
Differential Equations 2280

Final Exam

Thursday, 28 April 2016, 12:45pm-3:15pm

Instructions: This in-class exam is 120 minutes. No calculators, notes, tables or books.
No answer check is expected. Details count 75%. The answer counts 25%.

Chapters 1 and 2: Linear First Order Differential Equations

(a) [60%] Solve 2v′(t) = 5 +
1

t+ 1
v(t), v(0) = 5. Show all integrating factor steps.

(b) [20%] Solve the linear homogeneous equation 2
√
x+ 1

dy

dx
= 2y.

(c) [20%] The problem 2
√
x+ 1 y′ = 2y − 5 can be solved using superposition y =

yh + yp. Find yh and yp.

Answer:
(a) v = 5t+ 5 .
The steps are
v − 1

2(1+t
v = 5

2
, standard linear form,

(Wv)′

W
= 5

2
, W = integrating factor = e−

1
2
ln |1+t|.

(Wv)′ = 5
2
W , where W = (1 + t)−1/2 is the reduced form of W ,

Wv = 5
2

(1 + t)1/2 1
1/2

+ c, after a quadrature,

v = 5
2

2
1

(1 + t)1/2+1/2 + c (1 + t)1/2,
Now use v(0) = 5 to obtain from the above formula at t = 0 the relation
5 = 5

2
2
1

(1 + 0)1/2+1/2 + c (1 + 0)1/2 or c = 0.
Then v(t) = 5t+ 5.
(b) y(x) = c e

√
1+x = constant divided by the integrating factor.

(c) yh(x) = Ce2
√
x+1 = constant divided by the integrating factor, yp(x) = 5/2 =equi-

librium solution.

Chapter 3: Linear Equations of Higher Order

(a) [10%] Solve for the general solution: y′′ + 4y′ + 5y = 0

(b) [20%] Solve for the general solution: y(6) + 9y(4) = 0



(c) [20%] Solve for the general solution, given the characteristic equation is
r(r3 + r)2(r2 + 2r + 17)2 = 0.

(d) [20%] Given 6x′′(t) + 2x′(t) + 2x(t) = 11 cos(ωt), which represents a damped
forced spring-mass system with m = 6, c = 2, k = 2, answer the following questions.

True or False . Practical mechanical resonance occurs for input

frequency ω =
√

11/6.

True or False . The homogeneous problem is over-damped.

Answer:
(a) r2 + 4r + 5 = 0, y = c1e

−2x cos(x) + c2e
−2x sin(x).

(b) r6 + 9r4 = 0, roots r = 0, 0, 0, 0; 3i,−3i. Then the Euler atoms are 1, x, x2, x3;
cos 3x, sin 3x. The general solution is a linear combination of the atoms.
(c) Write as r3(r2 + 1)2((r + 1)2 + 4)2 = 0. Then y is a linear combination of the
Euler atoms 1, x, x2, cos(x), sin(x), x cos(x), x sin(x), e−x cos 2x, xe−x cos 2x, sin 2x,
xe−x sin 2x.
(d) False and False. The resonant frequency is ω =

√
k
m
− c2

2m2 . Use 6r2 + 2r + 2 = 0
and the quadratic formula to obtain complex conjugate roots. It is under-damped.

(e) [30%] Determine for y(5) + 4y(3) = x2 + ex + sin(2x) the shortest trial solution
for yp according to the method of undetermined coefficients. Do not evaluate the
undetermined coefficients!

Answer:
(e) The homogeneous solution is a linear combination of the atoms 1, x, x2, cos 2x, sin 2x
because the characteristic polynomial has roots 0, 0, 0, 2i, −2i.
1 An initial trial solution y is constructed by Rule I for atoms 1, x, x2, ex, cos 2x,

sin 2x, giving
y = y1 + y2 + y3,
y1 = d1 + d2x+ d3x

2,
y2 = d4e

x,
y3 = d5 cos 2x+ d6 cos 2x.

Linear combinations of the listed independent atoms are supposed to reproduce, by spe-
cialization of constants, all derivatives of the Euler atoms appearing in the right side of
the differential equation.
2 Rule II is applied individually to each of y1, y2, y3.

The result is the shortest trial solution

y = y1 + y2 + y3 + y4,
y1 = x3d1 + d2x

4 + d3x
5,

y2 = d4e
x,

y3 = d5x cos 2x+ d6x sin 2x.



Chapters 4 and 5: Systems of Differential Equations

(a) [10%] Matrix A =

 0 1 1
1 0 1
0 0 −5

 has eigenpairs

−1,

 −1
1
0


 ,

1,

 1
1
0


 ,

−5,

 1
1
−6


 .

Display the solution x(t) of x′(t) = Ax(t).

Answer:
(a): The eigenpairs are−1,

 −1
1
0


 ,

1,

 1
1
0


 ,

−5,

 1
1
−6


 .

A cofactor expansion of det(A− λI) and factoring is used to find eigenvalues −1, 1,−5.
Eigenvectors should be found by a sequence of swap, combo, mult operations on the
augmented matrix, followed by taking the partial ∂t1 on invented symbol t1 in the general
solution to compute the eigenvector. In short, the eigenvectors are Strang’s Special
Solutions. In general there can be many eigenvectors for a single eigenvalue, however, for
distinct eigenvalues there is exactly one eigenvector per eigenvalue.
(b): The eigenanalysis method for x′ = Ax implies

x(t) = c1e
−t

 −1
1
0

+ c2e
t

 1
1
0

+ c3e
−5t

 1
1
−6

 .

(b) [30%] Find the general solution of the 2× 2 system

d

dt

(
x(t)
y(t)

)
=

(
5 1
1 5

)(
x(t)
y(t)

)

according to the Cayley-Hamilton-Ziebur Method, using the textbook’s shortcut in
chapter 4.

Answer:



(b) Eigenvalue Calculation

Subtract λ from the diagonal elements of A =

(
5 1
1 5

)
to obtain matrix B = A− λI,

then expand det(B) to obtain the characteristic polynomial. The roots are the eigenvalues
λ = 4, 6.
Cayley-Hamilton-Ziebur Method
The eigenvalues 4, 6 are used to create the list of atoms e4t, e6t. Then the Cayley-
Hamilton-Ziebur method implies there are constants c1, c2 such that x(t) = c1e

4t + c2e
6t.

Then the first differential equation x′ = 5x + y is solved for y = x′ − 5x. Expand this
equation using x(t) = c1e

3t + c2e
5t to obtain y(t) = x′ − 5x = −c1e4t + c2e

6t.

(c) [10%] Assume a 2× 2 system d
dt
~u = A~u has a scalar general solution

x(t) = c1e
−t + c2e

4t, y(t) = 4c2e
−t + (c1 − 2c2)e

4t.

Compute a fundamental matrix Φ(t).

Answer:
Fundamental Matrix.
Compute the partial derivatives ∂/∂c1, ∂/∂c2 to determine columns 1 and 2 of the 2× 2
fundamental matrix Φ(t), using the answer given. Then

Φ(t) =

(
e−t e4t

e4t 4e−t − 2e4t

)
.

(c-extra) [10%] Assume given a 2 × 2 fundamental matrix. How do you find the
exponential matrix from the fundamental matrix?

Answer:
eAt = Φ(t)Φ(0)−1.

(d) [20%] Consider the scalar system
x′ = x
y′ = 3x,
z′ = x+ y

Solve the system by the most efficient method.

Answer:
Linear Cascade Method.



Solve the first equation by x = constant divided by the integrating factor. Then

x(t) = c1e
t .

Substitute this formula into the second equation y′ = x and apply quadrature to obtain
y′ = c1e

t

y = c1e
t + c2 .

Substitute both x and y into the third equation z′ = x + y and again apply quadrature
to obtain
z′ = c1e

t + c2
z = c1e

t + c2t+ c3 .

The matrix A =


3 0 0

1 0 0

1 1 0

 is not diagonalizable, so only methods Laplace, Linear

Cascade and Cayley-Hamilton-Ziebur can apply.

Chapter 6: Dynamical Systems

(a) [20%] The origin is an equilibrium point of the linear system u′ =

(
1 1
1 2

)
u.

Classify (0, 0) as center, spiral, node, saddle.

Answer:
(a) The eigenvalues of A are both positive. The atoms behave like the example x =
et, y = e2t, which is an unstable node.

In parts (b), (c), (d), consider the nonlinear dynamical system

x′ = 14x− 2x2 − xy, y′ = 16y − 2y2 − xy. (1)

(b) [20%] Find the equilibrium points for the nonlinear system (1).

(c) [30%] Consider again system (1). Classify the linearization at equilibrium point
(4, 6) as a node, spiral, center, saddle.

(d) [30%] Consider again system (1). What classification can be deduced for equilib-
rium (4, 6) of this nonlinear system, according to the Pasting Theorem?

Answer:



The equilibria are constant solutions, which are found from the equations

0 = (14− 2x− y)x
0 = (16− 2y − x)y

Considering when a zero factor can occur leads to the four equilibria (0, 0), (0, 8), (7, 0),
(4, 6). The last equilibrium comes from solving the system of equations

2x+ y = 14
x+ 2y = 16

Linearization
The Jacobian matrix J is the augmented matrix of partial derivatives ∂x~F, ∂y~F (column
vectors) computed from

~f(x, y) =

(
14x− 2x2 − yx
16y − 2y2 − xy

)
.

Then

J(x, y) =

(
14− 4x− y −x
−y 16− 4y − x

)
.

The four matrices below are J(x, y) when (x, y) is replaced by an equilibrium point.
Included in the table are the roots of the characteristic equation for each matrix and its
classification based on the roots. No book was consulted for the classifications. The idea
in each is to examine the limits at t = ±∞, then eliminate classifications. No matrix has
complex eigenvalues, and that eliminates the center and spiral. The first three are stable
at either t =∞ or t = −∞, which eliminates the saddle and leaves the node as the only
possible classification.

A1 = J(0, 0) =

(
14 0
0 16

)
r = 14, 16 node

A2 = J(0, 8) =

(
6 0
−8 −16

)
r = 6,−16 saddle

A3 = J(7, 0) =

(
−14 −7

0 9

)
r = −14, 9 saddle

A4 = J(4, 6) =

(
−8 −4
−6 −12

)
r = −10− 2

√
7,−10 + 2

√
7 node

The pasting theorem says that a linearized saddle maps to a nonlinear saddle. In the
present example, each node has unequal eigenvalues, and then the pasting theorem says
that the linearized node maps to a nonlinear node. The stability is inherited for the saddle
and the node.

Some maple code for checking the answers:

F:=unapply([14*x-2*x^2-y*x , 16*y-2*y^2 -x*y],(x,y));

Fx:=unapply(map(u->diff(u,x),F(x,y)),(x,y));

Fy:=unapply(map(u->diff(u,y),F(x,y)),(x,y));

Fx(0,0);Fy(0,0);Fx(7,0);Fy(7,0);Fx(0,8);Fy(0,8);Fx(4,6);Fy(4,6);



Chapter 7: Laplace Theory

(a) [10%] Solve for f(t) in the equation L(f(t)) =
1

s(s+ 1)2
.

(b) [10%] Find L(f) given f(t) = (−t) sinh(3t). This is the hyperbolic sine.

Answer:
(a) f(t) = 1− e−2t − te−2t.
Details.
L(f) = a

s
+ b

s+1
+ c

(s+1)2
= L(a + be−t + cte−t) implies f(t) = a + be−t + cte−t. The

third term was done by the First Shifting Theorem. The constants are found by clearing
fractions to obtain the equation

1 = a(s+ 1)2 + bs(s+ 1) + cs.

Put s = 0,−1, 1 to obtain a 3× 3 system

1 = a+ 0 + 0,
1 = 0 + 0− c,
1 = 4a+ 2b+ c.

The answer is a = 1, b = −1, c = −1.

(b) L(f) = d
ds
L(sinh 3t) by the s-differentiation theorem. The forward table with the

identity sinh(u) = 1
2
eu − 1

2
e−u implies

L(sinh 3t) =
1

2

1

s− 3
− 1

2

1

s+ 3
.

Finally,

L(f) =
1

2

d

ds

(
1

s− 3
− 1

s+ 3

)
=

1

2

(
− 1

(s− 3)2
+

1

(s+ 3)2

)
.

(c) [30%] Solve by Laplace’s Method the forced linear dynamical system{
x′ = x− y + 2,
y′ = x+ y + 1,

subject to initial states x(0) = 0, y(0) = 0.

Answer:
(d) The answers are

x = −3

2
+

1

2
et (3 cos(t) + sin(t)) , y =

1

2
+

1

2
et (− cos(t) + 3 sin(t)) .



Transform to get the two equations (s− 1)L(x) + (1)L(y) = 2
s
,

(−1)L(x) + (s− 1)L(y) = 1
s
.

Solve with Cramer’s Rule to obtain

L(x) =
2s− 3

s((s− 1)2 + 1)
. L(y) =

s+ 1

s((s− 1)2 + 1)
.

Both require partial fraction decomposition. Details for L(x):
L(x) = 2s−3

s((s−1)2+1)
,

L(x) = a
s

+ bs+c
s2+1

∣∣∣
s→(s−1)

,

L(x) = L(a+ b cos t+ c sin t)|s→(s−1),

L(x) = L((a+ b cos t+ c sin t)et).

Then x(t) = (a+ b cos t+ c sin t)et. The constants are a = −3
2
, b = 3

2
, c = 1

2
.

x(t) = −3
2

+ 1
2

et (3 cos(t) + sin(t))

The second equation is similar:
L(y) = s+1

s((s−1)2+1)
,

L(y) = a
s

+ bs+c
s2+1

∣∣∣
s→(s−1)

,

L(y) = L (a+ b cos t+ c sin t)|s→(s−1),

L(y) = L ((a+ b cos t+ c sin t) et).
Then y(t) = (a+ b cos t+ c sin t)et. The constants are a = 1

2
, b = −1

2
, c = 3

2
.

Then
y(t) = y = 1

2
+ 1

2
et (− cos(t) + 3 sin(t))

(d) [20%] Solve for f(t) in the equation L(f(t)) =
s

s2 + 2s+ 17
.

(e) [10%] Solve for f(t) in the relation

L(f) =
(
L
(
t2e4t cos t

))∣∣∣
s→s+2

.

Answer:
(e) f(t) = e−t(cos 4t− 1

4
sin 4t)

Details: Factor the quadratic: s2 + 2s+ 17 = (s+ 1)2 + 16. Then shift by s→ (s+ 1)
to obtain
L(f) = s−1

s2+16

∣∣∣
s→(s+1)

L(f) =
(
L(cos 4t)− 1

4
L(sin 4t)

)∣∣∣
s→(s+1)

L(f) = L(e−t(cos 4t− 1
4

sin 4t))
Then Lerch’s theorem implies f(t) = e−t(cos 4t− 1

4
sin 4t).

(f) f(t) = t2e2t cos t



Details: The first shifting theorem L(g(t))|s→(s−a) = L(eatg(t)) is applied to remove

the shift on the outside and put e−2t into the Laplace integrand. Then L(f(t)) =
L(e−2tt2e4t cos t). Lerch’s theorem implies f(t) = t2e2t cos t.

Chapter 9: Fourier Series and Partial Differential Equations

In parts (a) and (b), let f0(x) = 1 on the interval −1 < x < 0, f0(x) = −1
on the interval 0 < x < 1, f0(x) = 0 for x = 0 and x = ±1. Let f(x) be the
periodic extension of f0 to the whole real line, of period 2.

(a) [10%] Compute the Fourier coefficients of f(x) on [−1, 1].

(b) [10%] Find all values of x in |x| < 3 which will exhibit Gibb’s over-shoot.

Answer:
(a) Because f(x) is odd, then f(x) times a cosine is odd. Then the coefficient an of
a cosine term is zero, because the integral of an odd function over −1 < x < 1 is
zero. The integral of a sine squared over [−1, 1] is 1. The coefficent bn is calculated
as twice the integral of f times a sine over [0, 1]. Because f is −1 on [0, 1], then
bn = 2

∫ 1
0 (−1) sin(nπx)dx.

(b) There is a jump discontinuity of f(x) at x = 0, 1, 2,−1,−2. At these points there is
a Gibbs overshoot.

(d) [40%] Heat Conduction in a Rod. Solve the rod problem on 0 ≤ x ≤ L, t ≥ 0:
ut = uxx,
u(0, t) = 0,
u(L, t) = 0,
u(x, 0) = 5 sin(2πx/L) + 12 sin(4πx/L)

Answer: (d)

The known solution for temperature u(x, t) is a Fourier sine series for f(x) with expo-
nentials inserted according to Fourier’s replacement method:

u(x, t) =
∞∑
n=1

bn sin(nπx/L)e−n
2π2kt/L2

.

In this problem, k = 1 and L > 0. It remains to find the Fourier coefficients. It can be
done from the orthogonal series formula

bn =
< f(x), sin(nπx/L) >

< sin(nπx/L), sin(nπx/L) >



Then

bn = 2
L

∫ L
0 f(x) sin(nπx/L)dx

= 2
L

∫ L
0 (5 sin(2πx/L) + 12 sin(4πx/L))) sin(nπx/L)dx

= 0 unless n = 2 or n = 4.

Therefore, the exponentials to be inserted are

e−4π
2t/L2

, e−7π
2t/L2

.

Then
u(x, t) = 5 sin(2πx/L)e−4π

2t/L2

+ 12 sin(4πx/L)e−7π
2t/L2

.

(e) [30%] Vibration of a Finite String. The normal modes for the string equation
utt = c2uxx on 0 < x < L, t > 0 are given by the functions

sin
(
nπx

L

)
cos

(
nπct

L

)
, sin

(
nπx

L

)
sin

(
nπct

L

)
.

It is known that each normal mode is a solution of the string equation and that the
problem below has solution u(x, t) equal to an infinite series of constants times normal
modes (the superposition of the normal modes).

For a problem with shape u(x, 0) = f(x) and speed ut(x, 0) = 0, only the first normal

modes sin
(
nπx
L

)
cos

(
nπct
L

)
appear in the series solution.

For a problem with shape u(x, 0) = 0 and speed ut(x, 0) = g(x), only the second

normal modes sin
(
nπx
L

)
sin

(
nπct
L

)
appear in the series solution.

Solve the finite string vibration problem on 0 ≤ x ≤ 5, t > 0:



utt(x, t) = 25uxx(x, t),
u(0, t) = 0,
u(5, t) = 0,
u(x, 0) = sin(5πx) + 2 sin(7πx),
ut(x, 0) = 0

Answer: (e)

Because the wave velocity is zero, then the only normal modes are sin
(
nπx
L

)
cos

(
nπct
L

)
.

Because the wave initial shape f(x) = sin(5πx) + 2 sin(7πx) is already a sine series, then it
suffices by Fourier’s method to insert cosine factors, to create appropriate normal modes. Then
c2 = 100 and L = 5 implies

u(x, t) = sin(25πx/L) cos(125πt/L) + 2 sin(35πx/L) cos(175πt/L)



= sin(5πx) cos(25πt) + 2 sin(7πx) cos(35πt).

We check it is a solution.


