or the triangular rule.
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Cayley-Hamilton

Theorem 1 (Cayley-Hamilton)
A square matrix A satisfies its own characteristic equation.

fp(r) = (—7r)" 4+ a,_1(—7)"" ' + - - - ay, then the result is the equation
(_A)n —+ an_l(—A)”_l i al(—A) + aoI = 0,

where I is the n X m identity matrix and 0 is the n. X n zero matrix.

The 2 X 2 Case

a b
Then A = (cd

r? 4+ a;(—7r) + aq. The Cayley-Hamilton theorem says

) and for a; = trace(A), ay = det(A) we have p(r) =

A2+a1(—A)—|—a0((1) (1)) = (8 8)



Cayley-Hamilton Example

Assume

Then

p(r) =

0 o 7
and the Cayley-Hamilton Theorem says that

(2I — A)(5I — A)(7TI — A) = (
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Cayley-Hamilton-Ziebur Theorem

Theorem 2 (Cayley-Hamilton-Ziebur Structure Theorem for i’ = At)

Each of the components u,(t), ..., u,(t) of the vector solution @(t) of system
i'(t) = At(t) is a solution of the nth order scalar linear homogeneous constant-
coefficient differential equation whose characteristic equationis |[A — rI| = 0.

Meaning: The vector solution t(t) of

1s a vector linear combination of the Euler solution atoms constructed from the roots of the
characteristic equation |A — rI| = 0.



Proof of the Cayley-Hamilton-Ziebur Theorem
Consider the case 1 = 2, because the proof details are similar in higher dimensions.

r’+ar+ag=0 Expanded characteristic equation
A2+ aA+agl =0 Cayley-Hamilton matrix equation
A%G + a; A+ aoii = 0 Right-multiply by & = (t)

u’ = Au’' = A% Differentiate i’ = Aud

i + a i + agii = 0 Replace A%d — d”, Ad — @’

Then the components x(t), y(t) of u(t) satisfy the two differential equations

m/,(t) + alm’(t) + aga:(t) = 0,
y"(t) + a1y’ (t) + aoy(t) = O.

This system implies that the components of @(¢) are solutions of the second order DE with characteristic equa-
tion |[A — rI| = 0.



The Cayley-Hamilton-Ziebur Method for i’ = Au

Let atom,, ..., atom,, denote the Euler solution atoms constructed from the 7th order
characteristic equation det(A — rI) = 0 by Euler’s Theorem. The solution of

is given for some constant vectors dq, ..., d,, by the equation

G(t) = (atom,)d; + - - - + (atom,)d,

—

Warning: The vectors ch, ..., d,, are not arbitrary; they depend on the 7 initial conditions
ur(0) = cx, k = 1,...,mn. The number of constants in these M vectors is 12,
Picard’s Existence Theorem implies that exactly 1 of these constant are arbitrary, while
the remaining 2 — n (or n(n — 1)) constants are completely determined in terms of the
1 arbitrary constants. In the 2 X 2 case there are 2 arbitrary constants a, b. The remaining
two constants ¢, d are completely determined in terms of a, b.



Cayley-Hamilton-Ziebur Method Conclusions

—

e Solving i’ = A is reduced to finding the 1 constant vectors d4, ..., d,,.

e The vectors d; are not arbitrary. They are uniquely determined by A and @(0)!
In particular, the 1 constant vectors have a total of 22 components, whereas Picard’s
theorem says that the general solution of i’ = A has exactly n arbitrary constants
(not n2).

A general method to find them is to differentiate the equation
i(t) = (atom,)d; + - - - + (atom,)d,

n — 1 times, then set ¢ = 0 and replace G* (0) by A*T(0) [because & =
A, i’ = Aud = AAAW, etc]. The resulting n equations in vector unknowns
d,...,d, can be solved by elimination.

e If all atoms constructed are base atoms constructed from real roots, then each dj 1S a
constant multiple of a real eigenvector of A. Atom €™ corresponds to the eigenpair
equation AV = rv.



Cayley-Hamilton-Ziebur Shortcut for 2 X 2 systems

Example

1 2

’ =/
Let’s solve u’ = (2 1

) u, d(0) = < _; ), which is the 2 X 2 system

{:E'(t) = z(t) + 2y(t), =(0)=-1, i(t) = (*/B(t)>
y'(t) = 2z(t) +  y(t), v(0) =2, y(t) ) -

The characteristic polynomial of the non-triangular matrix A = ( ; ? ) 1s

1—17r 2 o
= (1—7r)"—4=(r+1)(r —3).
13T =a-n (r+1)(r — 3)
Because the roots are 7 = —1, 7 = 3, then the Euler solution atoms are e ¢, e?'.
Then U is a vector linear combination of the solution atoms, U = e~‘d; + e3d,, or

equivalently,

x(t) = ae " + be’" and
y(t) = ce™* + de’.



How to Find a, b, ¢, d: C-H-Z Shortcut for 2 X 2

Known:

{ x'(t)

y'(t)

c(t) + 2y(t), .\ _ ( z(t)
2x(t) + wy(t), (t) = (y(t) )’

and

x(t) = ae t + be*,

y(t) = ce ' + de®.
The symbols a, b will be arbitrary constants in the solution, expected because 2 initial
conditions are required by Picard’s Theorem. We will find ¢, d in terms of a, b, by this
Cayley-Hamilton-Ziebur shortcut:
Given x(t) = ae ™ + be?, then y(t) if found by solving for y(t) in one of the
differential equations, namely the first one: x’(t) = a(t) 4+ 2y(t). Therefore, y(t) =
5(a’ — x). Substitute the known expression for 2 (t) to find y(t):

y(t) = 32’ — ;@& = ;(ae™" + be*) — (ae™ + be®)
= 2(—ae ™" + 3be* — ae™" — be®) = —ae™" + be®.

The answer: ¢ = —a, d = b. Then the general solution of the system has two arbitrary
constants a, b:

x(t) = ae ' + be’, y(t) = —ae ' + be’.



How to Find a, b, ¢, d from 2(0) = —1,y(0) = 2.

Known:
x(t) = ae ' + be*,
y(t) = —ae ™t + be*.
Set ¢ = 0 in these two equations to obtain the linear system of algebraic equations for
a, b:
—1 = ae’ + be°,
2 = —ae’ + be°.

Because e? = 1, then these equations become

11 a\ (-1
—1 1 b 2 )’
which is a system studied in Linear Algebra. The solution is a = —g, b= % Then the
solution of the system is

x(t) = —Je 4+ Je*,
y(t) = et + ;e



How to Directly Find Vectors 51 and 52: C-H-Z Elimination Method for 2 x 2

We solve for vectors d, ds in the equation

u = e_tal —|— €3t(—1’2.
—1
2

differential equation @ = A. Sett = 0 in the equations and replace @(0) by d, in the
two formulas to obtain relations

CTO = eO(_L —|— eoaz
Ad() = —eodl —|— 360(12

Advice: Define ao = < ) Differentiate the above relation. Replace U’ via the

We solve for 31, 32 by elimination. Adding the equations gives JO + A&O = 4&2 and
= —1\. .
then dg = ( o ) implies

d1 = %do — iAdO = ( 3§2> ’
d2 — i O+iA O:<1§2>'



Summary of the 2 X 2 Illustration

The solution T(t) of the dynamical system

o= (11)e w0= ()

is a vector linear combination of solution atoms €%, e3¢ given by the equation
_ [ —3/2 1/2
— ot 3t
u—e ( 3/2>—|—e (1/2).

Each vector appearing in the formula is a scalar multiple of an eigenvector, because eigen-
values —1, 3 are real and distinct. Simplified eigenpairs are

(= (1) (1),

Eigenpairs for Free




A Matrix Method for Finding 81'1 and 82

The Cayley-Hamilton-Ziebur Method produces a unique solution for &1, az because the

coefficient matrix
e e°
—e? 3eY

is exactly the Wronskian W of the basis of atoms et e3 evaluated at t = 0. This same
fact applies no matter the number of coefficients d, ds, ...to be determined.

Let dy = 4(0), the initial condition. The answer for d; and d5 can be written in matrix
form in terms of the transpose W7 of the Wronskian matrix as

(di|ds) = (do|Ado) (W)™

—

Symbol (A|B) is the augmented matrix of column vectors A, B.



Solving a 2 X 2 Initial Value Problem by the Matrix Method

i — Af, ﬁ(0)=<_;>, A:(; i)

endo = (1) ada= (12) (1) = (3) m
- (33)((22)) -

3
Extract d; = ( §
2

N[ = N =

) .

) . Then the solution of the initial value problem is
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Other Representations of the Solution

Let y1(t), ..., Yyn(t) be a solution basis for the nth order linear homogeneous constant-
coefficient differential equation whose characteristic equation is det(A — rI) = 0.

Consider the solution basis atom;, atoms,, ..., atom,,. Each atom is a linear combina-
tion of ¥4, ..., Y. Replacing the atoms in the formula

i(t) = (atom,)d; + - - - + (atom,,)d,

—

by these linear combinations implies there are constant vectors D+, ..., D,, such that

i(t) = yi(£)D; + - -+ + ya(t)D,,



Another General Solution of i’ = Aud

Theorem 3 (General Solution) _
The unique solution of @’ = A, @W(0) = dy is

U(t) = ¢@1(t)ho + ¢a(t) Aty + - - - + P, (t) A" 'y

where ¢4, ..., @, are linear combinations of atoms constructed from roots of the
characteristic equation det(A — rI) = 0, such that

Wronskian(¢1(t), ..., ¢n(t))|,_, = 1.



Proof of the theorem

Proof: Details will be given for n = 3. The details for arbitrary matrix dimension = is a routine modification
of this proof. The Wronskian condition implies ¢1, ¢2, ¢3 are independent. Then each atom constructed from
the characteristic equation is a linear combination of ¢1, ¢2, ¢3. It follows that the unique solution @ can be
written for some vectors 31, 32, 53 as

t(t) = ¢1(t)d1 + ¢2(t)dz + ¢Ps(t)ds.

=/

Differentiate this equation twice and then set ¢ = 0 in all 3 equations. The relations i’ = Ad and @/ = Ad’ =
A At imply the 3 equations

ag = ¢1(0)<:i:1 + ¢2(0)€1:2 + ¢3(0)<:1:3

Adg = ¢1(0)d1 + ¢5(0)dz + ¢5(0)d3

A%dg = ¢7(0)d1 + ¢5(0)d2 + ¢(0)ds

Because the Wronskian is the identity matrix I, then these equations reduce to
ao = 1&1 + O&z + O(_ig
Ady = 0d; + 1d2 + 0ds
A%dy, = 0d; + 0ds + 1ds

which implies 31 = 50, 32 = Aao, 53 = Azao.
The claimed formula for w(¢) is established and the proof is complete.



Change of Basis Equation

Illustrated here is the change of basis formula for 7 = 3. The formula for general 7v is
similar.
Let ¢1(t), d2(t), ¢d3(t) denote the linear combinations of atoms obtained from the vector
formula

(P1(t), Pa(t), Pps(t)) = (atom(t), atom,(t), atoms(t)) C~*
where

C' = Wronskian(atom,, atom,, atom;) (0).

The solutions ¢;(t), ¢2(t), ¢3(t) are called the principal solutions of the linear ho-
mogeneous constant-coefficient differential equation constructed from the characteristic
equation det(A — rI) = 0. They satisfy the initial conditions

Wronskian (¢, ¢, ¢3)(0) = I.



