
Outline for Final Exam Differential Equations 2280
Tuesday, 30 April 2019, 7:30am to 10:15am

Chapters 1 and 2: First Order Differential Equations

(a) [20%] An equation y′ = f(x, y) is Separable provided functions F,G exist such
that f(x, y) = F (x)G(y). Apply a test to an equation showing it fails to be separable.

(b) [30%] Problem
dy

dx
= f(x, y) is both linear and separable. It can be solved

by superposition y = yh + yp, where yh is the homogeneous solution and yp is an
equilibrium solution. Find yh and yp.

(c) [20%] Solve a linear homogeneous equation
dy

dx
+ p(x)y = 0.

(d) [30%] Solve y′ + p(x)y = q(x) by the linear integrating factor method. Show all
steps.

Chapter 3: Linear Equations of Higher Order

(a) [20%] Solve for the general solution: y′′ + ay′ + by = f(x)

(c) [30%] Given a damped forced spring-mass system, answer questions about clas-
sification, resonance and beats.

(d) [20%] Construct the characteristic equation of a linear nth order homogeneous
differential equation of least order n which has a given particular solution.

(e) [30%] An nth order non-homogeneous differential equation is specified by its
characteristic equation and the forcing term f(x). Find the shortest trial solution
for yp according to the method of undetermined coefficients. Do not evaluate
undetermined coefficients.

Chapters 4 and 5: Systems of Differential Equations

(a) [20%]

(a1) Use the Eigenanalysis Method to solve
d

dt
~x(t) = A~x(t).

(a2) Show details for computing an eigenpair.

Expected: Show linear algebra details for computing eigenvector ~v for eigenvalue

λ. This involves row reduction plus display of the scalar solution and the vector

solution.

(b) [20%] Find the scalar general solution of a 2× 2 system by the Cayley-Hamilton-
Ziebur Method, using the textbook’s Chapter 4 shortcut.

(c) [30%] Assume a 3× 3 system
d

dt
~u = A~u. has a given scalar general solution.
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(c1) Compute a 3× 3 fundamental matrix Φ(t).

(c2) Write a formula for the exponential matrix eAt.

(c3) Display the solution of the initial value problem
d

dt
~u = A~u, ~u(0) = ~c.

(d) [30%] Consider a given 3× 3 linear homogeneous system
x′ = · · ·
y′ = · · ·
z′ = · · ·

Solve the system by the most efficient method.

Chapter 6: Dynamical Systems

Consider the nonlinear dynamical system{
x′ = · · ·
y′ = · · ·(1)

(a) [20%] Find the equilibrium points for nonlinear system (1).

(b) [20%] Compute the Jacobian matrix J(x, y) for nonlinear system (1). Then
evaluate J(x, y) at each of the equilibrium points found in part (a).

(c) [30%] Consider nonlinear system (1). Classify the linearization at each equilibrium
point found in part (a) as a node, spiral, center, saddle. Do not sub-classify a node.

(d) [30%] Consider nonlinear system (1). Determine the possible classifications of
node, spiral, center or saddle and corresponding stability for each equilibrium de-
termined in part (a), according to the Pasting Theorem, which is Theorem 2 in
section 6.2 (Stability of Almost Linear Systems).

Chapter 7: Laplace Theory

Symbol δ(t) is the Dirac impulse. Symbol u(t) is the unit step. Assumed below is experience
with the following rules. Each rule has precise hypotheses, omitted here for brevity.

Convolution Theorem. L(g1)L(g2) = L
(∫ t

0 g1(t− x)g2(x)dx
)

Periodic Function Theorem. f(t+ p) = f(t) implies L(f(t)) =
∫ p
0 f(t)dt

1− e−ps

Second Shifting Theorem Forward. L(g(t)u(t− a)) = e−asL
(
g(t)|t−>t+a

)
Second Shifting Theorem Backward. e−asL(f(t)) = L(f(t− a)u(t− a))
Dirac Impulse Formula. Formally δ(t) = du(t). Then

∫∞
0 W (x)du(t− a) =W (a).

Resolvent Identity. ~u′ = A~u+ ~F(t) has identity (sI −A)L(~u) = ~u(0) + L(~F).



(a) [20%] Let f(t) be continuous and of exponential order. Prove a Laplace Rule (no
choice as to which rule).

(b) [20%] Illustrate the convolution theorem by solving for f(t) in the equation
L(f(t)) = · · ·. Check the answer with partial fractions.

(c) [20%] Solve for f(t) using the second shifting theorem: L(f(t)) = · · ·
(d) [20%] Derive a formula for L(x(t)) for an impulse problem like

x′′(t) + p x′(t) + q x(t) = kδ(t− a), x(0) = x0, x′(0) = v0.

(e) [20%] Laplace Theory applied to a specific forced linear dynamical system
(a, b, c, d are known constants)

x′ = ax+ by + f1(t),
y′ = cx+ dy + f2(t)
x(0) = 0, y(0) = 0,

produces formulas like

L(x(t)) =
1

s2(s+ 2)(s+ 6)
, L(y(t)) =

s2 − s− 1

s2(s+ 2)(s+ 6)
.

Display the Resolvent Method solution steps that produce these formulas.

Chapter 9: Fourier Series and Partial Differential Equations

In part (a), function f0(x) is given on the interval −L ≤ x ≤ L. Let f(x) be
the periodic extension of f0 to the whole real line, of period 2L.

(a) [20%] Compute the Fourier coefficients an and bn of f(x) on [−L,L].

In part (b), function f0(x) is given on the interval −L ≤ x ≤ L. Let f(x) be
the periodic extension of f0 to the whole real line, of period 2L.

(b) [10%] Find all values of x for which the Fourier series of f will exhibit Gibb’s
over-shoot.

(c) [10%] Question about the Fourier Convergence Theorem plus integration and
differentiation of Fourier series.

(d) [30%] Heat Conduction in a Rod.
Let L = 2 (rod length), k = 1 (conduction constant). Solve the rod problem on
0 ≤ x ≤ L, t ≥ 0: 

ut = k uxx,
u(0, t) = 0,
u(L, t) = 0,
u(x, 0) = given specific f(x)



(e) [30%] Vibration of a Finite String.
Let L = 4 (string length), c = 4 (wave speed). Solve the finite string vibration
problem on 0 ≤ x ≤ L, t > 0:

utt(x, t) = c2 uxx(x, t),
u(0, t) = 0,
u(L, t) = 0,
u(x, 0) = given specific f(x)
ut(x, 0) = given specific g(x)


