Differential Equations 2280
Midterm Exam 3
Exam Date: 14 April 2017 at 12:50pm

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is
expected. Details count 3/4, answers count 1/4.

Chapter 3

1. (Linear Constant Equations of Order n)

(a) [30%)] Find by variation of parameters a particular solution y, for the equation y” = x + z%. Show
all steps in variation of parameters. Check the answer by quadrature.

(b) [40%)] Find the Beats solution for the forced undamped spring-mass problem
2" + 256z = 247 cos(3t), z(0) = 2'(0) = 0.

It is known that this solution is the sum of two harmonic oscillations of different frequencies. To save
time, please don’t convert your answer.

(c) [30%] Let f(x) = x?cos(x) — z(e® + 1). Find the characteristic equation of a linear homogeneous
scalar differential equation of least order such that y = f(x) is a solution.

Answers and Solution Detalils:
Problem 1: Chapter 3
. 1 1
Solution (a) Answer: y, = 6:103 + Ew‘l.
Variation of Parameters.
Solve 3" = 0 to get yp, = c1y1 + c2y2, y1 = 1, y2 = x. Compute the Wronskian W = y1y} — yjy2 = 1.
Then for f(z) = x + 22,
Yp =1 yz_Wfdx +y2 [ 11 %dw,
yp =1 / —x(x + 2 dx + :E/l(:l? + 2%)dx,

14 1 1 1
yp = —1 <3w3 + 4904) +z (2:r2 + 3x3) ,
4 Dropped terms for 1, .

3 1
Yp = gx + Ex
This answer is checked by quadrature, applied twice to 3" = = + 22 with initial conditions zero.

Solution (b) The beats solution is identical to the superposition z(t) of the undetermined coefficients
solution z,(t) = dy cos(3t) + dasin(3t) and the homogeneous solution x(t) = ¢1 cos(16t) + c2sin(16t),
subject to xz(0) = 2/(0) = 0, which determines constants ¢, cp. Find z, first, then dy = 1, dy = 0.
Use conditions 2:(0) = 2/(0) = 0 to solve for ¢; = —1, ¢a = 0. The answer is Beats Solution = x(t) =

cos(3t) — cos(16t).

Solution (c) Write f(z) = 2?cos(x) — z(e* + 1) = x?cos(x) — x — xe®, then identify Euler atoms
x,ze”, 22 cos(x). Euler's multiplicity theorem implies that the characteristic equation has to have roots
0,0,1,1,4,4,4, —i, —i, —i. For instance, solution xe® implies = 1 is a root of multiplicity 2. The root-factor
theorem of college algebra implies that (r — 1)? is a factor of the characteristic polynomial. The minimal
characteristic polynomial is then, by repeated application of the root-factor theorem of college algebra,
r2(r — 1)2(r — i)3(r +4)3. The real form of the characteristic equation is r2(r — 1)%(r? + 1)3 = 0, which is
a degree 10 polynomial equation.




Chapters 4 and 5

2. (Systems of Differential Equations)

(a) [30%] Assume a 3 x 3 matrix A has eigenvalues X = 3,4,5. State the Cayley-Hamilton-Ziebur
theorem for this example. Then display a solution formula for the vector solution #(t) to system
%ﬁ = Ai, inserting what is known what is known from the eigenvalue information (supplied above).
(b) [40%] A linear cascade, typically found in brine tank models, satisfies £%(t) = AZ(t) where the
4 x 4 triangular matrix is

o O O
SO ==
S W o O
w = O O

Part 1. Use the linear integrating factor method to find the vector general solution Z(t) of

LE(t) = AZ(t).

Part 2. Laplace’s method applies to this example. Explain in a paragraph of text how to apply
Laplace’'s method to this 4 x 4 system. Don't use Laplace tables and don't find the solution! The
explanation can use scalar equations or the vector-matrix equation 4 #(t) = A#(t).

Background for (c). Let A be an n x n real matrix. An augmented matrix ®(t) of n independent
solutions of & (t) = AZ(t) is called a fundamental matrix. It is known that the general solution
is Z(t) = ®(t)c, where ¢ is a column vector of arbitrary constants c1,...,c,. An alternate and widely
used definition of fundamental matrix is ®'(t) = A®(t), |®(0)| # 0.

(c) [30%)] The Cayley-Hamilton-Ziebur shortcut applies especially to the system
' =x+5y, y =-5r+y,
which has complex eigenvalues A = 1 + 5.

Part 1. Show the details of the method, finally displaying formulas for x(t), y(t).
Part 2. Report a fundamental matrix ®(¢).
Part 3. Use Part 2 to find the exponential matrix e“t.

Answers and Solution Details:

Problem 2: Chapters 4 and 5

Part (a) Cayley-Hamilton-Ziebur says that the solution of 4 #(t) = AZ(t) is a vector linear combination
of the Euler solution atoms constructed from the roots of the characteristic equation |[A — AI| = 0. In this
case, that means Z(t) = e’ 4 cye?t + c3e?t.

Part (b)
(b) Part 1. The components z,y, z,w of the vector solution are given by formulas = = cate! + ciet,
y = coet, 2 = cqted + cze3t, w = cuet, details below.

Write the system in scalar form
/

X = T+,
vy = v,

2 = 3z+w,
w = 3w.

Solve the fourth equation w’ = 3w as
_ ___ constant — oot
integrating factor — “4° -




w = C4 63t

The third equation is

2 =3z + cyed

The linear integrating factor method applies.
2 — 3z = cqedt

(W=)'

= c4e3t, where W = e3¢,

Wz) = cyWedt

(

(6 3t2)/ — 046—3156315
3t

€

z = cyt + c3.

2z = cqtedt + 03e3t
| |

Solve the second equation as
Y= - constant — coet
integrating factor 26

y = coel

Stuff the expression into the first differential equation:
¥=z+y=21z+ce

Then solve with the linear integrating factor method.
' —x = coet

(W)’
W
~tz) = coetel, then integrate:

el =cot+c

Then divide by e~ *:

’ar = cote! + 1€t

(b) Part 2.

The matrix of coefficients is not diagonalizable, therefore the eigenanalysis method fails to apply. However,
Laplace’'s method applies anyway. The system is first transformed into (sI — A)L(@) = iy where i is a
vector of arbitrary constants. Then L£() is the inverse of sI — A times . Inverse transforms are applied to
the inverse matrix (sI — A)~!, called the resolvent, to obtain @ = £71(sI — A)~ L.

= cpe!, where W = e~t. Cross-multiply:

—
@

-5 1
characteristic equation (1 — \)? 425 = 0. The roots are 14 5i. The Euler atoms are e’ cos(5t), e sin(5¢).
(c) Part 1.

By C-H-Z, x = c1e! cos(5t) + coel sin(5t). Isolate y from the first differential equation 2’ = x + 5y, obtaining
the formula 5y = 2’ — z = z + €' (=5cy sin(5t) + 5eg cos(5t)) — z = —beyrel sin(5t) + Hegel cos(5t). Then
the solution formulas are

Solution (c) The equations 2’ =z +5y, ' = —b5x + y have coefficient matrix A = < Lo ) with

z = cre’ cos(5t) + cael sin(5t),  y(t) = —cie’ sin(5t) + coel cos(5t).

(c) Part 2

A fundamental matrix ®(¢) is found by taking partial derivatives on the symbols ¢1, co. The answer is exactly

the Jacobian matrix of Y with respect to variables ¢y, cs.

B(t) = < el cos(5t) e: sin(5t) )

—etsin(5t) el cos(5t)




Chapter 6

3. (Linear and Nonlinear Dynamical Systems)
(a) [20%)] Determine whether the unique equilibrium @ = 0 is stable or unstable. Then classify the
equilibrium point # = 0 as a saddle, center, spiral or node. Sub-classification into improper or proper

node is not required.
d_ (-1 1),
at' ~\ -2 1 )"

(b) [30%)] Consider the nonlinear dynamical system

¥ = x—2y*—2y+ 32,
y = 2z(x—2y).
An equilibrium point is z = —8, y = —4. Compute the Jacobian matrix of the linearized system at this

equilibrium point.

/

(c) [30%] Consider the soft nonlinear spring system { ; Ys

= —br—2y+ %xS.

(1) Determine the stability at ¢ = oo and the phase portrait classification saddle, center,
spiral or node at @ = 0 for the linear dynamical system %ﬁ = Ad, where A is the Jacobian
matrix of this system at x =2, y = 0.

(2) Apply the Pasting Theorem to classify z = 2, y = 0 as a saddle, center, spiral or node
for the nonlinear dynamical system. Discuss all details of the application of the theorem.
Details count 75%.

(d) [20%)] State the hypotheses and the conclusions of the Pasting Theorem used in part (c) above.
Accuracy and completeness expected.

Answers and Solution Details:

Problem 3: Chapter 6

Solution (a) Answer: stable center.

It is an unstable saddle. Details: The eigenvalues of A are roots of 72 +1 = 0, which are complex roots 4, —i
with atoms cost,sint. Rotation eliminates both saddle and node. The atoms have no limit at either co or
—00, therefore it is a center.

Solution (b) The Jacobianis J(z,y) = ( 495_4; —4y_—42 > Then A= J(-8,—-4) = ( _133 ;;1 >
Solution (c)
(c) Part 1

. 0 -2 0 1 :
The Jacobian is J(z,y) = ( 5412 o ) Then A = J(0,0) = ( 10 -2 > The eigenvalues of
A are found from r2 4+ 2r — 10 = 0, giving real roots —1 & v/11. Because no trig functions appear in the
Euler solution atoms, then no rotation happens, and the classification must be a saddle or a nodel. The
Euler solution atoms limit (00, 0) ¢ = 0o and (0, 00) at ¢ = —o0, therefore the node is eliminated and it is a
saddle. We report a unstable saddle for the linear problem @ = Aw at equilibrium @ = 0.

(c) Part 2



Theorem 2 in Edwards-Penney section 6.2 applies to say that the same is true for the nonlinear system.
Report: unstable saddle at x =0, y = 0.

Solution (d)

The pasting theorem assumes that (g, %) is an isolated equilibrium point of the nonlinear system. The
associated linear system is @' = A, where A is the Jacobian matrix of the nonlinear system evaluated at this
point. The theorem says that a spiral, center, saddle or node for the linear system corresponds to a spiral,
center, saddle or node, respectively, with two exceptions.

Exception 1. If the equilibrium is a center for the linear problem, then the nonlinear system has either a
center or a spiral at (z,yo), and the spiral can be either stable or unstable.

Exception 2. If the equilibrium is a node for the linear problem with equal eigenvalues, then the nonlinear
system has either a node or a spiral at (xg,yo). The stability of the linear problem transfers to the nonlinear
problem.




