
Differential Equations 2280

Shortened Sample Final Exam
Problem Numbers Match the Long Sample Final Exam

Tuesday, 30 April 2018, 7:30-10:00am, LCB 215

Instructions: This in-class exam is 120 minutes. About 20 minutes per sub-section. No
calculators, notes, tables or books. No answer check is expected. Details count 75%. The
answer counts 25%.

The actual final exam will have 25 sections to solve. This sample exam has 50 sections to
solve. It is intended as a study guide for the final exam, which is why it is twice as long as
the actual final exam.

Chapters 1 and 2: Linear First Order Differential Equations

3. (Solve a Separable Equation)

Given y2y′ =
2x2 + 3x

1 + x2

(
125

64
− y3

)
.

(a) Find all equilibrium solutions.
(b) Find the non-equilibrium solution in implicit form.
To save time, do not solve for y explicitly.

Answer:
(a) y = 5/4
(b)

−1

3
ln |125− 64y3| = 2x+

3

2
ln(1 + x2)− 2 arctan(x) + c

4. (Linear Equations)

(a) [60%] Solve 2v′(t) = −32 +
2

3t+ 1
v(t), v(0) = −8. Show all integrating factor

steps.

(b) [30%] Solve 2
√
x+ 2

dy

dx
= y. The answer contains symbol c.

(c) [10%] The problem 2
√
x+ 2 y′ = y − 5 can be solved using the answer yh from

part (b) plus superposition y = yh + yp. Find yp.

Answer:
(a) v(t) = −24t− 8
(b) y(x) = Ce

√
x+2



Chapter 3: Linear Equations of Higher Order

6. (ch3)
(a) Solve for the general solutions:

(a.1) [25%] y′′ + 4y′ + 4y = 0 ,

(a.2) [25%]
d6y

dx6
+ 4

d4y

dx4
= 0 ,

(a.3) [25%] Char. eq. r(r − 3)(r3 − 9r)2(r2 + 4)3 = 0 .

(b) Given 6x′′(t) + 7x′(t) + 2x(t) = 0, which represents a damped spring-mass system
with m = 6, c = 7, k = 2, solve the differential equation [15%] and classify the
answer as over-damped, critically damped or under-damped [5%]. Illustrate in a
physical model drawing the meaning of constants m, c, k [5%].

Answer:
(a)
1: r2 + 4r + 4 = 0, y = c1y1 + c2y2, y1 = e−2x, y2 = xe−2x.
2: r6 + 4r2 = 0, roots r = 0, 0, 2i,−2i. Then y = c1e

0x + c2xe
0x + c3 cos 2x+ c4 sin 2x.

3: Write as r3(r − 3)3(r + 3)2(r2 + 4)3 = 0. Then y is a linear combination of the
atoms 1, x, x2, e3x, xe3x, x2e3x, e−3x, xe−3x, cos 2x, x cos 2x, x2 cos 2x, sin 2x, x sin 2x,
x2 sin 2x.
Part (b)
Use 6r2 + 7r + 2 = 0 and the quadratic formula to obtain roots r = −1/2,−2/3. Then
x(t) = c1e

−t/2+c2e
−2t/3. This is over-damped. The illustration shows a spring, dampener

and mass with labels k, c, m, x and the equilibrium position of the mass.

7. (ch3)

Determine for
d6y

dx6
+ 4

d4y

dx4
= x + 2x2 + x3 + e−x + x sinx the shortest trial solution

for yp according to the method of undetermined coefficients. Do not evaluate the
undetermined coefficients!

Answer:
The homogeneous solution is a linear combination of the atoms 1, x, x2, x3, cosx, sinx
because the characteristic polynomial has roots 0, 0, 0, 0, i, −i.
1 An initial trial solution y is constructed by Rule I for atoms 1, x, e3x, e−3x, cosx,

sinx giving
y = y1 + y2 + y3 + y4,
y1 = d1 + d2x+ d3x

2 + d4x
3,

y2 = d5 cosx+ d6x cosx,
y3 = d7 sinx+ d8x sinx,
y4 = d9e

−x.



Linear combinations of the listed independent atoms are supposed to reproduce, by spe-
cialization of constants, all derivatives of the right side of the differential equation.
2 Rule II is applied individually to each of y1, y2, y3, y4.

The result is the shortest trial solution

y = y1 + y2 + y3 + y4,
y1 = d1x

4 + d2x
5 + d3x

6 + d4x
7,

y2 = d5x cosx+ d6x
2 cosx,

y3 = d7x sinx+ d8x
2 sinx,

y4 = d9e
−x.

Chapters 4 and 5: Systems of Differential Equations

9. (ch5)
The eigenanalysis method says that the system ~x′ = A~x has general solution ~x(t) =
c1~v1e

λ1t + c2~v2e
λ2t + c3~v3e

λ3t. In the solution formula, (λi, ~vi), i = 1, 2, 3, is an
eigenpair of A. Given

A =

 5 1 1
1 5 1
0 0 7

 ,
then
(a) [75%] Display eigenanalysis details for A.
(b) [25%] Display the solution ~x(t) of ~x′(t) = A~x(t).

Answer:
(1): The eigenpairs are4,

 −1
1
0


 ,

6,

 1
1
0


 ,

7,

 1
1
1


 .

An expected detail is the cofactor expansion of det(A−λI) and factoring to find eigenval-
ues 4, 6, 7. Eigenvectors should be found by a sequence of swap, combo, mult operations
on the augmented matrix, followed by taking the partial ∂t1 on invented symbol t1 in
the general solution to compute the eigenvector. In short, the eigenvectors are Strang’s
Special Solutions, and in general there can be many eigenvectors for a single eigenvalue.
(2): The eigenanalysis method for ~x′ = A~x implies

~x(t) = c1e
4t

 −1
1
0

+ c2e
6t

 1
1
0

+ c3e
7t

 1
1
1

 .



10. (ch5)

(a) [20%] Find the eigenvalues of the matrix A =

 4 1 −1
1 4 −2
0 0 2

.

(b) [40%] Putzer’s Method removed from the final exam.

(c) [40%] Display the general solution of ~u′ = A~u according to the Cayley-Hamilton-
Ziebur Method. In particular, display the equations that determine the three vectors
in the general solution. To save time, don’t solve for the three vectors in the formula.

(d) [40%] Display the general solution of ~u′ = A~u according to the Eigenanalysis
Method. To save time, find one eigenpair explicitly, just to show how it is done,
but don’t solve for the last two eigenpairs.

(e) [40%] Display the general solution of ~u′ = A~u according to Laplace’s Method.
To save time, use symbols for partial fraction constants and leave the symbols
unevaluated.

Answer:
(a) Eigenvalue Calculation
Subtract λ from the diagonal elements of A to obtain matrix B = A− λI, then expand
det(B) by cofactors to obtain the characteristic polynomial. The roots are the eigenvalues
λ = 2, 3, 5.
(c) Cayley-Hamilton-Ziebur Method
The eigenvalues 2, 3, 5 from (a) are used to create the list of atoms e2t, e3t, e5t. Then

the Cayley-Hamilton-Ziebur method implies there are constant vectors ~d1, ~d2, ~d3 which
depend on ~u(0) and A such that

~u(t) = e2t~d1 + e3t~d2 + e5t~d3.

It is known for the case of distinct eigenvalues that vectors ~dj are eigenvectors of A
multiplied by arbitrary constants c1, c2, c3, respectively. Discussed below is how to solve
for the unknown vectors without eigenanalysis.
The determining equations are formed from differentiation of this formula two times, then
replace ~u′ = A~u, ~u′′ = A~u′ = AA~u. Finally, remove t from the three equations by
setting t = 0, and define ~u0 = ~u(0). Then the three equations are, with ~u0 = ~u(0),

~u0 = ~d1 + ~d2 + ~d3

A~u0 = 2~d1 + 3~d2 + 5~d3

A2~u0 = 4~d1 + 9~d2 + 25~d3

This ends the solution to the problem. We continue just to illustrate how the unknown
vectors are found directly, without eigenanalysis. The matrix of coefficients

C =

 1 1 1
2 3 5
4 9 25





and its transpose matrix B = CT give a formal relation

〈~u0|A~u0|A2~u0〉 = 〈~d1|~d2|~d3〉B.

Multiplying this relation by B−1 gives

〈~d1|~d2|~d3〉 = 〈~u0|A~u0|A2~u0〉B−1.

Then disassembling the formal matrix multiply implies

~d1 = 5~u0 − 8
3
A~u0 + 1

3
A2~u0

~d2 = −5~u0 + 7
2
A~u0 − 1

2
A2~u0

~d3 = 5~u0 − 5
6
A~u0 + 1

6
A2~u0

The matrix of coefficients is
5 −8

3
1
3

−5 7
2
−1

2

1 −5
6

1
6

 =
(
B−1

)T
= C−1!

This fact, that solving for ~d1, ~d2, ~d3 in the displayed equations reduces to inverting the
matrix of coefficients, can be used as a shortcut in the Cayley-Hamilton-Ziebur method.
(d) Eigenanalysis Method
For matrix

A =

 4 1 −1
1 4 −2
0 0 2


the eigenpairs are computed to be2,

 0
1
1


 ,

3,

 −1
1
0


 ,

5,

 1
1
0


 .

Then ~u′ = A~u has general solution

~u(t) = c1e
2t

 0
1
1

+ c2e
3t

 −1
1
0

+ c3e
5t

 1
1
0

 .
(e) Laplace’s Method
The start is the Laplace resolvent formula for matrix differential equation ~u′ = A~u.

(sI − A)L(~u) = ~u0.

This formula expands to s− 4 −1 1
−1 s− 4 2

0 0 s− 2


 L(x)
L(y)
L(z)

 =

 a
b
c





where symbols a, b, c are arbitrary constants for the initial data ~u0. Let W denote the
coefficient matrix. Then the inverse of W can be computed using the adjugate formula
W−1 = adj(W )/ det(W ). The answer for the inverse is

W−1 =
1

(s− 5)(s− 2)(s− 3)

 s2 − 6 s+ 8 s− 2 −s+ 2
s− 2 s2 − 6 s+ 8 −2 s+ 7

0 0 s2 − 8 s+ 15


True, this formula can be derived and then followed by inverse Laplace methods to obtain
an answer in variable t. However, we already know the outcome, because this matrix is
the Laplace of the exponential matrix eAt. The exponential matrix formula was already
derived in (b) above. Expanding the matrix multiplies and collecting terms gives the final
answer

W−1 = L
(
eAt
)

=
1

2
L


e5 t + e3 t e5 t − e3 t −e5 t + e3 t

e5 t − e3 t e5 t + e3 t −e5 t + 2 e2 t − e3 t

0 0 2 e2 t


Canceling the L with Lerch’s Theorem implies the same answer as found in part (b),
which is

~u(t) = eAt

 a
b
c

 =
1

2


e5 t + e3 t e5 t − e3 t −e5 t + e3 t

e5 t − e3 t e5 t + e3 t −e5 t + 2 e2 t − e3 t

0 0 2 e2 t


 a
b
c

 .

11. (ch5) Do enough to make 100%

(a) [50%] The eigenvalues are 4, 6 for the matrix A =

[
5 1
1 5

]
.

Display the general solution of ~u′ = A~u. Show details from either the eigenanalysis
method or the Laplace method.

(b) [50%] Using the same matrix A from part (a), display the solution of ~u′ = A~u
according to the Cayley-Hamilton-Ziebur Method. To save time, write out the system
to be solved for the two vectors, and then stop, without solving for the vectors.

(c) [50%] Using the same matrix A from part (a), compute the exponential matrix
eAt by any known method, for example, the formula eAt = Φ(t)Φ−1(0) where Φ(t) is
any fundamental matrix, or via Putzer’s 2× 2 formula.

Answer:
(a) Eigenanalysis method
The eigenpairs of A are (

4,

(
1
−1

))
,

(
6,

(
1
1

))



which implies the eigenanalysis general solution

~u(t) = c1e
4t

(
1
−1

)
+ c2e

6t

(
1
1

)
.

(b)Cayley-Hamilton-Ziebur method
Then ~u(t) = e4t~c1 + e6t~c2 for some constant vectors ~c1, ~c2 that depend on ~u(0) and A.
Differentiate this equation once and use ~u′ = A~u, then set t = 0. The resulting system
is

~u0 = e0~c1 + e0~c2

A~u0 = 4e0~c1 + 6e0~c2

The CHZ Shortcut writes x(t) = c1e
4t+ c2e

6t, then solve the first differential equation
x′ = 5x + y for y = x′ − 5x and substitute the expression for x(t) to obtain y =
4c1e

4t + 6c2e
6t − 5c1e

4t − 5c2e
6t = −c1e

4t + c2e
6t.

(c) Putzer Method (not required, course enrichment)
The result is eAt = e4tI + e4t−e6t

4−6
(A− 4I). Functions r1, r2 are computed from r′1 = 4r1,

r1(0) = 1, r′2 = 6r2 + r1, r2(0) = 0.

eAt =
1

2

 e4 t + e6 t e6 t − e4 t

e6 t − e4 t e4 t + e6 t

 .
Alternatively, the Putzer formula can be memorized for 2 × 2 matrices, which shortens
the details considerably:

eAt = eλ1tI +
eλ1t − eλ2t

λ1 − λ2

(A− λ1I) =
1

2

 e4 t + e6 t e6 t − e4 t

e6 t − e4 t e4 t + e6 t

 .

12. (ch5) Do both

(a) [50%] Display the solution of ~u′ =

(
2 0
1 2

)
~u, ~u(0) =

(
0
1

)
, using any method

that applies. The expected answer is Φ(t)~u(0), where Φ is a fundamental matrix.

(b) [50%] Display the variation of parameters formula for the system below. Then
integrate to find ~up(t) for ~u′ = A~u.

~u′ =

(
2 0
1 2

)
~u +

(
e2t

0

)
.

Answer:
(a) Resolvent method
The resolvent equation (sI − A)L(~u) = ~u(0) is the system(

s− 2 0
−1 s− 2

)(
L(x)
L(y)

)
=

(
0
1

)
.



The system is solved by Cramer’s rule for unknowns L(x), L(y) to obtain

L(x) =
0

(s− 2)2
, L(y) =

s− 2

(s− 2)2
.

The backward Laplace table implies

x(t) = 0, y(t) = e2t.

Eigenanalysis Method. It fails to apply because the matrix is not diagonalizable (has
only one eigenpair, not two).
Integrating Factor method, Ch1. Look at the equations as scalar equations x′ = 2x,
x(0) = 0 and y′ = x+2y, y(0) = 1. Picard says x(t) = 0 and then y′ = 0+2y, y(0) = 1
implies y(t) = e2t by the homogeneous equation shortcut, Ch1.
Cayley-Hamilton-Ziebur Shortcut. The eigenvalues are 2, 2 and the atoms are
e2t, te2t. Write y = c1e

2t + c2te
2t. Use the second differential equation y′ = x + 2y to

solve for x = y′−2y = 2c1e
2t+ 2tc2e

2t+ c2e
2t−2c1e

2t−2c2te
2t. Reduce it to x = c2e

2t.
Now use x(0) = 0, y(0) = 1 to determine c2 = 0, c2 = 1. Then x = 0, y = e2t.
Fundamental Matrix. From the general solution, take partials on symbols c1, c2 to

find Φ(t) =

(
e2t te2t

0 e2t

)
. Then eAt = Φ(t)Φ(0)−1 =

(
e2t 0
te2t e2t

)
.

Putzer Method
Putzer’s exponential formula gives

eAt = e2tI + te2t(A− 2I) =

(
e2t 0
te2t e2t

)
.

(b) Variation of Parameters
Then regardless of how we found eAt, the variation of parameters formula implies ~up(t) =

eAt
∫ t

0 e
−Au

(
e2u

0

)
du = eAt

∫ t
0

(
1
−u

)
du =

(
te2t

t2e2t/2

)
.

Chapter 6: Dynamical Systems

14. (ch6)
Find the equilibrium points of x′ = 14x−x2/2−xy, y′ = 16y−y2/2−xy and classify
each linearization at an equilibrium as a node, spiral, center, saddle. What classifi-
cations can be deduced for the nonlinear system, according to the Paste Theorem,
which is textbook Theorem 2, section 6.2?

Answer:
The equilibria are constant solutions, which are found from the equations

0 = (14− x/2− y)x
0 = (16− y/2− x)y



Considering when a zero factor can occur leads to the four equilibria (0, 0), (0, 32), (28, 0),
(12, 8). The last equilibrium comes from solving the system of equations

x/2 + y = 14
x+ y/2 = 16

Linearization
The Jacobian matrix J is the augmented matrix of column vector partial derivatives ∂x~F,
∂y~F computed from vector function

~f(x, y) =

(
14x− x2/2− yx
16y − y2/2− xy

)
.

Then

J(x, y) =

(
14− x− y −x
−y 16− y − x

)
.

The four matrices below are J(x, y) when (x, y) is replaced by each of the four equilibrium
points. Included in the table are the roots of the characteristic equation for each matrix
and its classification based on the roots. No book was consulted for the classifications.
The idea in each is to examine the limits at t = ±∞, then eliminate classifications. No
matrix has complex eigenvalues, and that eliminates the center and spiral. The first three
are stable at either t =∞ or t =∞, which eliminates the saddle and leaves the node as
the only possible classification.

A1 = J(0, 0) =

(
14 0
0 16

)
r = 14, 16 node

A2 = J(0, 32) =

(
−18 0
−32 −16

)
r = −18,−16 node

A3 = J(28, 0) =

(
−14 −28

0 −12

)
r = −14,−12 node

A4 = J(12, 8) =

(
−6 −12
−8 −4

)
r = −5 +

√
97,−5−

√
97 saddle

Some maple code for checking the answers:

F:=unapply([14*x-x^2/2-y*x , 16*y-y^2/2 -x*y],(x,y));

Fx:=unapply(map(u->diff(u,x),F(x,y)),(x,y));

Fy:=unapply(map(u->diff(u,y),F(x,y)),(x,y));

Fx(0,0);Fy(0,0);Fx(28,0);Fy(28,0);Fx(0,32);Fy(0,32);Fx(0,32);Fy(0,32);

15. (ch6) Do enough to make 100%
(a) [25%] Which of the four types center, spiral, node, saddle can be unstable at
t =∞? Explain your answer.
(b) [25%] Give an example of a linear 2-dimensional system ~u′ = A~u with a saddle



at equilibrium point x = y = 0, and A is not triangular.
(c) [25%] Give an example of a nonlinear 2-dimensional predator-prey system with
exactly four equilibria.

(d) [25%] Display a formula for the general solution of the equation ~u′ =

(
1 1
−1 1

)
~u.

Then explain why the system has a spiral at (0, 0).
(e) [25%] Is the origin an isolated equilibrium point of the linear system ~u′ =(

1 1
1 1

)
~u? Explain your answer.

Answer:
(a) All except the center, which is stable but not asymptotically stable. All the others
correspond to a general solution which can have an exponential factor ekt in each term.
If k > 0, then the solution cannot approach the origin at t =∞.

(b) Required are characteristic roots like 1, −1. Let B =

(
−1 0

0 1

)
. Define A =

PBP−1 where P =

(
1 1
1 2

)
. Then ~u′ = A~u has a saddle at the origin, because the

characteristic roots of A are still 1, −1. And A =

(
−3 2
−4 3

)
is not triangular.

(c) Example: The nonlinear predator-prey system x′ = (x+y−4)x, y′ = (−x+2y−2)y
has exactly four equilibrium points (0, 0), (4, 0), (0, 1), (2, 2).
(d) The characteristic equation det(A− λI) = 0 is (1− λ)2 + 1 = 0 with complex roots
1± i and corresponding atoms et cos t, et sin t. Then the Cayley-Hamilton-Ziebur Method
implies

~u(t) = et cos t~c1 + et sin t~c2.

Explanation, why the classification is a spiral. Such solutions containing sine and
cosine factors wrap around the origin. This makes it a spiral or a center. Because of the
exponential factor et, it is asymptotically stable at t = −∞, which disallows a center, so
it is a spiral.
(e) No, because det(A) = 0. In this case, A~u = ~0 has infinitely many solutions, describing
a line of equilibria through the origin. This implies the equilibrium point (0, 0) is not
isolated [you cannot draw a circle about (0, 0) which contains no other equilibrium point].

16. (ch7)

(a) Define the direct Laplace Transform.

(b) Define Heaviside’s unit step function.

(c) Derive a Laplace integral formula for Heaviside’s unit step function.

(d) Explain all the steps in Laplace’s Method, as applied to the differential equation
x′(t) + 2x(t) = et, x(0) = 1.



Answer:
(a) Definition of Direct Laplace Transform

L(f(t)) =
∫ ∞

0
f(t)e−stdt.

(b) Definition of the Heaviside unit step

u(t− a) =

{
1 t ≥ a,
0 t < a.

(c) Derivation
We prove the second shifting theorem L(u(t−a)f(t−a)) = e−asL(f(t)), which includes
an integral formula for the Heaviside function by substitution of f(t) = 1.

L(u(t− a)f(t− a)) =
∫∞

0 u(t− a)f(t− a)e−stdt
=

∫ a
0 (integrand)dt+

∫∞
a (integrand)dt

= 0 +
∫∞
a f(t− a)e−stdt

=
∫∞

0 f(u)e−s(a+u)du
= e−sa

∫∞
0 f(u)e−sudu

= e−asL(f(t))

Used in the derivation is a change of variable u = t−a, du = dt. Line 3 uses u(t−a) = 0
on the interval 0 ≤ t ≤ a and u(t−a) = 1 on a ≤ t <∞, which simplifies each integrand.
Line 5 observes that factor e−sa in the integrand is a constant relative to u-integration,
therefore it can move through the integral sign.
(d) Laplace’s method explained.
The first step transforms the equation using the parts formula and initial data to get

(s+ 2)L(x) = 1 + L(et).

The forward Laplace table applies to write, after a division, the isolated formula for L(x):

L(x) =
1 + 1/(s− 1)

s+ 2
=

s

(s− 1)(s+ 2)
.

Partial fraction methods imply

L(x) =
a

s− 1
+

b

s+ 2
= L(aet + be−2t)

and then x(t) = aet + be−2t by Lerch’s theorem. The constants are a = 1/3, b = 2/3.

17. (ch7)

(a) Solve L(f(t)) =
100

(s2 + 1)(s2 + 4)
for f(t).



(b) Solve for f(t) in the equation L(f(t)) =
1

s2(s− 3)
.

(c) Find L(f) given f(t) = (−t)e2t sin(3t).

(d) Find L(f) where f(t) is the periodic function of period 2 equal to t/2 on 0 ≤ t ≤ 2
(sawtooth wave).

Answer:
(a) L(f) = 100

(u+1)(u+4)
= 100/3

u+1
+ −100/3

u+4
where u = s2. Then L(f) = 100

3
( 1
s2+1
− 1

s2+4
) =

100
3
L(sin t− 1

2
sin 2t) implies f(t) = 100

3
(sin t− 1

2
sin 2t).

(b) L(f) = a
s

+ b
s2

+ c
s−3

= L(a+ bt+ ce3t) implies f(t) = a+ bt+ ce3t. The constants,
by Heaviside coverup, are a = −1/9, b = −1/3, c = 1/9.
(c) L(f) = d

ds
L(e2t sin 3t) by the s-differentiation theorem. The first shifting theo-

rem implies L(e2t sin 3t) = L(sin 3t)|s→(s−2). Finally, the forward table implies L(f) =
d
ds

(
1

(s−2)2+9

)
= −2(s−2)

((s−2)2+9)2
.

18. (ch7)

(a) Solve y′′ + 4y′ + 4y = t2, y(0) = y′(0) = 0 by Laplace’s Method.

(b) Solve x′′′ + x′′ − 6x′ = 0, x(0) = x′(0) = 0, x′′(0) = 1 by Laplace’s Method.

(c) Solve the system x′ = x + y, y′ = x − y + et, x(0) = 0, y(0) = 0 by Laplace’s
Method.

Answer:
(a) Transform to get L(x) = L(t2)

s2+4s+4
. Then L(x) = 1

s3(s+2)2
= a

s
+ b
s2

+ c
s3

+ d
s+2

+ f
(s+2)2

=

L(a+ bt+ ct2 + de−2t + fte−2t). The answer is x(t) = a+ bt+ +ct2 + de−2t + fte−2t.
The partial fraction constants are a = 3/16, b = −1/4, c = 1/4, d = −3/16, f = −1/8.
(b) Transform to get L(x) = 1

s3+s2−6s
= 1

s(s−2)(s+3)
= a

s
+ b

s−2
+ c

s+3
= L(a+be2t+ce−3t).

Then the answer is x(t) = a + be2t + ce−3t. The partial fraction constants are a =
−1/6, b = 1/10, c = 1/15.

19. (ch7)
(a) [25%] Solve by Laplace’s method x′′ + x = cos t, x(0) = x′(0) = 0.

(b) [10%] Does there exist f(t) of exponential order such that L(f(t)) =
s

s+ 1
?

Details required.

(c) [15%] Linearity L(c1f + c2g) = c1L(f) + c2L(g) is one Laplace rule. State four
other Laplace rules. Forward and backward table entries are not rules, which means
L(1) = 1/s doesn’t count.



(d) [25%] Solve by Laplace’s resolvent method

x′(t) = x(t) + y(t),
y′(t) = 2x(t),

with initial conditions x(0) = −1, y(0) = 2.

(e) [25%] Derive y(t) =
∫ t

0
sin(t− u)f(u)du by Laplace transform methods from the

forced oscillator problem

y′′(t) + y(t) = f(t), y(0) = y′(0) = 0.

Answer:
(a) Transform to obtain L(x) = s

(s2+1)2
.

Calculus method. Observe that d
ds

1
s2+1

= −2s
(s2+1)2

. Then L(x) = −1
2
d
ds

1
s2+1

=

−1
2
d
ds
L(sin t) = −1

2
L((−t) sin t) by the s-differentiation theorem. Finally, x(t) = 1

2
t sin t.

Convolution method. Write L(x) = L(sin t)L(cos t). Apply the convolution the-
orem to obtain x(t) =

∫ t
0 sinu cos(t − u)du = 1

2
t sin t. A maple answer check is

int(sin(u)*cos(t-u),u=0..t); .
Hand integration uses the trigonometric identity 2 sin(a) cos(b) = cos(a−b)−cos(a+b).
(b) No. The limit of the Laplace transform of a function of exponential order is zero as
s→∞. The result F (∞) = 0 is called the Final Value Theorem.
(c) The possible rules: Linearity, Lerch’s cancelation law, parts formula, s-differentiation,
first shift theorem, second shift theorem, periodic function formula, convolution theorem,
delta function formula, integral theorem.
(d) The resolvent formula (sI − A)L(~u) = ~u0 becomes the 2× system of equations(

s− 1 −1
−2 s− 0

)(
L(x)
L(y)

)
=

(
−1

2

)
.

Multiply by the inverse matrix of (sI − A) on the left to obtain(
L(x)
L(y)

)
=

(
s− 1 −1
−2 s− 0

)−1 ( −1
2

)
=

1

∆

(
s− 0 1

2 s− 1

)(
−1

2

)
,

where ∆ = det(sI − A) = (s + 1)(s − 2). Then L(x) = 2−s
∆

= −1
s+1

, L(y) = 2s
∆

=
2s−4

(s+1)(s−2)
= 2

s+1
. Then x(t) = −e−t, y(t) = 2e−t.

(e) Derive y(t) =
∫ t

0
sin(t− u)f(u)du

Transform y′′ + y = f to get the transfer function relation

L(y(t)) =
1

s2 + 1
L(f(t)) = L(sin t)L(f(t)).

The convolution theorem implies the right side of the equation is L(
∫ t

0 sin(t−u)f(u)du).
Lerch’s cancelation law implies y(t) =

∫ t
0 sin(t− u)f(u)du.



20. (ch7)

(a) [25%] Solve L(f(t)) =
10

(s2 + 8)(s2 + 4)
for f(t).

(b) [25%] Solve for f(t) in the equation L(f(t)) =
s+ 1

s2(s+ 2)
.

(c) [20%] Solve for f(t) in the equation L(f(t)) =
s− 1

s2 + 2s+ 5
.

(d) [10%] Solve for f(t) in the relation

L(f) =
d

ds
L(t2 sin 3t)

(e) [10%] Solve for f(t) in the relation

L(f) =
(
L
(
t3e9t cos 8t

))∣∣∣
s→s+3

.

Answer:
(a) L(f(t)) = 10

u+8
u+ 4 where u = s2. Use Heaviside’s coverup method to find the

partial fraction expansion

10

u+ 8
u+ 4 =

−5/2

u+ 8
+

5/2

u+ 4
=
−5/2

s2 + 8
+

5/2

s2 + 4
.

Then L(f(t)) = L
(
−5

2
sin
√

8t√
8

+ 5
2

sin 2t
2

)
implies by Lerch’s theorem

f(t) = −5

2

sin
√

8t√
8

+
5

2

sin 2t

2
.

(b) Expand the fraction into partial fractions as follows:

L(f) =
s+ 1

s2(s+ 2)
=
a

s
+

b

s2
+

c

s+ 2
= L(a+ bt+ ce−2t).

Then Lerch’s theorem implies f(t) = a + bt + ce−2t. The partial fraction constants are
a = 1/4, b = 1/2, c = −1/4.
(d) Because d

ds
L(g(t)) = L((−t)g(t)), then L(f) = L((−t)t2 sin 3t). Lerch’s theorem

implies f(t) = −t3 sin 3t.
(e) The shifting theorem L(g(t))|s→(s−a) = L(eatg(t)) is applied to remove the shift on

the outside and put e−3t into the Laplace integrand. Then L(f(t)) = L(e−3tt3e9t cos 8t).
Lerch’s theorem implies f(t) = t3e6t cos 8t.

21. (ch9)
(a) Find the Fourier sine and cosine coefficients for the 2-periodic function f(t) equal
to t/2 on 0 ≤ t < 2, f(2) = 0.



(b) State Fourier’s convergence theorem.
(c) State the results for term-by-term integration and differentiation of Fourier series.

Answer:
(a) See the solution to problem 25 (a), infra.
(b) Use the statement in the textbook, Chapter 9. The requirement on f is 2T -periodic
and piecewise smooth. The formal Fourier series converges at every x to the average of
the left and right hand limits of f(x). See also Problem 27, infra.
(c) Use the statements in Chapter 9. Basically, integration always works, but differentia-
tion fails except in expectional cases of extra smoothness of f .

22. (ch9)
(a) Find a steady-state periodic solution using Fourier series and undetermined co-
efficients for x′′ + x = F (t), where F (t) is 2-periodic and equal to 10 on 0 < t < 1,
equal to −10 on 1 < t < 2.

(b) Display Fourier’s Replacement Model for the solution to the heat problem ut =
uxx, u(0, t) = u(1, t) = 0, u(x, 0) = f(x) on 0 ≤ x ≤ 1, t ≥ 0.

(c) Solve ut = uxx, u(0, t) = u(π, t) = 0, u(x, 0) = 80 sin3 x on 0 ≤ x ≤ π, t ≥ 0.

Answer:
(a)
Because F (t) equals 10 times the square wave on −1 < t < 1, then a standard Fourier
series table can be used to write a Fourier series for F (t). The method of undetermined
coefficients supplies the answer for x(t).
Some details. Only basic definitions and results for Fourier series will be used. Because
F (t) is odd and L = 1 in the standard Fourier coefficient formulas, then all cosine
coefficients are zero and the sine coefficients bn are given by

bn =
1

L

∫ L

−L
F (t) sin

(
nπ

t

L

)
dt =

1

1

(
2
∫ 1

0
10 sin(nπt)dt

)
=

2(1− (−1)n)

nπ
.

Undetermined coefficients assumes the output is

x(t) =
∞∑
k=1

cn sin(nπt).

Substitution into the differential equation, using the rules for differentiation of Fourier
series, gives the identity

∞∑
k=1

−k2π2 ck sin(kπt) +
∞∑
k=1

ck sin(kπt) =
∞∑
n=1

bn sin(nπt).

Matching coefficients of the sine terms left and right implies (1− k2π2)ck = bk. Then

x(t) =
∞∑
k=1

bk
1− k2π2

sin(kπt).



(b)
The eigenpairs for the problem are (λn, fn), where λn = (nπ)2, fn(x) = sin(

√
λnx).

Write f(x) =
∑∞
n=1 bn sin(nπx). Then u(x, t) is obtained from f(x) by insertion of the

exponential factor e−λnt after the sine factor:

f(x) =
∞∑
n=1

bn sin(nπx) e−n
2π2t.

(c)
The trick is to apply part (b), after writing f(x) as a sine series. This uses trig identities,
as follows.
sin3(x) = (1− cos2(x)) sin(x) = sin(x)− 1

2
cos(x)(2 sin(x) cos(x))

= sin(x)− 1
2

cos(x) sin(2x)

= sin(x)− 1
2

1
2

(sin(2x+ x) + sin(2x− x))

= sin(x)− 1
4

sin(3x) + 1
4

sin(x)

= 3
4

sin(x)− 1
4

sin(3x)

Then

f(x) = 80
(

3

4
sin(x)− 1

4
sin(3x)

)
= 60 sin(x)− 20 sin(3x).

Fourier’s replacement method then gives

u(x, t) = 60 sin(x)e−t − 20 sin(3x)e−9t.

23. (Vibration of a Finite String)
The normal modes for the string equation utt = c2uxx are given by the functions

sin
(
nπx

L

)
cos

(
nπct

L

)
, sin

(
nπx

L

)
sin

(
nπct

L

)
.

It is known that each normal mode is a solution of the string equation and that the
problem below has solution u(x, t) equal to an infinite series of constants times normal
modes.

Solve the finite string vibration problem on 0 ≤ x ≤ 2, t > 0,

utt = c2uxx,
u(0, t) = 0,
u(2, t) = 0,
u(x, 0) = 0,
ut(x, 0) = −11 sin(5πx).

Answer: Because the wave initial shape is zero, then the only normal modes appearing



in the solution u(x, t) are sine times sine.
The initial wave velocity is already a Fourier series, using orthogonal set {sin(nπx/2)}∞n=1.
The 1-term Fourier series −11 sin(5πx) can be modified into a solution by inserting an
appropriate sine factor sin(5πt) present in the corresponding normal mode. The required
initial velocity is ut(0, t) = −11 sin(5πx), so the sine factor has to be adjust by a constant
k. We compute Because d

dt
sin(5πt) = 5π cos(5πt) at t = 0 is 5π, then k = 1/(5π).

Then u(x, t) = −11 sin(5πx) sin(5πct)/(5π). We check it is a solution.

24. (Periodic Functions)

(a) [30%] Find the period of f(x) = sin(x) cos(2x) + sin(2x) cos(x).

(b) [40%] Let p = 5. If f(x) is the odd 2p-periodic extension to (−∞,∞) of the
function f0(x) = 100x e10x on 0 ≤ x ≤ p, then find f(11.3). The answer is not to be
simplified or evaluated to a decimal.

(c) [30%] Mark the expressions which are periodic with letter P, those odd with O
and those even with E.

sin(cos(2x)) ln |2 + sin(x)| sin(2x) cos(x)
1 + sin(x)

2 + cos(x)

Answer: (a) f(x) = sin(x+ 2x) by a trig identity. Then period = 2π/3.
(b) f(11.3) = f(11.3− p− p) = f(1.3) = f0(1.3) = 130e13.
(c) All are periodic of period 2π, satisfying f(x + 2π) = f(x). The first is even and the third
is odd. The remaining functions are neither even nor odd.

25. (Fourier Series)
Let f0(x) = x on the interval 0 < x < 2, f0(x) = −x on −2 < x < 0, f0(x) = 0 for
x = 0, f0(x) = 2 at x = ±2. Let f(x) be the periodic extension of f0 to the whole
real line, of period 4.

(a) [80%] Compute the Fourier coefficients of f(x) (defined above) for the terms
sin(67πx) and cos(2πx). Leave tedious integrations in integral form, but evaluate the
easy ones like the integral of the square of sine or cosine.

(b) [20%] Which values of x in |x| < 12 might exhibit Gibb’s over-shoot?

Answer: (a) Because f0(x) is even, then f(x) is even. Then the coefficient of sin(67πx) is
zero, without computation, because all sine terms in the Fourier series of f have zero coefficient.
The coefficient of cos(nπx/2) for n > 0 is given by the formula

an =
1

2

∫ 2

−2
f0(x) cos(nπx/2)dx =

∫ 2

0
x cos(nπx/2)dx.



For cos(2πx), we select nπx/2 = 2πx, or index n = 4.

(b) There are no jump discontinuities, f is continuous, so no Gibbs overshoot.

27. (Convergence of Fourier Series)

(a) [40%] The Fourier Convergence Theorem for piecewise smooth functions applies to
continuously differentiable functions of period 2p. Re-state the Fourier Convergence
Theorem for the special case of a 2p-periodic continuously differentiable function. It is
necessary to translate the results for interval −π ≤ x ≤ π to the interval −p ≤ x ≤ p
and simplify the value to which the Fourier series converges.

(b) [30%] Give an example of a function f(x) periodic of period 2 that has a Gibb’s
over-shoot at the integers x = 0,±2,±4, . . ., (all ±2n) and nowhere else.

Answer: (a) Let f be a 2p-periodic smooth function on (−∞,∞). Then for all values of x,

f(x) = a0 +
∞∑
n=1

(an cos(nπx/p) + bn sin(nπx/p),

where the Fourier coefficients a0, an, bn are given by the Euler formulas:

a0 =
1

2p

∫ p

−p
f(x)dx, an =

1

p

∫ p

−p
f(x) cos(nπx/p)dx,

bn =
1

p

∫ p

−p
f(x) sin(nπx/p)dx.

(b) Any 2-periodic continuous function f will work, if we alter the values of f at the desired
points to produce a jump discontinuity. For example, define f(x) = sin(πx) except at the
points ±2n, where f(2n) = 2 (n = 0, 1, 2, 3, . . .).


