\qquad

Differential Equations 2280
 Midterm Exam 1

Exam Date: Friday, 16 February 2018 at 12:50pm

Instructions: This in-class exam is designed for 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count $3 / 4$, answers count $1 / 4$.

1. (Quadrature Equations)

(a) $[40 \%]$ Solve $y^{\prime}=\frac{2 x^{3}}{1+x^{2}}$.
(b) [60\%] Find the position $x(t)$ from the velocity model $\frac{d}{d t}\left(e^{2 t} v(t)\right)=2, v(0)=5$ and the position model $\frac{d x}{d t}=v(t), x(0)=2$.

Solution to Problem 1.

(a) Answer $y=x^{2}-\ln \left(x^{2}+1\right)+c$. Treat the problem as a quadrature problem $y^{\prime}=F(x)$, then $y=\int F(x) d x$. Integration details:

$$
\begin{aligned}
\int F(x) d x & =\int \frac{2 x^{3}}{1+x^{2}} d x \\
& =\int \frac{x^{2}}{u} 2 x d x, \quad u=1+x^{2}, d u=2 x d x \\
& =\int \frac{u-1}{u} d u \\
& =\int(1-1 / u) d u \\
& =u-\ln |u|+c_{1} \\
& =1+x^{2}-\ln \left|1+x^{2}\right|+c_{1} \\
& =x^{2}-\ln \left|1+x^{2}\right|+c
\end{aligned}
$$

(b) Velocity $v(t)=2 t e^{-2 t}+5 e^{-2 t}$ by quadrature. Integrate $x^{\prime}(t)=2 t e^{-2 t}+5 e^{-2 t}$ with $x(0)=2$ to obtain position $x(t)=-(t+3) e^{-2 t}+5$. The integral of $t e^{-2 t}$ is found using integration by parts. See Exercise 1.2-10 in Edwards-Penney.

Name.

2. (Solve a Separable Equation)

The differential equation $y^{\prime}=f(x, y)$ is defined to be separable provided $f(x, y)=$ $F(x) G(y)$ for some functions F and G.
(a) $[30 \%]$ The equation $y^{\prime}+x(2 y+3)=y e^{2 x}+3 x$ is separable. Provide formulas for the functions F and G.
(b) [70\%] Find a non-equilibrium solution in implicit form for the separable equation

$$
\text { (5) } y^{\prime}=\left(\frac{2 x}{1+x^{2}}+\cos (x) \sin (x)\right)\left(y^{2}-3 y+2\right)
$$

To save time, do not solve for y explicitly and do not solve for equilibrium solutions.
Solution to Problem 2.
(a) The equation is $y^{\prime}=y e^{2 x}+3 x-x(2 y+3)=\left(e^{2 x}-2 x\right) y$. Then $F(x)=e^{2 x}-2 x, G(y)=y$.
(b) The solution by separation of variables identifies the separated equation $y^{\prime}=F(x) G(y)$ using definitions

$$
F(x)=\frac{2 x}{1+x^{2}}+\cos (x) \sin (x), \quad G(y)=\frac{y^{2}+3 y+2}{5} .
$$

The integral of F is from standard formulas and u-substitution.

$$
\begin{aligned}
\int F d x & =\int \frac{2 x}{1+x^{2}}+\cos (x) \sin (x) d x \\
& =I_{1}+I_{2} . \\
I_{1} & =\int \frac{2 x}{1+x^{2}} d x \\
& =\int \frac{1}{u} 2 x d x, \quad u=1+x^{2}, d u=2 x d x \\
& =\int \frac{1}{u} d u \\
& =\ln |u|+c_{1} \\
& =\ln \left|1+x^{2}\right|+c_{1} \\
& =\int \cos (x) \sin (x) d x \\
& =\int u \cos (x) d x, \quad u=\sin (x), d u=\cos (x) d x \\
& =\int u d u \\
& =\frac{1}{2} u^{2}+c_{2} \\
& =\frac{1}{2} \sin ^{2}(x)+c_{2}
\end{aligned}
$$

Then $\int F(x) d x=\ln \left|1+x^{2}\right|+\frac{1}{2} \sin ^{2}(x)+c_{3}$.

The integral of $1 / G(y)$ requires partial fractions. The details:

$$
\begin{aligned}
\int \frac{d x}{G(y(x))} & =\int \frac{5}{u^{2}+3 u+2} d u, \quad u=y(x), d u=y^{\prime}(x) d x \\
& =\int \frac{5}{(u+2)(u+1)} d u \\
& =\int \frac{A}{u+2}+\frac{B}{u+1} d u, \quad A, B \quad \text { determined later, } \\
& =A \ln |u+2|+B \ln |u+1|+c_{4}
\end{aligned}
$$

The partial fraction problem

$$
\frac{5}{(u+2)(u+1)}=\frac{A}{u+2}+\frac{B}{u+1}
$$

can be solved in a variety of ways, with answer $A=-5$ and $B=5$. The final implicit solution is obtained from $\int \frac{d x}{G(y(x))}=\int F(x) d x$, which gives the equation

$$
-5 \ln |y+2|+5 \ln |y+1|=\ln \left|1+x^{2}\right|+\frac{1}{2} \sin ^{2}(x)+c
$$

Name.

3. (Linear Equations)

(a) $[60 \%]$ Solve the linear model $3 x^{\prime}(t)=-32+\frac{10}{3 t+2} x(t), x(0)=64$. Show all integrating factor steps.
(b) $[20 \%]$ Solve $\frac{d y}{d x}+(\tan (x)) y=0$ using the homogeneous linear equation shortcut.
(c) $[20 \%]$ Solve $7 \frac{d y}{d x}=21 y+19$ using the superposition principle $y=y_{h}+y_{p}$ shortcut. Expected are answers for y_{h} and y_{p}.

Solution to Problem 3.

(a) The answer is $v(t)=64+96 t$. The details:

$$
\begin{aligned}
& v^{\prime}(t)=-\frac{16}{3}+\frac{10 / 3}{3 t+2} v(t), \\
& v^{\prime}(t)+\frac{-10 / 3}{3 t+2} v(t)=-\frac{32}{3}, \quad \text { standard form } v^{\prime}+p(t) v=q(t) \\
& p(t)=\frac{-10 / 3}{3 t+2}, \\
& W=e^{\int p d t}, \quad \text { integrating factor } \\
& W=e^{u}, \quad u=\int p d t=-\frac{10 / 3}{3} \ln |3 t+2|=\ln \left(|3 t+2|^{-10 / 9}\right) \\
& W=(3 t+2)^{-10 / 9}, \quad \text { Final choice for } W .
\end{aligned}
$$

Then replace the left side of $v^{\prime}+p v=q$ by $(v W)^{\prime} / W$ to obtain

$$
\begin{aligned}
& v^{\prime}(t)+\frac{-10 / 3}{3 t+2} v(t)=-32 / 3, \quad \text { standard form } v^{\prime}+p(t) v=q(t) \\
& \frac{(v W)^{\prime}}{W}=-\frac{32}{3}, \quad \text { Replace left side by quotient }(v W)^{\prime} / W \\
& (v W)^{\prime}=-\frac{32}{3} W, \quad \text { cross-multiply } \\
& v W=-\frac{32}{3} \int W d t, \quad \text { quadrature step. }
\end{aligned}
$$

The evaluation of the integral is from the power rule:

$$
\int-\frac{32}{3} W d t=-\frac{32}{3} \int(3 t+2)^{-10 / 9} d t=-\frac{32}{3} \frac{(3 t+2)^{-1 / 9}}{(-1 / 9)(3)}+c .
$$

Division by $W=(3 t+2)^{-10 / 9}$ then gives the general solution

$$
v(t)=32(3 t+2)+\frac{c}{W} .
$$

Constant c evaluates to $c=0$ because of initial condition $v(0)=64$. Then

$$
v(t)=96 t+64 .
$$

(b) The answer is $y=$ constant divided by the integrating factor: $y=\frac{c}{W}$. Because $W=e^{u}$ where $u=\int \sin (x) d x=-\cos x$, then $y=c e^{\cos x}$.
(c) The equilibrium solution (a constant solution) is $y_{p}=-\frac{7}{21}$. The homogeneous solution is $y_{h}=c e^{21 x / 5}=$ constant divided by the integrating factor. Then $y=y_{p}+y_{h}=-\frac{1}{3}+c e^{21 x / 5}$.

Name.

4. (Stability)

Assume an autonomous equation $x^{\prime}(t)=f(x(t))$. Draw a phase portrait with at least 12 threaded curves, using the phase line diagram given below. Add these labels as appropriate: funnel, spout, node [neither spout nor funnel], stable, unstable.

Solution to Problem 4.

The graphic is drawn using increasing and decreasing curves, which may or may not be depicted with turning points. The rules:

1. A curve drawn between equilibria is increasing if the sign is PLUS.
2. A curve drawn between equilibria is decreasing if the sign is MINUS.
3. Label: FUNNEL, STABLE

The signs left to right are PLUS MINUS crossing the equilibrium point.
4. Label: SPOUT, UNSTABLE

The signs left to right are MINUS PLUS crossing the equilibrium point. 5.
Label: NODE, UNSTABLE
The signs left to right are PLUS PLUS crossing the equilibrium point, or The signs left to right are MINUS MINUS crossing the equilibrium point.

The answer:
$x=-6:$ NODE, UNSTABLE
$x=-2$: FUNNEL, STABLE
$x=0$: NODE, UNSTABLE
$x=3$: SPOUT, UNSTABLE
$x=6$: FUNNEL, STABLE

Name.
5. (ch3)

Using Euler's theorem on Euler solution atoms and the characteristic equation for higher order constant-coefficient differential equations, solve (a), (b), (c).
(a) $\left[40 \%\right.$] Find a constant coefficient differential equation $a y^{\prime \prime \prime}+b y^{\prime \prime}+c y^{\prime}+d y=0$ which has a particular solution $-15 e^{-x}+3 x e^{-x}+100$.
(b) $[30 \%]$ Solve the 6 th order equation $y^{(6)}+4 y^{(5)}+4 y^{(4)}=0$.
(c) $[30 \%]$ Solve the higher order homogeneous linear differential equation whose characteristic equation is $r^{2}(r+2)\left(r^{3}+2 r\right)\left(r^{2}+2 r+101\right)=0$.

Solution to Problem 5.

5(a)
A solution of a constant-coefficient linear homogeneous differential equation is a linear combinations of Euler solution atoms. The given particular solution is a linear combination of Euler atoms e^{-x}, $x e^{-x}, 1$. Because $1=e^{0 x}$, then one root of the characteristic equation is $r=0$. Due to Euler's multiplicity theorem, the Euler atoms $e^{-x}, x e^{-x}$ account for a double root $r=-1,-1$. Then the characteristic equation has factors $(r+1),(r+1), r$ [College Algebra Root-Factor Theorem applied]. The characteristic equation is then

$$
(r+1)(r+1) r=0
$$

which is $r^{3}+2 r^{2}+r=0$. Solving backwards gives the differential equation $y^{\prime \prime \prime}+2 y^{\prime \prime}+y^{\prime}=0$.
The answer is the differential equation $y^{\prime \prime \prime}+2 y^{\prime \prime}+y^{\prime}=0$.

5(b)

The characteristic equation $r^{6}+4 r^{5}+4 r^{4}=0$ factors into $r^{4}\left(r^{2}+4 r+4\right)=0$ with roots $0,0,0,0,-2,-2$. The solution y is a linear combination of the Euler solution atoms $1, x, x^{2}, x^{3}, e^{-2 x}, x e^{-2 x}$.
5(c)
The characteristic equation factors into $r^{3}(r+2)\left(r^{2}+2\right)\left(r^{2}+2 r+101\right)$ with roots

$$
r=0,0,0 ;-2 ; i \sqrt{2} ;-i \sqrt{2} ;-1 \pm 10 i .
$$

Then y is a linear combination of the Euler solution atoms

$$
1, x, x^{2}, e^{-2 x}, \cos (x \sqrt{2}), \sin (x \sqrt{2}), e^{-x} \cos (10 x), e^{-x} \sin (10 x)
$$

