Tuesday, 30 April 2019, 7:30am to 10:15am

Chapters 1 and 2: First Order Differential Equations

(a) [20%] An equation y' = f(x, y) is **Separable** provided functions F, G exist such that f(x, y) = F(x)G(y). Apply a test to an equation showing it fails to be separable.

(b) [30%] Problem $\frac{dy}{dx} = f(x, y)$ is both linear and separable. It can be solved by superposition $y = y_h + y_p$, where y_h is the homogeneous solution and y_p is an equilibrium solution. Find y_h and y_p .

(c) [20%] Solve a linear homogeneous equation $\frac{dy}{dx} + p(x)y = 0$.

(d) [30%] Solve y' + p(x)y = q(x) by the linear integrating factor method. Show all steps.

Chapter 3: Linear Equations of Higher Order

(a) [20%] Solve for the general solution: y'' + ay' + by = f(x)

(c) [30%] Given a damped forced spring-mass system, answer questions about classification, resonance and beats.

(d) [20%] Construct the characteristic equation of a linear *n*th order homogeneous differential equation of least order *n* which has a given particular solution.

(e) [30%] An *n*th order non-homogeneous differential equation is specified by its characteristic equation and the forcing term f(x). Find the shortest trial solution for y_p according to the method of undetermined coefficients. Do not evaluate undetermined coefficients.

Chapters 4 and 5: Systems of Differential Equations

(a) [20%]

(a1) Use the Eigenanalysis Method to solve $\frac{d}{dt}\vec{\mathbf{x}}(t) = A\vec{\mathbf{x}}(t)$.

(a2) Show details for computing an eigenpair.

Expected: Show linear algebra details for computing eigenvector \vec{v} for eigenvalue λ . This involves row reduction plus display of the scalar solution and the vector solution.

(b) [20%] Find the scalar general solution of a 2×2 system by the Cayley-Hamilton-Ziebur Method, using the textbook's Chapter 4 shortcut.

(c) [30%] Assume a 3 × 3 system $\frac{d}{dt}\vec{\mathbf{u}} = A\vec{\mathbf{u}}$. has a given scalar general solution.

(c1) Compute a 3×3 fundamental matrix $\Phi(t)$.

(c2) Write a formula for the exponential matrix e^{At} .

(c3) Display the solution of the initial value problem $\frac{d}{dt}\vec{\mathbf{u}} = A\vec{\mathbf{u}}, \vec{\mathbf{u}}(0) = \vec{\mathbf{c}}.$

(d) [30%] Consider a given 3×3 linear homogeneous system

$$\begin{cases} x' = \cdots \\ y' = \cdots \\ z' = \cdots \end{cases}$$

Solve the system by the most efficient method.

Chapter 6: Dynamical Systems

Consider the nonlinear dynamical system

(1)
$$\begin{cases} x' = \cdots \\ y' = \cdots \end{cases}$$

(a) [20%] Find the equilibrium points for nonlinear system (1).

(b) [20%] Compute the Jacobian matrix J(x, y) for nonlinear system (1). Then evaluate J(x, y) at each of the equilibrium points found in part (a).

(c) [30%] Consider nonlinear system (1). Classify the linearization at each equilibrium point found in part (a) as a node, spiral, center, saddle. Do not sub-classify a node.

(d) [30%] Consider nonlinear system (1). Determine the possible classifications of node, spiral, center or saddle and corresponding stability for each equilibrium determined in part (a), according to the **Pasting Theorem**, which is Theorem 2 in section 6.2 (Stability of Almost Linear Systems).

Chapter 7: Laplace Theory

Symbol $\delta(t)$ is the Dirac impulse. Symbol u(t) is the unit step. Assumed below is experience with the following rules. Each rule has precise hypotheses, omitted here for brevity.

Convolution Theorem. $\mathcal{L}(g_1)\mathcal{L}(g_2) = \mathcal{L}\left(\int_0^t g_1(t-x)g_2(x)dx\right)$ Periodic Function Theorem. f(t+p) = f(t) implies $\mathcal{L}(f(t)) = \frac{\int_0^p f(t)dt}{1-e^{-ps}}$ Second Shifting Theorem Forward. $\mathcal{L}(g(t)u(t-a)) = e^{-as}\mathcal{L}\left(g(t)|_{t->t+a}\right)$ Second Shifting Theorem Backward. $e^{-as}\mathcal{L}(f(t)) = \mathcal{L}(f(t-a)u(t-a))$ Dirac Impulse Formula. Formally $\delta(t) = du(t)$. Then $\int_0^\infty W(x)du(t-a) = W(a)$. Resolvent Identity. $\vec{\mathbf{u}}' = A\vec{\mathbf{u}} + \vec{\mathbf{F}}(t)$ has identity $(sI - A)\mathcal{L}(\vec{\mathbf{u}}) = \vec{\mathbf{u}}(0) + \mathcal{L}(\vec{\mathbf{F}})$. (a) [20%] Let f(t) be continuous and of exponential order. Prove a Laplace Rule (no choice as to which rule).

(b) [20%] Illustrate the convolution theorem by solving for f(t) in the equation $\mathcal{L}(f(t)) = \cdots$. Check the answer with partial fractions.

(c) [20%] Solve for f(t) using the second shifting theorem: $\mathcal{L}(f(t)) = \cdots$

(d) [20%] Derive a formula for $\mathcal{L}(x(t))$ for an impulse problem like

$$x''(t) + p x'(t) + q x(t) = k\delta(t-a), \quad x(0) = x_0, \quad x'(0) = v_0$$

(e) [20%] Laplace Theory applied to a specific forced linear dynamical system (a, b, c, d are known constants)

$$\begin{cases} x' = ax + by + f_1(t), \\ y' = cx + dy + f_2(t) \\ x(0) = 0, y(0) = 0, \end{cases}$$

produces formulas like

$$\mathcal{L}(x(t)) = \frac{1}{s^2(s+2)(s+6)}, \quad \mathcal{L}(y(t)) = \frac{s^2 - s - 1}{s^2(s+2)(s+6)}$$

Display the **Resolvent Method** solution steps that produce these formulas.

Chapter 9: Fourier Series and Partial Differential Equations

In part (a), function $f_0(x)$ is given on the interval $-L \le x \le L$. Let f(x) be the periodic extension of f_0 to the whole real line, of period 2L.

(a) [20%] Compute the Fourier coefficients a_n and b_n of f(x) on [-L, L].

In part (b), function $f_0(x)$ is given on the interval $-L \le x \le L$. Let f(x) be the periodic extension of f_0 to the whole real line, of period 2L.

(b) [10%] Find all values of x for which the Fourier series of f will exhibit Gibb's over-shoot.

(c) [10%] Question about the Fourier Convergence Theorem plus integration and differentiation of Fourier series.

(d) [30%] Heat Conduction in a Rod.

Let L = 2 (rod length), k = 1 (conduction constant). Solve the rod problem on $0 \le x \le L, t \ge 0$:

$$\begin{cases}
u_t = k u_{xx}, \\
u(0,t) = 0, \\
u(L,t) = 0, \\
u(x,0) = \text{ given specific } f(x)
\end{cases}$$

(e) [30%] Vibration of a Finite String.

Let L = 4 (string length), c = 4 (wave speed). Solve the finite string vibration problem on $0 \le x \le L, t > 0$:

$$\begin{cases} u_{tt}(x,t) = c^2 u_{xx}(x,t), \\ u(0,t) = 0, \\ u(L,t) = 0, \\ u(x,0) = \text{ given specific } f(x) \\ u_t(x,0) = \text{ given specific } g(x) \end{cases}$$