Differential Equations 2280 Midterm Exam 3 Exam Date: 14 April 2017 at 12:50pm

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count 3/4, answers count 1/4.

Chapter 3

1. (Linear Constant Equations of Order n)

(a) [30%] Find by variation of parameters a particular solution y_p for the equation $y'' = x + x^2$. Show all steps in variation of parameters. Check the answer by quadrature.

(b) [40%] Find the **Beats** solution for the forced undamped spring-mass problem

$$x'' + 256x = 247\cos(3t), \quad x(0) = x'(0) = 0.$$

It is known that this solution is the sum of two harmonic oscillations of different frequencies. To save time, please don't convert your answer.

(c) [30%] Let $f(x) = x^2 \cos(x) - x(e^x + 1)$. Find the characteristic equation of a linear homogeneous scalar differential equation of least order such that y = f(x) is a solution.

Answers and Solution Details:

Problem 1: Chapter 3 Solution (a) Answer: $y_p = \frac{1}{6}x^3 + \frac{1}{12}x^4$.

Variation of Parameters.

Solve y'' = 0 to get $y_h = c_1y_1 + c_2y_2$, $y_1 = 1$, $y_2 = x$. Compute the Wronskian $W = y_1y'_2 - y'_1y_2 = 1$. Then for $f(x) = x + x^2$,

$$y_p = y_1 \int y_2 \frac{-f}{W} dx + y_2 \int y_1 \frac{f}{W} dx,$$

$$y_p = 1 \int -x(x+x^2) dx + x \int 1(x+x^2) dx,$$

$$y_p = -1 \left(\frac{1}{3}x^3 + \frac{1}{4}x^4\right) + x \left(\frac{1}{2}x^2 + \frac{1}{3}x^3\right),$$

$$y_p = \frac{1}{6}x^3 + \frac{1}{12}x^4 \text{ Dropped terms for 1, } x.$$

This answer is checked by quadrature, applied twice to $y'' = x + x^2$ with initial conditions zero.

Solution (b) The beats solution is identical to the superposition x(t) of the undetermined coefficients solution $x_p(t) = d_1 \cos(3t) + d_2 \sin(3t)$ and the homogeneous solution $x_h(t) = c_1 \cos(16t) + c_2 \sin(16t)$, subject to x(0) = x'(0) = 0, which determines constants c_1, c_2 . Find x_p first, then $d_1 = 1$, $d_2 = 0$. Use conditions x(0) = x'(0) = 0 to solve for $c_1 = -1$, $c_2 = 0$. The answer is Beats Solution $= x(t) = \cos(3t) - \cos(16t)$.

Solution (c) Write $f(x) = x^2 \cos(x) - x(e^x + 1) = x^2 \cos(x) - x - xe^x$, then identify Euler atoms $x, xe^x, x^2 \cos(x)$. Euler's multiplicity theorem implies that the characteristic equation has to have roots 0, 0, 1, 1, i, i, i, -i, -i, -i. For instance, solution xe^x implies r = 1 is a root of multiplicity 2. The root-factor theorem of college algebra implies that $(r - 1)^2$ is a factor of the characteristic polynomial. The minimal characteristic polynomial is then, by repeated application of the root-factor theorem of college algebra, $r^2(r-1)^2(r-i)^3(r+i)^3$. The real form of the characteristic equation is $r^2(r-1)^2(r^2+1)^3 = 0$, which is a degree 10 polynomial equation.

Chapters 4 and 5

2. (Systems of Differential Equations)

(a) [30%] Assume a 3×3 matrix A has eigenvalues $\lambda = 3, 4, 5$. State the Cayley-Hamilton-Ziebur theorem for this example. Then display a solution formula for the vector solution $\vec{u}(t)$ to system $\frac{d}{dt}\vec{u} = A\vec{u}$, inserting what is known what is known from the eigenvalue information (supplied above). (b) [40%] A linear cascade, typically found in brine tank models, satisfies $\frac{d}{dt}\vec{x}(t) = A\vec{x}(t)$ where the 4×4 triangular matrix is

$$A = \left(\begin{array}{rrrrr} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3 \end{array}\right)$$

Part 1. Use the linear integrating factor method to find the vector general solution $\vec{x}(t)$ of $\frac{d}{dt}\vec{x}(t) = A\vec{x}(t)$.

Part 2. Laplace's method applies to this example. Explain in a paragraph of text how to apply Laplace's method to this 4×4 system. Don't use Laplace tables and don't find the solution! The explanation can use scalar equations or the vector-matrix equation $\frac{d}{dt}\vec{x}(t) = A\vec{x}(t)$.

Background for (c). Let A be an $n \times n$ real matrix. An augmented matrix $\Phi(t)$ of n independent solutions of $\vec{x}'(t) = A\vec{x}(t)$ is called a **fundamental matrix**. It is known that the general solution is $\vec{x}(t) = \Phi(t)\vec{c}$, where \vec{c} is a column vector of arbitrary constants c_1, \ldots, c_n . An alternate and widely used definition of fundamental matrix is $\Phi'(t) = A\Phi(t), |\Phi(0)| \neq 0$.

(c) [30%] The Cayley-Hamilton-Ziebur shortcut applies especially to the system

$$x' = x + 5y, \quad y' = -5x + y,$$

which has complex eigenvalues $\lambda = 1 \pm 5i$.

Part 1. Show the details of the method, finally displaying formulas for x(t), y(t).

- **Part 2**. Report a fundamental matrix $\Phi(t)$.
- **Part 3**. Use **Part 2** to find the exponential matrix e^{At} .

Answers and Solution Details:

Problem 2: Chapters 4 and 5

Part (a) Cayley-Hamilton-Ziebur says that the solution of $\frac{d}{dt}\vec{x}(t) = A\vec{x}(t)$ is a vector linear combination of the Euler solution atoms constructed from the roots of the characteristic equation $|A - \lambda I| = 0$. In this case, that means $\vec{x}(t) = \vec{c_1}e^{2t} + \vec{c_2}e^{2t} + \vec{c_3}e^{2t}$.

Part (b)

(b) Part 1. The components x, y, z, w of the vector solution are given by formulas $x = c_2 t e^t + c_1 e^t$, $y = c_2 e^t$, $z = c_4 t e^{3t} + c_3 e^{3t}$, $w = c_4 e^{3t}$, details below. Write the system in scalar form

$$\begin{array}{rcl} x' &=& x+y, \ y' &=& y, \ z' &=& 3z+w, \ w' &=& 3w. \end{array}$$

Solve the fourth equation w' = 3w as $w = \frac{\text{constant}}{\text{integrating factor}} = c_4 e^{3t}$.

 $w = c_4 e^{3t}$ The third equation is $z' = 3z + c_4 e^{3t}$ The linear integrating factor method applies. $z' - 3z = c_4 e^{3t}$ $\frac{(Wz)'}{W} = c_4 e^{3t}, \text{ where } W = e^{-3t},$ $(Wz)' = c_4 W e^{3t}$ $(e^{-3t}z)' = c_4 e^{-3t} e^{3t}$ $e^{-3t}z = c_4t + c_3.$ $z = c_4te^{3t} + c_3e^{3t}$ Solve the second equation as $y = \frac{\text{constant}}{\text{integrating factor}} = c_2 e^t.$ $y = c_2 e^t$ Stuff the expression into the first differential equation: $x' = x + y = x + c_2 e^t$ Then solve with the linear integrating factor method. $x' - x = c_2 e^t$ $\frac{(Wx)'}{W} = c_2 e^t$, where $W = e^{-t}$. Cross-multiply: $(e^{-t}x)' = c_2 e^{-t} e^t$, then integrate: $e^{-t}x = c_2 t + c_1$ Then divide by e^{-t} : $x = c_2 t e^t + c_1 e^t$

The matrix of coefficients is not diagonalizable, therefore the eigenanalysis method fails to apply. However, Laplace's method applies anyway. The system is first transformed into $(sI - A)\mathcal{L}(\vec{u}) = \vec{u}_0$ where \vec{u}_0 is a vector of arbitrary constants. Then $\mathcal{L}(\vec{u})$ is the inverse of sI - A times \vec{u}_0 . Inverse transforms are applied to the inverse matrix $(sI - A)^{-1}$, called the resolvent, to obtain $\vec{u} = \mathcal{L}^{-1}(sI - A)^{-1}\vec{u}_0$.

Solution (c) The equations x' = x + 5y, y' = -5x + y have coefficient matrix $A = \begin{pmatrix} 1 & 5 \\ -5 & 1 \end{pmatrix}$ with characteristic equation $(1 - \lambda)^2 + 25 = 0$. The roots are $1 \pm 5i$. The Euler atoms are $e^t \cos(5t)$, $e^t \sin(5t)$.

(c) Part 1. By C-H-Z, $x = c_1 e^t \cos(5t) + c_2 e^t \sin(5t)$. Isolate y from the first differential equation x' = x + 5y, obtaining the formula $5y = x' - x = x + e^t (-5c_1 \sin(5t) + 5c_2 \cos(5t)) - x = -5c_1 e^t \sin(5t) + 5c_2 e^t \cos(5t)$. Then the solution formulas are

$$x = c_1 e^t \cos(5t) + c_2 e^t \sin(5t), \quad y(t) = -c_1 e^t \sin(5t) + c_2 e^t \cos(5t).$$

(c) Part 2

A fundamental matrix $\Phi(t)$ is found by taking partial derivatives on the symbols c_1, c_2 . The answer is exactly

the Jacobian matrix of $\begin{pmatrix} x \\ y \end{pmatrix}$ with respect to variables c_1, c_2 . $\Phi(t) = \begin{pmatrix} e^t \cos(5t) & e^t \sin(5t) \\ -e^t \sin(5t) & e^t \cos(5t) \end{pmatrix}.$

Chapter 6

3. (Linear and Nonlinear Dynamical Systems)

(a) [20%] Determine whether the unique equilibrium $\vec{u} = \vec{0}$ is stable or unstable. Then classify the equilibrium point $\vec{u} = \vec{0}$ as a saddle, center, spiral or node. Sub-classification into improper or proper node is not required.

$$\frac{d}{dt}\vec{u} = \left(\begin{array}{cc} -1 & 1\\ -2 & 1 \end{array}\right)\vec{u}$$

(b) [30%] Consider the nonlinear dynamical system

$$\begin{array}{rcl}
x' &=& x - 2y^2 - 2y + 32, \\
y' &=& 2x(x - 2y).
\end{array}$$

An equilibrium point is x = -8, y = -4. Compute the Jacobian matrix of the linearized system at this equilibrium point.

(c) [30%] Consider the soft nonlinear spring system $\begin{cases} x' = y, \\ y' = -5x - 2y + \frac{5}{4}x^3. \end{cases}$

(1) Determine the stability at $t = \infty$ and the phase portrait classification saddle, center, spiral or node at $\vec{u} = \vec{0}$ for the **linear dynamical system** $\frac{d}{dt}\vec{u} = A\vec{u}$, where A is the Jacobian matrix of this system at x = 2, y = 0.

(2) Apply the Pasting Theorem to classify x = 2, y = 0 as a saddle, center, spiral or node for the **nonlinear dynamical system**. Discuss all details of the application of the theorem. *Details count 75%*.

(d) [20%] State the hypotheses and the conclusions of the *Pasting Theorem* used in part (c) above. Accuracy and completeness expected.

Answers and Solution Details:

Problem 3: Chapter 6

Solution (a) Answer: stable center.

It is an unstable saddle. Details: The eigenvalues of A are roots of $r^2 + 1 = 0$, which are complex roots i, -i with atoms $\cos t, \sin t$. Rotation eliminates both saddle and node. The atoms have no limit at either ∞ or $-\infty$, therefore it is a center.

Solution (b) The Jacobian is
$$J(x,y) = \begin{pmatrix} 1 & -4y - 2 \\ 4x - 4y & -4x \end{pmatrix}$$
. Then $A = J(-8, -4) = \begin{pmatrix} 1 & 14 \\ -16 & 32 \end{pmatrix}$

Solution (c) (c) Part 1

The Jacobian is $J(x,y) = \begin{pmatrix} 0 & -2 \\ -5 + \frac{15}{4}x^2 & -2 \end{pmatrix}$. Then $A = J(0,0) = \begin{pmatrix} 0 & 1 \\ 10 & -2 \end{pmatrix}$. The eigenvalues of

A are found from $r^2 + 2r - 10 = 0$, giving real roots $-1 \pm \sqrt{11}$. Because no trig functions appear in the Euler solution atoms, then no rotation happens, and the classification must be a saddle or a nodel. The Euler solution atoms limit $(\infty, 0)$ $t = \infty$ and $(0, \infty)$ at $t = -\infty$, therefore the node is eliminated and it is a saddle. We report a unstable saddle for the linear problem $\vec{u}' = A\vec{u}$ at equilibrium $\vec{u} = \vec{0}$.

(c) Part 2

Theorem 2 in Edwards-Penney section 6.2 applies to say that the same is true for the nonlinear system. Report: unstable saddle at x = 0, y = 0.

Solution (d)

The pasting theorem assumes that (x_0, y_0) is an isolated equilibrium point of the nonlinear system. The associated linear system is $\vec{u}' = A\vec{u}$, where A is the Jacobian matrix of the nonlinear system evaluated at this point. The theorem says that a spiral, center, saddle or node for the linear system corresponds to a spiral, center, saddle or node, respectively, with two exceptions.

Exception 1. If the equilibrium is a center for the linear problem, then the nonlinear system has either a center or a spiral at (x_0, y_0) , and the spiral can be either stable or unstable.

Exception 2. If the equilibrium is a node for the linear problem with equal eigenvalues, then the nonlinear system has either a node or a spiral at (x_0, y_0) . The stability of the linear problem transfers to the nonlinear problem.