Differential Equations 2280

Midterm Exam 3
Exam Date: 14 April 2017 at 12:50pm
Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count $3 / 4$, answers count $1 / 4$.

Chapter 3

1. (Linear Constant Equations of Order n)
(a) $[30 \%]$ Find by variation of parameters a particular solution y_{p} for the equation $y^{\prime \prime}=x+x^{2}$. Show all steps in variation of parameters. Check the answer by quadrature.
(b) $[40 \%]$ Find the Beats solution for the forced undamped spring-mass problem

$$
x^{\prime \prime}+256 x=247 \cos (3 t), \quad x(0)=x^{\prime}(0)=0
$$

It is known that this solution is the sum of two harmonic oscillations of different frequencies. To save time, please don't convert your answer.
(c) $[30 \%]$ Let $f(x)=x^{2} \cos (x)-x\left(e^{x}+1\right)$. Find the characteristic equation of a linear homogeneous scalar differential equation of least order such that $y=f(x)$ is a solution.

Answers and Solution Details:

Problem 1: Chapter 3
Solution (a) Answer: $y_{p}=\frac{1}{6} x^{3}+\frac{1}{12} x^{4}$.
Variation of Parameters.
Solve $y^{\prime \prime}=0$ to get $y_{h}=c_{1} y_{1}+c_{2} y_{2}, y_{1}=1, y_{2}=x$. Compute the Wronskian $W=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=1$.
Then for $f(x)=x+x^{2}$,
$y_{p}=y_{1} \int y_{2} \frac{-f}{W} d x+y_{2} \int y_{1} \frac{f}{W} d x$,
$y_{p}=1 \int-x\left(x+x^{2}\right) d x+x \int 1\left(x+x^{2}\right) d x$,
$y_{p}=-1\left(\frac{1}{3} x^{3}+\frac{1}{4} x^{4}\right)+x\left(\frac{1}{2} x^{2}+\frac{1}{3} x^{3}\right)$,
$y_{p}=\frac{1}{6} x^{3}+\frac{1}{12} x^{4} \quad$ Dropped terms for $1, x$.
This answer is checked by quadrature, applied twice to $y^{\prime \prime}=x+x^{2}$ with initial conditions zero.
Solution (b) The beats solution is identical to the superposition $x(t)$ of the undetermined coefficients solution $x_{p}(t)=d_{1} \cos (3 t)+d_{2} \sin (3 t)$ and the homogeneous solution $x_{h}(t)=c_{1} \cos (16 t)+c_{2} \sin (16 t)$, subject to $x(0)=x^{\prime}(0)=0$, which determines constants c_{1}, c_{2}. Find x_{p} first, then $d_{1}=1, d_{2}=0$. Use conditions $x(0)=x^{\prime}(0)=0$ to solve for $c_{1}=-1, c_{2}=0$. The answer is Beats Solution $=x(t)=$ $\cos (3 t)-\cos (16 t)$.

Solution (c) Write $f(x)=x^{2} \cos (x)-x\left(e^{x}+1\right)=x^{2} \cos (x)-x-x e^{x}$, then identify Euler atoms $x, x e^{x}, x^{2} \cos (x)$. Euler's multiplicity theorem implies that the characteristic equation has to have roots $0,0,1,1, i, i, i,-i,-i,-i$. For instance, solution $x e^{x}$ implies $r=1$ is a root of multiplicity 2 . The root-factor theorem of college algebra implies that $(r-1)^{2}$ is a factor of the characteristic polynomial. The minimal characteristic polynomial is then, by repeated application of the root-factor theorem of college algebra, $r^{2}(r-1)^{2}(r-i)^{3}(r+i)^{3}$. The real form of the characteristic equation is $r^{2}(r-1)^{2}\left(r^{2}+1\right)^{3}=0$, which is a degree 10 polynomial equation.

Chapters 4 and 5

2. (Systems of Differential Equations)
(a) [30\%] Assume a 3×3 matrix A has eigenvalues $\lambda=3,4,5$. State the Cayley-Hamilton-Ziebur theorem for this example. Then display a solution formula for the vector solution $\vec{u}(t)$ to system $\frac{d}{d t} \vec{u}=A \vec{u}$, inserting what is known what is known from the eigenvalue information (supplied above). (b) [40\%] A linear cascade, typically found in brine tank models, satisfies $\frac{d}{d t} \vec{x}(t)=A \vec{x}(t)$ where the 4×4 triangular matrix is

$$
A=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 3 & 1 \\
0 & 0 & 0 & 3
\end{array}\right)
$$

Part 1. Use the linear integrating factor method to find the vector general solution $\vec{x}(t)$ of $\frac{d}{d t} \vec{x}(t)=A \vec{x}(t)$.

Part 2. Laplace's method applies to this example. Explain in a paragraph of text how to apply Laplace's method to this 4×4 system. Don't use Laplace tables and don't find the solution! The explanation can use scalar equations or the vector-matrix equation $\frac{d}{d t} \vec{x}(t)=A \vec{x}(t)$.

Background for (c). Let A be an $n \times n$ real matrix. An augmented matrix $\Phi(t)$ of n independent solutions of $\vec{x}^{\prime}(t)=A \vec{x}(t)$ is called a fundamental matrix. It is known that the general solution is $\vec{x}(t)=\Phi(t) \vec{c}$, where \vec{c} is a column vector of arbitrary constants c_{1}, \ldots, c_{n}. An alternate and widely used definition of fundamental matrix is $\Phi^{\prime}(t)=A \Phi(t),|\Phi(0)| \neq 0$.
(c) $[30 \%]$ The Cayley-Hamilton-Ziebur shortcut applies especially to the system

$$
x^{\prime}=x+5 y, \quad y^{\prime}=-5 x+y,
$$

which has complex eigenvalues $\lambda=1 \pm 5 i$.
Part 1. Show the details of the method, finally displaying formulas for $x(t), y(t)$.
Part 2. Report a fundamental matrix $\Phi(t)$.
Part 3. Use Part 2 to find the exponential matrix $e^{A t}$.

Answers and Solution Details:

Problem 2: Chapters 4 and 5
Part (a) Cayley-Hamilton-Ziebur says that the solution of $\frac{d}{d t} \vec{x}(t)=A \vec{x}(t)$ is a vector linear combination of the Euler solution atoms constructed from the roots of the characteristic equation $|A-\lambda I|=0$. In this case, that means $\vec{x}(t)=\vec{c}_{1} e^{2 t}+\vec{c}_{2} e^{2 t}+\vec{c}_{3} e^{2 t}$.
Part (b)
(b) Part 1. The components x, y, z, w of the vector solution are given by formulas $x=c_{2} t e^{t}+c_{1} e^{t}$, $y=c_{2} e^{t}, z=c_{4} t e^{3 t}+c_{3} e^{3 t}, w=c_{4} e^{3 t}$, details below.
Write the system in scalar form

$$
\begin{aligned}
x^{\prime} & =x+y, \\
y^{\prime} & =y \\
z^{\prime} & =3 z+w, \\
w^{\prime} & =3 w .
\end{aligned}
$$

Solve the fourth equation $w^{\prime}=3 w$ as
$w=\frac{\text { constant }}{\text { integrating factor }}=c_{4} e^{3 t}$.
$w=c_{4} e^{3 t}$
The third equation is
$z^{\prime}=3 z+c_{4} e^{3 t}$
The linear integrating factor method applies.
$z^{\prime}-3 z=c_{4} e^{3 t}$
$\frac{(W z)^{\prime}}{W}=c_{4} e^{3 t}$, where $W=e^{-3 t}$,
$(W z)^{\prime}=c_{4} W e^{3 t}$
$\left(e^{-3 t} z\right)^{\prime}=c_{4} e^{-3 t} e^{3 t}$
$e^{-3 t} z=c_{4} t+c_{3}$.
$z=c_{4} t e^{3 t}+c_{3} e^{3 t}$
Solve the second equation as
$y=\frac{\text { constant }}{\text { integrating factor }}=c_{2} e^{t}$.
$y=c_{2} e^{t}$
Stuff the expression into the first differential equation:
$x^{\prime}=x+y=x+c_{2} e^{t}$
Then solve with the linear integrating factor method.
$x^{\prime}-x=c_{2} e^{t}$
$\frac{(W x)^{\prime}}{W}=c_{2} e^{t}$, where $W=e^{-t}$. Cross-multiply:
$\left(e^{-t} x\right)^{\prime}=c_{2} e^{-t} e^{t}$, then integrate:
$e^{-t} x=c_{2} t+c_{1}$
Then divide by e^{-t} :
$x=c_{2} t e^{t}+c_{1} e^{t}$
(b) Part 2.

The matrix of coefficients is not diagonalizable, therefore the eigenanalysis method fails to apply. However, Laplace's method applies anyway. The system is first transformed into $(s I-A) \mathcal{L}(\vec{u})=\vec{u}_{0}$ where \vec{u}_{0} is a vector of arbitrary constants. Then $\mathcal{L}(\vec{u})$ is the inverse of $s I-A$ times \vec{u}_{0}. Inverse transforms are applied to the inverse matrix $(s I-A)^{-1}$, called the resolvent, to obtain $\vec{u}=\mathcal{L}^{-1}(s I-A)^{-1} \vec{u}_{0}$.
Solution (c) The equations $x^{\prime}=x+5 y, \quad y^{\prime}=-5 x+y$ have coefficient matrix $A=\left(\begin{array}{rr}1 & 5 \\ -5 & 1\end{array}\right)$ with characteristic equation $(1-\lambda)^{2}+25=0$. The roots are $1 \pm 5 i$. The Euler atoms are $e^{t} \cos (5 t), e^{t} \sin (5 t)$.
(c) Part 1.

By C-H-Z, $x=c_{1} e^{t} \cos (5 t)+c_{2} e^{t} \sin (5 t)$. Isolate y from the first differential equation $x^{\prime}=x+5 y$, obtaining the formula $5 y=x^{\prime}-x=x+e^{t}\left(-5 c_{1} \sin (5 t)+5 c_{2} \cos (5 t)\right)-x=-5 c_{1} e^{t} \sin (5 t)+5 c_{2} e^{t} \cos (5 t)$. Then the solution formulas are

$$
x=c_{1} e^{t} \cos (5 t)+c_{2} e^{t} \sin (5 t), \quad y(t)=-c_{1} e^{t} \sin (5 t)+c_{2} e^{t} \cos (5 t)
$$

(c) Part 2

A fundamental matrix $\Phi(t)$ is found by taking partial derivatives on the symbols c_{1}, c_{2}. The answer is exactly the Jacobian matrix of $\binom{x}{y}$ with respect to variables c_{1}, c_{2}.
$\Phi(t)=\left(\begin{array}{rr}e^{t} \cos (5 t) & e^{t} \sin (5 t) \\ -e^{t} \sin (5 t) & e^{t} \cos (5 t)\end{array}\right)$.

Chapter 6

3. (Linear and Nonlinear Dynamical Systems)
(a) $[20 \%]$ Determine whether the unique equilibrium $\vec{u}=\overrightarrow{0}$ is stable or unstable. Then classify the equilibrium point $\vec{u}=\overrightarrow{0}$ as a saddle, center, spiral or node. Sub-classification into improper or proper node is not required.

$$
\frac{d}{d t} \vec{u}=\left(\begin{array}{ll}
-1 & 1 \\
-2 & 1
\end{array}\right) \vec{u}
$$

(b) [30\%] Consider the nonlinear dynamical system

$$
\begin{aligned}
x^{\prime} & =x-2 y^{2}-2 y+32 \\
y^{\prime} & =2 x(x-2 y)
\end{aligned}
$$

An equilibrium point is $x=-8, y=-4$. Compute the Jacobian matrix of the linearized system at this equilibrium point.

(1) Determine the stability at $t=\infty$ and the phase portrait classification saddle, center, spiral or node at $\vec{u}=\overrightarrow{0}$ for the linear dynamical system $\frac{d}{d t} \vec{u}=A \vec{u}$, where A is the Jacobian matrix of this system at $x=2, y=0$.
(2) Apply the Pasting Theorem to classify $x=2, y=0$ as a saddle, center, spiral or node for the nonlinear dynamical system. Discuss all details of the application of the theorem. Details count 75\%.
(d) $[20 \%]$ State the hypotheses and the conclusions of the Pasting Theorem used in part (c) above. Accuracy and completeness expected.

Answers and Solution Details:

Problem 3: Chapter 6
Solution (a) Answer: stable center.
It is an unstable saddle. Details: The eigenvalues of A are roots of $r^{2}+1=0$, which are complex roots $i,-i$ with atoms $\cos t, \sin t$. Rotation eliminates both saddle and node. The atoms have no limit at either ∞ or $-\infty$, therefore it is a center.

Solution (b) The Jacobian is $J(x, y)=\left(\begin{array}{rr}1 & -4 y-2 \\ 4 x-4 y & -4 x\end{array}\right)$. Then $A=J(-8,-4)=\left(\begin{array}{rr}1 & 14 \\ -16 & 32\end{array}\right)$.

Solution (c)

(c) Part 1

The Jacobian is $J(x, y)=\left(\begin{array}{rr}0 & -2 \\ -5+\frac{15}{4} x^{2} & -2\end{array}\right)$. Then $A=J(0,0)=\left(\begin{array}{rr}0 & 1 \\ 10 & -2\end{array}\right)$. The eigenvalues of A are found from $r^{2}+2 r-10=0$, giving real roots $-1 \pm \sqrt{11}$. Because no trig functions appear in the Euler solution atoms, then no rotation happens, and the classification must be a saddle or a nodel. The Euler solution atoms limit $(\infty, 0) t=\infty$ and $(0, \infty)$ at $t=-\infty$, therefore the node is eliminated and it is a saddle. We report a unstable saddle for the linear problem $\vec{u}^{\prime}=A \vec{u}$ at equilibrium $\vec{u}=\overrightarrow{0}$.
(c) Part 2

Theorem 2 in Edwards-Penney section 6.2 applies to say that the same is true for the nonlinear system. Report: unstable saddle at $x=0, y=0$.

Solution (d)

The pasting theorem assumes that $\left(x_{0}, y_{0}\right)$ is an isolated equilibrium point of the nonlinear system. The associated linear system is $\vec{u}^{\prime}=A \vec{u}$, where A is the Jacobian matrix of the nonlinear system evaluated at this point. The theorem says that a spiral, center, saddle or node for the linear system corresponds to a spiral, center, saddle or node, respectively, with two exceptions.
Exception 1. If the equilibrium is a center for the linear problem, then the nonlinear system has either a center or a spiral at $\left(x_{0}, y_{0}\right)$, and the spiral can be either stable or unstable.
Exception 2. If the equilibrium is a node for the linear problem with equal eigenvalues, then the nonlinear system has either a node or a spiral at $\left(x_{0}, y_{0}\right)$. The stability of the linear problem transfers to the nonlinear problem.

