
Differential Equations 2280
Midterm Exam 3

Exam Date: 14 April 2017 at 12:50pm

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is
expected. Details count 3/4, answers count 1/4.

Chapter 3

1. (Linear Constant Equations of Order n)

(a) [30%] Find by variation of parameters a particular solution yp for the equation y′′ = x+ x2. Show
all steps in variation of parameters. Check the answer by quadrature.

(b) [40%] Find the Beats solution for the forced undamped spring-mass problem

x′′ + 256x = 247 cos(3t), x(0) = x′(0) = 0.

It is known that this solution is the sum of two harmonic oscillations of different frequencies. To save
time, please don’t convert your answer.

(c) [30%] Let f(x) = x2 cos(x) − x(ex + 1). Find the characteristic equation of a linear homogeneous
scalar differential equation of least order such that y = f(x) is a solution.

Answers and Solution Details:
Problem 1: Chapter 3

Solution (a) Answer: yp =
1

6
x3 +

1

12
x4.

Variation of Parameters.
Solve y′′ = 0 to get yh = c1y1 + c2y2, y1 = 1, y2 = x. Compute the Wronskian W = y1y

′
2 − y′1y2 = 1.

Then for f(x) = x+ x2,
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yp =
1

6
x3 +

1

12
x4 Dropped terms for 1, x.

This answer is checked by quadrature, applied twice to y′′ = x+ x2 with initial conditions zero.

Solution (b) The beats solution is identical to the superposition x(t) of the undetermined coefficients
solution xp(t) = d1 cos(3t) + d2 sin(3t) and the homogeneous solution xh(t) = c1 cos(16t) + c2 sin(16t),
subject to x(0) = x′(0) = 0, which determines constants c1, c2. Find xp first, then d1 = 1, d2 = 0.
Use conditions x(0) = x′(0) = 0 to solve for c1 = −1, c2 = 0. The answer is Beats Solution = x(t) =
cos(3t)− cos(16t).

Solution (c) Write f(x) = x2 cos(x) − x(ex + 1) = x2 cos(x) − x − xex, then identify Euler atoms
x, xex, x2 cos(x). Euler’s multiplicity theorem implies that the characteristic equation has to have roots
0, 0, 1, 1, i, i, i,−i,−i,−i. For instance, solution xex implies r = 1 is a root of multiplicity 2. The root-factor
theorem of college algebra implies that (r − 1)2 is a factor of the characteristic polynomial. The minimal
characteristic polynomial is then, by repeated application of the root-factor theorem of college algebra,
r2(r − 1)2(r − i)3(r + i)3. The real form of the characteristic equation is r2(r − 1)2(r2 + 1)3 = 0, which is
a degree 10 polynomial equation.



Chapters 4 and 5

2. (Systems of Differential Equations)

(a) [30%] Assume a 3 × 3 matrix A has eigenvalues λ = 3, 4, 5. State the Cayley-Hamilton-Ziebur
theorem for this example. Then display a solution formula for the vector solution ~u(t) to system
d
dt~u = A~u, inserting what is known what is known from the eigenvalue information (supplied above).

(b) [40%] A linear cascade, typically found in brine tank models, satisfies d
dt~x(t) = A~x(t) where the

4× 4 triangular matrix is

A =


1 1 0 0
0 1 0 0
0 0 3 1
0 0 0 3

 .
Part 1. Use the linear integrating factor method to find the vector general solution ~x(t) of
d
dt~x(t) = A~x(t).

Part 2. Laplace’s method applies to this example. Explain in a paragraph of text how to apply
Laplace’s method to this 4× 4 system. Don’t use Laplace tables and don’t find the solution! The
explanation can use scalar equations or the vector-matrix equation d

dt~x(t) = A~x(t).

Background for (c). Let A be an n×n real matrix. An augmented matrix Φ(t) of n independent
solutions of ~x′(t) = A~x(t) is called a fundamental matrix. It is known that the general solution
is ~x(t) = Φ(t)~c, where ~c is a column vector of arbitrary constants c1, . . . , cn. An alternate and widely
used definition of fundamental matrix is Φ′(t) = AΦ(t), |Φ(0)| 6= 0.

(c) [30%] The Cayley-Hamilton-Ziebur shortcut applies especially to the system

x′ = x+ 5y, y′ = −5x+ y,

which has complex eigenvalues λ = 1± 5i.

Part 1. Show the details of the method, finally displaying formulas for x(t), y(t).

Part 2. Report a fundamental matrix Φ(t).

Part 3. Use Part 2 to find the exponential matrix eAt.

Answers and Solution Details:
Problem 2: Chapters 4 and 5
Part (a) Cayley-Hamilton-Ziebur says that the solution of d

dt~x(t) = A~x(t) is a vector linear combination
of the Euler solution atoms constructed from the roots of the characteristic equation |A − λI| = 0. In this
case, that means ~x(t) = ~c1e

2t + ~c2e
2t + ~c3e

2t.

Part (b)
(b) Part 1. The components x, y, z, w of the vector solution are given by formulas x = c2te

t + c1e
t,

y = c2e
t, z = c4te

3t + c3e
3t, w = c4e

3t, details below.
Write the system in scalar form

x′ = x+ y,
y′ = y,
z′ = 3z + w,
w′ = 3w.

Solve the fourth equation w′ = 3w as
w = constant

integrating factor = c4e
3t.



w = c4e
3t

The third equation is
z′ = 3z + c4e

3t

The linear integrating factor method applies.
z′ − 3z = c4e

3t

(Wz)′

W
= c4e

3t, where W = e−3t,

(Wz)′ = c4We3t

(e−3tz)′ = c4e
−3te3t

e−3tz = c4t+ c3.

z = c4te
3t + c3e

3t

Solve the second equation as
y = constant

integrating factor = c2e
t.

y = c2e
t

Stuff the expression into the first differential equation:
x′ = x+ y = x+ c2e

t

Then solve with the linear integrating factor method.
x′ − x = c2e

t

(Wx)′

W
= c2e

t, where W = e−t. Cross-multiply:

(e−tx)′ = c2e
−tet, then integrate:

e−tx = c2 t+ c1
Then divide by e−t:

x = c2te
t + c1e

t

(b) Part 2.
The matrix of coefficients is not diagonalizable, therefore the eigenanalysis method fails to apply. However,
Laplace’s method applies anyway. The system is first transformed into (sI − A)L(~u) = ~u0 where ~u0 is a
vector of arbitrary constants. Then L(~u) is the inverse of sI −A times ~u0. Inverse transforms are applied to
the inverse matrix (sI −A)−1, called the resolvent, to obtain ~u = L−1(sI −A)−1~u0.

Solution (c) The equations x′ = x+ 5y, y′ = −5x+ y have coefficient matrix A =

(
1 5
−5 1

)
with

characteristic equation (1− λ)2 + 25 = 0. The roots are 1± 5i. The Euler atoms are et cos(5t), et sin(5t).
(c) Part 1.
By C-H-Z, x = c1e

t cos(5t)+c2e
t sin(5t). Isolate y from the first differential equation x′ = x+5y, obtaining

the formula 5y = x′ − x = x + et (−5c1 sin(5t) + 5c2 cos(5t)) − x = −5c1e
t sin(5t) + 5c2e

t cos(5t). Then
the solution formulas are

x = c1e
t cos(5t) + c2e

t sin(5t), y(t) = −c1et sin(5t) + c2e
t cos(5t).

(c) Part 2
A fundamental matrix Φ(t) is found by taking partial derivatives on the symbols c1, c2. The answer is exactly

the Jacobian matrix of

(
x
y

)
with respect to variables c1, c2.

Φ(t) =

(
et cos(5t) et sin(5t)
−et sin(5t) et cos(5t)

)
.



Chapter 6

3. (Linear and Nonlinear Dynamical Systems)

(a) [20%] Determine whether the unique equilibrium ~u = ~0 is stable or unstable. Then classify the
equilibrium point ~u = ~0 as a saddle, center, spiral or node. Sub-classification into improper or proper
node is not required.

d

dt
~u =

(
−1 1
−2 1

)
~u

(b) [30%] Consider the nonlinear dynamical system

x′ = x− 2y2 − 2y + 32,
y′ = 2x(x− 2y).

An equilibrium point is x = −8, y = −4. Compute the Jacobian matrix of the linearized system at this
equilibrium point.

(c) [30%] Consider the soft nonlinear spring system

{
x′ = y,
y′ = −5x− 2y + 5

4x
3.

(1) Determine the stability at t = ∞ and the phase portrait classification saddle, center,
spiral or node at ~u = ~0 for the linear dynamical system d

dt~u = A~u, where A is the Jacobian
matrix of this system at x = 2, y = 0.

(2) Apply the Pasting Theorem to classify x = 2, y = 0 as a saddle, center, spiral or node
for the nonlinear dynamical system. Discuss all details of the application of the theorem.
Details count 75%.

(d) [20%] State the hypotheses and the conclusions of the Pasting Theorem used in part (c) above.
Accuracy and completeness expected.

Answers and Solution Details:
Problem 3: Chapter 6
Solution (a) Answer: stable center.
It is an unstable saddle. Details: The eigenvalues of A are roots of r2 + 1 = 0, which are complex roots i,−i
with atoms cos t, sin t. Rotation eliminates both saddle and node. The atoms have no limit at either ∞ or
−∞, therefore it is a center.

Solution (b) The Jacobian is J(x, y) =

(
1 −4y − 2

4x− 4y −4x

)
. ThenA = J(−8,−4) =

(
1 14

−16 32

)
.

Solution (c)
(c) Part 1

The Jacobian is J(x, y) =

(
0 −2

−5 + 15
4 x

2 −2

)
. Then A = J(0, 0) =

(
0 1

10 −2

)
. The eigenvalues of

A are found from r2 + 2r − 10 = 0, giving real roots −1 ±
√

11. Because no trig functions appear in the
Euler solution atoms, then no rotation happens, and the classification must be a saddle or a nodel. The
Euler solution atoms limit (∞, 0) t =∞ and (0,∞) at t = −∞, therefore the node is eliminated and it is a
saddle. We report a unstable saddle for the linear problem ~u′ = A~u at equilibrium ~u = ~0.

(c) Part 2



Theorem 2 in Edwards-Penney section 6.2 applies to say that the same is true for the nonlinear system.
Report: unstable saddle at x = 0, y = 0.

Solution (d)
The pasting theorem assumes that (x0, y0) is an isolated equilibrium point of the nonlinear system. The
associated linear system is ~u′ = A~u, where A is the Jacobian matrix of the nonlinear system evaluated at this
point. The theorem says that a spiral, center, saddle or node for the linear system corresponds to a spiral,
center, saddle or node, respectively, with two exceptions.
Exception 1. If the equilibrium is a center for the linear problem, then the nonlinear system has either a
center or a spiral at (x0, y0), and the spiral can be either stable or unstable.
Exception 2. If the equilibrium is a node for the linear problem with equal eigenvalues, then the nonlinear
system has either a node or a spiral at (x0, y0). The stability of the linear problem transfers to the nonlinear
problem.


