Differential Equations 2280

Sample Midterm Exam 2 with Solutions
Exam Date: 5 April 2019 at 7:30am

Instructions: This in-class exam is 80 minutes. No calculators, notes, tables or books. No answer check is
expected. Details count 3/4, answers count 1/4. Problems below cover the possibilities, but the exam day
content will be much less, as was the case for Exam 1. Exam 2 covers only problems 1-7, which is Chapters
1 to 5 and 7 in the textbook. Chapter 6 (Problem 8) is moved to the final exam.

1. (Laplace Theory)
(a) [50%)] Solve by Laplace’s method z” + 22’ + z = et, 2(0) = 2/(0) = 0.

(b) [25%] Assume f(t) is of exponential order. Find f(t) in the relation

d

Legm|  =cum-o.
S s—(s—3)

(c) [25%)] Derive an integral formula for y(t) by Laplace transform methods, explicitly using the Con-
volution Theorem, for the problem

y'(t) +4y'(t) + 4y(t) = f(t), y(0) =1y'(0) =0.

This is similar to a required homework problem from Chapter 7.

Answer:

()

r(t)=—1/4e ' —1/2e7 Ut +1/4¢

An intermediate step is £(z(t)) = m The solution uses partial fractions m =
A B

p— + P + G2 with answers A=1/4, B=—-1/4, C = —1/2.

(b)

Replace by the shift theorem and the s-differentiation theorem the given equation by

£ (=t f@)™) = L(f(t) — ).

Then Lerch’s theorem cancels £ to give —te3' f(t) = f(t) —t. Solve for

t
T =15

(c)
The main steps are:

(57 + 45 + 4)L(y(t) = L(f (1),

L(y(t)) = Wﬁ(f(t)),
L(y(t)) = L(te ) L(f(t)), by the first shifting theorem,
L(y(t)) = L(convolution of te=2" and f(t)), by the Convolution Theorem,
¢
L(y(t) =L (/ e 2 f(t — m)dac) insert definition of convolution,
0

t
y(t) = / re 2® f(t — x)dx, by Lerch's Theorem.
0




2. (Laplace Theory)
(4a) [20%] Explain Laplace’s Method, as applied to the differential equation x'(t) +2z(t) = €', x(0) = 1.
Reference only. Not to appear on any exam.

(4b) [15%] Solve L(f(t)) = G 11)()(22 )

(4c) [15%] Solve for f(t) in the equation L(f(t)) =

for f(t).
1
52(s +3)’
(4d) [10%)] Find L(f) given f(t) = (—t)e? sin(3t).
(4e) [20%] Solve 2" + 2" =0, 2(0) =1, 2/(0) = 0, 2”(0) = 0 by Laplace’s Method.
(4f) [20%)] Solve the system 2’ =x +y, v =x —y+ 2, (0) =0, y(0) = 0 by Laplace’s Method.

Answer:
(4a) Laplace’'s method explained.
The first step transforms the equation using the parts formula and initial data to get

(s+2)L(x) =1+ L(e).

The forward Laplace table applies to evaluate £(e'). Then write, after a division, the isolated formula for

L(x):

E(x):1+1/(8_1>: s
s+2 (s—1)(s+2)
Partial fraction methods plus the backward Laplace table imply
_ @ b _ t —2t
L(x)= py +s—|—2 = L(ae" + be™ ")
and then z(t) = ae’ + be2! by Lerch's theorem. The constants are a = 1/3, b = 2/3.
(45) £0F) = oy — 00 4 =105 here w52, Then £(f) = (ks — why) = WL(sint ~

1 sin 2t) implies f(t) = %(sint — 1sin2t).

(4c) L(f) =2+ & + 5 = L{a+ bt + ce™) implies f(t) = a + bt + ce™. The constants, by Heaviside
coverup, are a = —1/9, b=1/3, ¢ =1/9.

(4d) L(f) = %E(ezt sin 3t) by the s-differentiation theorem. The first shifting theorem implies £(e* sin 3t) =
L(sin3t)|,_,(s_2)- Finally, the forward table implies L(f) = a% ((S — 21)2 - 9) _ ((5_2(25)2_5)9)2

(4e) The answer is 2:(t) = 1, by guessing, then checking the answer. The Laplace details jump through hoops
to arrive at (s + s2)L(x(t)) = s> + s, or simply L(x(t)) = 1/s. Then z(t) = 1.

(4f) The transformed system is

(s—1Lx) + (-DLy) = 0,
(-DL(z) + (s+1)L(y) = L(2).

Then £(2) = 2/s and Cramer’s Rule gives the formulas

2 2(s—1
L(r) = mv L(y) = M

After partial fractions and the backward table,

x = —1+cosh(v/2t), y=+/2sinh(v/2t)— cosh(v/2t) + 1.




3. (Laplace Theory)

1
f t).
(s2+5)(s? —s) or /(1)
. . s+1
(b) [20%] Solve for f(t) in the equation L(f(t)) = oy
(c) [20%] Let u(t) denote the unit step. Solve for f(¢) in the relation

L) = S £Cu(t — 1) sin20)

Remark: This is not a second shifting theorem problem.

(d) [30%)] Compute L(e? f(t)) for

(a) [30%)] Solve L(f(t)) =

Answer:

(a) f(t) =sinh(t) —t = Jel —2e ' —t

(b) (t) = =2 (cos(t) — sin(t))

(c) Replace d/ds by factor (—t) in the Laplace integrand:

L{F@) = L((=1) sin(2t)u(t — 1))

Apply Lerch's theorem to cancel £ on each side, obtaining the answer

f(t)) = (—t)sin(2t)u(t — 1).

(d) The first shifting theorem reduces the problem to computing L(f(t)).
1 1
L(tf(t) =L(e" —e™") = -

J ) 15 -1 s41
—gﬁ(f(t)) =1 st 1 by the s-differentiation theorem,
Then F(s) = L(f(t)) satisfies a first order quadrature equation F’(s) = h(s) with solution F(s) = In|s +
I|=In|s=1|+c=1n ‘ s+l ‘ + ¢ for some constant ¢. Because F' = 0 at s = oo (a basic theorem for functions

of exponential order) and In|1| = 0, then ¢ = 0 and L(f(t)) = F(s) =In|s+ 1] —In|s — 1| = In
Then the shifting theorem implies

L(Mf() = LU W)smy o =1n

s+1
s—1|"

5—1‘
s—3|°

. (Systems of Differential Equations)
The eigenanalysis method says that, for a 3 x 3 system x’ = Ax, the general solution is x(t) = ¢;vieMt +
cavae?! 4 c3v3eMt. In the solution formula, (A;,v;), i = 1,2,3, is an eigenpair of A. Given

then
(a) [75%)] Display eigenanalysis details for
(b) [25%)] Display the solution x(t) of x/(t Ax( ).

) =

5 1 1
(c) Repeat (a), (b) for the matrix A= | 1 5 1

007



Answer:

(a): The details should solve the equation |A — M| = 0 for three values A = 5,4,3. Then solve the three
systems (A — M) = 0 for eigenvector @, for A = 5,4, 3.

The eigenpairs are

1 -1 1
5,001 | 4| -1 ] 3, -1
0 1 0

(b): The eigenanalysis method implies

1 -1
x(t)=c1e® | 1 | +ee | -1 [+ 3| —1
0 1 0
(c): The eigenpairs are
1 1 1
6,1 1 |; 7,1 1 |; 4,|] -1
1 0
and the eigenanalysis method implies
1 1 1
x(t) = el 1 | ™| 1 | +egett| —1
0 1 0
. (Systems of Differential Equations)
41 -1 0
. . . 1 4 -2 1
(a) [30%)] Find the eigenvalues of the matrix A = 00 2 0
00 24

(b) [20%)] Justify that eigenvectors of A corresponding to the eigenvalues in increasing order are the four

vectors
1

-1

-5 1

-3 |’ o’
3 0

I

-1
0
0
1

S O ==

(c) [50%)] Display the general solution of u’ = Au according to the Eigenanalysis method.

Answer:
(a) Eigenvalues are A = 2,3,4,5.
Define
4 1 -1 0
1 4 -2 1
A= 00 20
00 2 4

Subtract A from the diagonal elements of A and expand the determinant det(A — AI) to obtain the char-
acteristic polynomial (2 — A\)(3 — A\)(4 — A\)(5 — A) = 0. The eigenvalues are the roots: A\ = 2,3,4,5.



Used here was the cofactor rule for determinants. Also possible is the special result for block matrices,
' Bg ;)2 = | B1||B2]|. Sarrus' rule does not apply for 4 x 4 determinants (an error) and the triangular rule
likewise does not directly apply (another error).

(b) To be justified is AP = PD where D = diag(2,3,4,5) is the diagonal matrix of eigenvalues (see part
(a)) and P is the augmented matrix of eigenvectors supplied above. Matrix multiply can check the answer,
by expanding each side of AP = PD.

Alternative method:

Solve (A — )7 = 0 four times, for A = 2.3,4,5. Each is a homogeneous system of linear algebraic equa-
tions, reduced to RREF by swap, combo, multiply. Each eigenvector answer is Strang's Special Solution.
(c) Because the eigenvalues are A = 2,3,4, 5, then the solution is a vector linear combination of the Euler

solution atoms e2t, €3, %t €%t

u(t):Ca€2t+6{‘263t+£€4t+6&65t.

According to the theory, ci; = ¢;Uj, where (A1, 01), ..., (A4, Ts) are the eigenpairs of A and c1, ¢z, c3, ¢4 are
invented symbols representing real, arbitrary constants. Then

1 -1 —1 1
-5 1 0 1

- 2t 3t 4t 5t
U = cle _3 + coe 0 + c3e 0 + ce 0
3 0 1 0

. (Systems of Differential Equations)

(a) [100%] The eigenvalues are 3, 5 for the matrix 4 = [ ;L i ]

Display the general solution of u’ = Au according to the Cayley-Hamilton-Ziebur shortcut (textbook

1
chapters 4,5). Assume initial condition @y = ( 1 >

Answer:
(a) Cayley-Hamilton Ziebur Shortcut. The method says that the components z(t), y(t) of the solution

to the system
i = Ail, @(0) = ( o )

with A = < le i > and 4 = ( ig; ) are linear combinations of the Euler atoms found from the roots

of the characteristic equation |[A — rI| = 0. The roots are r = 3,5 and the atoms are e
system is

3t ¢5t. The scalar

a'(t) = dx(t) +y(),
y'(t) = x(t) +4y(t),
z(0) = 1,
y(0) = —L

The C-H-Z method implies z(t) = c1e3 +coe™, but ¢y, c2 are not arbitrary constants: they are determined by
the initial conditions x(0) = 1,y(0) = —1. Then 2/ = 4z+y can be solved for y to obtain y(t) = 2/(t)—4x(t).
Substitute expression x(t) = c1e3! + coe® into y(t) = 2/(t) — 4x(t) to obtain

y(t) = 2/ (t) — 4a(t) = 3c1€3 + 5ege® — 4(cre + cpe™) = —c1e® + coe™.



Then

(1) z(t) = cedt + e’
y(t) = —cie3t + coe®,
Initial data z(0) = 1,y(0) = —1 are used in the last step, to evaluate cj,ca. Inserting these conditions
produces a 2 x 2 linear system for c1, ¢y
1 = e + 6260,
-1 = —c1e' + c9€d.
The solution is ¢; = 1 and ¢y = 0, which implies the final answer z(t) = 3, y(t) = —e?'.

Remark on Fundamental Matrices. The answer prior to evaluation of ¢, co can be written as
x(t) | _ et edt c1
y(t) )] — | —e3t e co |’
3t 5t

e’ e . . o , .
T called a fundamental matrix, because it is nonsingular and satisfies

®’ = A® (its columns are solutions of @ = Aw). In terms of @,

The matrix ®(t) =

et = o(t)d1(0).

This formula gives an alternative way to compute e* by using the Cayley-Hamilton-Ziebur shortcut. Please
observe that the columns of ® are the formal partial derivatives of the vector solution @ on the symbols
c1, co. Partial derivatives on symbols is a general method for discovering basis vectors. Therefore, ® can be
written directly from equations (1).

Chapters 4 and 5

7. (Systems of Differential Equations)
Background. Let A be areal 3 x 3 matrix with eigenpairs (A1, v1), (A2, v2), (A3, v3). The eigenanalysis
method says that the 3 x 3 system x’ = Ax has general solution

At Aot Azt

x(t) = erviet’ + covae™? + cgvae™.

Background. Let A be an n X n real matrix. The method called Cayley-Hamilton-Ziebur is
based upon the result

The components of solution x of x'(¢t) = Ax(t) are linear combinations of Euler solution atoms
obtained from the roots of the characteristic equation |A — A\I| = 0.

Background. Let A be an n x n real matrix. An augmented matrix ®(¢) of n independent solutions of
x'(t) = Ax(t) is called a fundamental matrix. It is known that the general solution is x(¢) = ®(t)c,

where ¢ is a column vector of arbitrary constants cq,...,c,. An alternate and widely used definition of
fundamental matrix is ®'(t) = A®(t), |®(0)] # 0.

(a) Display eigenanalysis details for the 3 x 3 matrix

A=

S = o
[ N
=~ = =



then display the general solution x(t) of x'(t) = Ax(t).
(b) The 3 x 3 triangular matrix

represents a linear cascade, such as found in brine tank models. Using the linear integrating factor
method, starting with component x3(t), find the vector general solution x(t) of x'(t) = Ax(t).

(c) The exponential matrix e4? is defined to be a fundamental matrix ¥(t) selected such that ¥(0) = I,
the n x n identity matrix. Justify the formula e4* = ®(¢)®(0)~!, valid for any fundamental matrix ®(t).

(d) Let A denote a 2 x 2 matrix. Assume x/(t) = Ax(¢) has scalar general solution x; = cje’ + coe?,

ry = (c1 — ca)et + 2¢1 + c2)e?t, where ¢, ¢y are arbitrary constants. Find a fundamental matrix ®(t)
and then go on to find e from the formula in part (c) above.
(e) Let A denote a 2 x 2 matrix and consider the system x'(t) = Ax(t). Assume fundamental matrix

t 2t

O(t) = < ta —z2t ) Find the 2 x 2 matrix A.

(f) The Cayley-Hamilton-Ziebur shortcut applies especially to the system

¥ =3z+y, Yy =-x+3y,
which has complex eigenvalues A = 3 + ¢. Show the details of the method, then go on to report a
fundamental matrix ®(t).
Remark. The vector general solution is x(t) = ®(¢)c, which contains no complex numbers. Reference:
4.1, Examples 6,7,8.



Answer:

Part (a) The details should solve the equation |A — AI| = 0 for the three eigenvalues A = 5,4, 3. Then
solve the three systems (A — )% = 0 for eigenvector @, for A = 5,4, 3.

The eigenpairs are

1 -1 1
51 1 |; 4, -1 (; 3, -1
0 1 0
The eigenanalysis method implies
1 -1 1
x(t)=c1e® | 1 | +ee | -1 [+ 3| —1
0 1 0

Part (b) Write the system in scalar form

¥ = 3zx+y+z,
Yy = 4dy+z,
Z = bz

Solve the last equation as
____constant — caebt
integrating factor 3&

The second equation is
y = 4y + cze’t
The linear integrating factor method applies.

Zz =

— 4y = cze
(Vy) = cze’, where W = e,
(Wy) = cgWedt
( —4t ) _ 636—415 5t
e y = 036 + 02

’y = c3edt + cpett

Stuff these two expressions into the first differential equation:
' =3x+y+ 2 =3z + 2c3e + coe

Then solve with the linear integrating factor method.

x — 3z = 2¢3edt + coet

Wax) _
(Wz) = 2¢3e% + coe?t, where W = e3t. Cross-multiply:
(e73lz) = 2636 e‘3t + caette, then integrate:

e Sty = 636 t 626 +c1
e 3tx = c3e® + cpel + ¢1, divide by e

’SL’ZCge +62€ —|—C1e3t

Part (c) The question reduces to showing that e and ®(¢)®(0)~! have equal columns. This is done
by showing that the matching columns are solutions of 4@’ = A4 with the same initial condition @(0), then
apply Picard's theorem on uniqueness of initial value problems.

Part (d) Take partial derivatives on the symbols ¢y, c2 to find vector solutions @) (t), T2(t). Define ®(t)
to be the augmented matrix of ¥ (t), ¥2(t). Compute ®(0)~!, then multiply on the right of ®(¢) to obtain
et = ®(t)®(0)~!. Check the answer in a computer algebra system or using Putzer's formula.



Part (e) The equation ®'(t) = A®(t) holds for every t. Choose t = 0 and then solve for A = ®'(0)®(0) L.

Part (f) By C-H-Z, x = c1e3 cos(t) +cae® sin(t). Isolate y from the first differential equation 2’ = 3z +y,
obtaining the formula y = 2’ — 3z = —c1e® sin(t) + 23! cos(t). A fundamental matrix is found by taking

partial derivatives on the symbols ¢, cs. The answer is exactly the Jacobian matrix of ( Y ) with respect

to variables ¢y, cs.

B(t) = ( e3t cos(t) ej; sin(t) )

—e3tsin(t) e cos(t)

Chapter 6

8. (Linear and Nonlinear Dynamical Systems)
(a) Determine whether the unique equilibrium @ = 0 is stable or unstable. Then classify the equilibrium
point ¥ = 0 as a saddle, center, spiral or node.

= 3 1)
o -2 -1

(b) Determine whether the unique equilibrium % = 0 is stable or unstable. Then classify the equilibrium
point 4 = 0 as a saddle, center, spiral or node.

=3 %)a
=\ 41

(c) Consider the nonlinear dynamical system

¥ = x—2y%—y+32,

y = 22% —2axy.
An equilibrium point is z = 4, y = 4. Compute the Jacobian matrix A = J(4,4) of the linearized system
at this equilibrium point.

(d) Consider the nonlinear dynamical system

= —x—2y%—y+32,
y = 2224 2zy.

An equilibrium point is z = —4, y = 4. Compute the Jacobian matrix A = J(—4,4) of the linearized
system at this equilibrium point.

I .2
(e) Consider the nonlinear dynamical system { ;C/ B ] ;L’i ng4y +9 -2z,

-1 4
At equilibrium point z = 3, y = 3, the Jacobian matrix is A = J(3,3) = ( g _3 )
(1) Determine the stability at ¢ = oo and the phase portrait classification saddle, center,
spiral or node at # = 0 for the linear system %ﬁ = Ad.
(2) Apply the Pasting Theorem to classify x = 3, y = 3 as a saddle, center, spiral or node

for the nonlinear dynamical system. Discuss all details of the application of the theorem.
Details count 75%.



) ) ) ¥ = —4x—4y+9-—2?
(f) Consider the nonlinear dynamical system J = 3z+3y

At equilibrium point = 3, y = —3, the Jacobian matrix is A = J(3,—-3) = < _12 _;l )

Linearization. Determine the stability at ¢ = oo and the phase portrait classification
- . . d .
saddle, center, spiral or node at @ = 0 for the linear dynamical system prihe Adl.

Nonlinear System. Apply the Pasting Theorem to classify x = 3, y = —3 as a saddle,
center, spiral or node for the nonlinear dynamical system. Discuss all details of the
application of the theorem. Details count 75%.



Answer:

Part (a) Itis an unstable spiral. Details: The eigenvalues of A are roots of 72 —2r+5 = (r—1)?+4 = 0,
which are complex conjugate roots 1 + 2i. Rotation eliminates the saddle and node. Finally, the atoms
el cos2t, e'sin 2t have limit zero at t = —o0, therefore the system is stable at t = —oo and unstable at
t = 0o. So it must be a spiral [centers have no exponentials]. Report: unstable spiral.

Part (b) It is a stable spiral. Details: The eigenvalues of A are roots of 72 +2r +5= (r+ 1) +4 =0,
which are complex conjugate roots —1 4 2¢. Rotation eliminates the saddle and node. Finally, the atoms
e tcos2t, e tsin2t have limit zero at t = oo, therefore the system is stable at t = oo and unstable at

t = —o0. So it must be a spiral [centers have no exponentials]. Report: stable spiral.

Part (c) The Jacobianis J(z,y) = ( g — 2; _4y__2i ) Then A= J(4,4) = ( ; __1; )

Part (d) The Jacobian is J(z,y) = ( dx +_2; —4y _2310 ) Then A= J(—4,4) = ( :; __1; )
Part (e) (1) The Jacobian is J(z,y) = ( —4- 2§ _g ) Then A =J(3,3) = < _lg _g ) The

eigenvalues of A are found from 724 13r+18 = 0, giving distinct real negative roots —%j:(%)\/977 Because
there are no trig functions in the Euler solution aistoms, then no rotation happens, and the classification
must be a saddle or node. The Euler solution atoms limit to zero at ¢ = oo, therefore it is a node and we
report a stable node for the linear problem @ = A at equilibrium @ = 0.

(2) Theorem 2 in Edwards-Penney section 6.2 applies to say that the same is true for the nonlinear system:
stable node at x = 3, y = 3. The exceptional case in Theorem 2 is a proper node, having characteristic
equation roots that are equal. Stability is always preserved for nodes.

Part (f)
Linearization. The Jacobian is J(z,y) = ( —4- 2§ _g > Then A = J(3,3) = ( _1g _g ) The

eigenvalues of A are found from 72 4 7r — 18 = 0, giving distinct real roots 2, —9. Because there are no trig
functions in the Euler solution atoms €%, e~ then no rotation happens, and the classification must be a
saddle or node. The Euler solution atoms do not limit to zero at t = co or t = —o0, therefore it is a saddle
and we report a unstable saddle for the linear problem @ = A% at equilibrium @ = 0.

Nonlinear System. Theorem 2 in Edwards-Penney section 6.2 applies to say that the same is true for
the nonlinear system: unstable saddle at x = 3, y = 3—.

Final Exam Problems

Chapter 3: Linear Constant Equations of Order n.

(a) Find by variation of parameters a particular solution y, for the equation y” = 1 — z. Show all steps in
variation of parameters. Check the answer by quadrature.

(b) A particular solution of the equation mz” + ca’ + kxz = Fpcos(2t) happens to be z(t) = 11cos2t +
e tsiny/11t — v/11sin2t. Assume m,c, k all positive. Find the unique periodic steady-state solution xgs.

(c) A fourth order linear homogeneous differential equation with constant coefficients has two particular
solutions 2e3® + 4x and ze3®. Write a formula for the general solution.

(d) Find the Beats solution for the forced undamped spring-mass problem

2" + 64x = 40cos(4t), x(0) = 2'(0) = 0.



It is known that this solution is the sum of two harmonic oscillations of different frequencies. To save time,
don’t convert to phase-amplitude form.

(e) Write the solution z(t) of

2" (t) + 25x(t) = 180sin(4t), z(0) = 2'(0) =0,
as the sum of two harmonic oscillations of different natural frequencies.
To save time, don’t convert to phase-amplitude form.

(f) Find the steady-state periodic solution for the forced spring-mass system z” + 22 + 2z = 5sin(t).

(g) Given 52”(t) + 22'(t) + 4x(t) = 0, which represents a damped spring-mass system with m = 5, ¢ = 2,
k = 4, determine if the equation is over-damped , critically damped or under-damped.
To save time, do not solve for z(t)!

(h) Determine the practical resonance frequency w for the electric current equation
21" +7I' + 501 = 100w cos(wt).

(1) Given the forced spring-mass system z” + 22’ 4+ 172 = 82sin(5t), find the steady-state periodic solution.

() Let f(z) = 2z3e!?® 4 z2e %sin(z). Find the characteristic polynomial of a constant-coefficient linear
homogeneous differential equation of least order which has f(z) as a solution. To save time, do not expand
the polynomial and do not find the differential equation.

Chapter 5. Solve a homogeneous system u' = Au, u(0) = ( ; >, A = < (2) i ) using the matrix

exponential, Zeibur’s method, Laplace resolvent and eigenanalysis.

Chapter 5. Solve a non-homogeneous system v’ = Au+ F(t), u(0) = ( 0 ), A= < 23 ), F(t) = < ?1) >

using variation of parameters.



Answer: Chapter 3 final exam sample solutions.

z? 23

Part (a) Answer: y, = 55

Variation of Parameters.

Solve 3" = 0 to get yp, = c1y1 + cay2, y1 = 1, y2 = x. Compute the Wronskian W = y1y5 — yjy2 = 1. Then for

f)y=1-z,

Yp =1 y2;fd$ + Yo ylidﬂz
w w

Yp = 1/—x(1 —z)dxr + x/l(l —x)dx,

g = —1(a%/2 — 2 /3) + ala — 2%/2),
yp = 2%/2 — 23 /6.
This answer is checked by quadrature, applied twice to y” = 1 — = with initial conditions zero.

Part (b) It has to be the terms left over after striking out the transient terms, those terms with limit zero at
infinity. Then zss(t) = 11 cos 2t — /11 sin 2t.

Part (c) In order for ze3* to be a solution, the general solution must have Euler atoms e3%, ze3%. Then
the first solution 2e3% 4 4z minus 2 times the Euler atom €3 must be a solution, therefore z is a solution,
resulting in Euler atoms 1,z. The general solution is then a linear combination of the four Euler atoms: y =
c1(1) + ca(z) + c3 (€3%) + ¢4 (we3®).

Part (d) Use undetermined coefficients trial solution = dy cos4t+dy sin4t. Then d; = 5/6, dy = 0, and finally
z,(t) = (5/6) cos(4t). The characteristic equation r? + 64 = 0 has roots +8i with corresponding Euler solution
atoms cos(8t),sin(8t). Then x(t) = ¢; cos(8t) +casin(8¢). The general solution is x = zp, +z,. Now use z(0) =

2'(0) = 0 to determine ¢; = —5/6, cz = 0, which implies the particular solution z(t) = —32 cos(8t) + 2 cos(4t).

Part (e) The answer is z(t) = —16sin(5t) + 20sin(4t) by the method of undetermined coefficients.

Rule I: 2 = dj cos(4t) + dasin(4t). Rule Il does not apply due to natural frequency v/25 = 5 not equal to the
frequency of the trial solution (no conflict). Substitute the trial solution into z”(t) 4+ 252 (t) = 180sin(4t) to get
9d; cos(4t) + 9dy sin(4t) = 180sin(4t). Match coefficients, to arrive at the equations 9d; = 0, 9d2 = 180. Then
di =0, do = 20 and z,(t) = 20sin(4t). Lastly, add the homogeneous solution to obtain z(t) = xp + x, =
1 cos(5t) + co sin(5t) + 20sin(4t). Use the initial condition relations 2:(0) = 0,2/(0) = 0 to obtain the equations
cos(0)c1 + sin(0)cz + 20sin(0) = 0, —5sin(0)eq; + 5cos(0)cz2 + 80 cos(0) = 0. Solve for the coefficients ¢; = 0,
Cy = —16

Part (f) The answer is z = sint — 2cost by the method of undetermined coefficients.

Rule I: the trial solution x(t) is a linear combination of the Euler atoms found in f(x) = 5sin(t). Then
x(t) = djcos(t) + dasin(t). Rule Il does not apply, because solutions of the homogeneous problem contain
negative exponential factors (no conflict). Substitute the trial solution into x” + 22’ + 22 = 5sin(t) to get
(—2d1+d2) sin(t)+(d1+2d2) cos(t) = 5sin(t). Match coefficients to find the system of equations (—2d;+dz2) = 5,
(d1 4 2d2) = 0. Solve for the coefficients d; = —2, dy = 1.

Part (g) Use the quadratic formula to decide. The number under the radical sign in the formula, called the
discriminant, is b — dac = 22 — 4(5)(4) = (19)(—4), therefore there are two complex conjugate roots and the

equation is under-damped. Alternatively, factor 572 + 2r 4 4 to obtain roots (—1 & 1/197)/5 and then classify
as under-damped.

Part (h) The resonant frequency is w = 1/v/LC = 1/+/2/50 = v/25 = 5. The solution uses the theory in the
textbook, section 3.7, which says that electrical resonance occurs for w = 1/v/LC'



Part (i) The answer is z(t) = —5 cos(5t) — 4sin(5¢t) by undetermined coefficients.

Rule I: The trial solution is x,(t) = Acos(5t) + Bsin(5t). Rule Il: because the homogeneous solution z(t) has
limit zero at ¢ = oo, then Rule Il does not apply (no conflict). Substitute the trial solution into the differential
equation. Then —8Acos(5t) — 8B sin(bt) — 10Asin(5t) + 10B cos(bt) = 82sin(5t). Matching coefficients of
sine and cosine gives the equations —8A + 10B = 0, —104 — 8B = 82. Solving, A = —5,B = —4. Then
xp(t) = —5cos(5t) — 4sin(5t) is the unique periodic steady-state solution.

Part (j) The characteristic polynomial is the expansion (r — 1.2)*((r + 1)2 + 1)3. Because x3e%* is an Euler
solution atom for the differential equation if and only if e%®, ze® 12 23e%* are Euler solution atoms, then the
characteristic equation must have roots 1.2,1.2,1.2,1.2, listing according to multiplicity. Similarly, z?e~ sin(z) is
an Euler solution atom for the differential equation if and only if —1+4, —1+14¢, —1 =+ are roots of the characteristic
equation. There is a total of 10 roots with product of the factors (r — 1)*((r + 1)? + 1) equal to the 10th degree
characteristic polynomial.

Chapter 5 Final Exam Sample Solutions. Presently, there are no solutions available for the two
sample problems. If you solve one, then kindly email your solution to post.



