\qquad

Differential Equations 2280
 Midterm Exam 1

Exam Date: Friday, 17 February 2017 at 12:50pm

Instructions: This in-class exam is designed for 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count $3 / 4$, answers count $1 / 4$.

1. (Quadrature Equations)

(a) $[40 \%]$ Solve $y^{\prime}=x e^{-x}+\sin ^{2}(x) \cos (x)$.
(b) $[60 \%]$ Find the position $x(t)$ from the velocity model $\frac{d}{d t}\left(e^{-t} v(t)\right)=2, v(0)=5$ and the position model $\frac{d x}{d t}=v(t), x(0)=2$.

Solution to Problem 1.

(a) Answer $y=-x e^{-x}-e^{-x}+\frac{1}{3} \sin ^{3}(x)+c$. Treat the problem as a quadrature problem $y^{\prime}=F(x)$, then $y=\int F(x) d x$. Integration details:

$$
\begin{aligned}
\int F(x) d x & =\int x e^{-x} d x+\int \sin ^{2}(x) \cos (x) d x \\
& =I_{1}+I_{2} . \\
& =\int x e^{-x} d x \\
& =-x e^{-x}-\int e^{-x} d x, \quad \text { parts } \quad u=x, d v=e^{-x} d x, \\
& =-x e^{-x}-e^{-x}+c_{1} \\
& =\int \sin ^{2}(x) \cos (x) d x \\
I_{2} & =\int u^{2} d u, \quad u=\sin (x), d u=\cos (x) d x, \\
& =u^{3} 3+c_{2} \\
& =\frac{1}{3} \sin ^{3}(x)+c_{2}
\end{aligned}
$$

(b) Velocity $v(t)=2 t e^{t}+5 e^{t}$ by quadrature. Integrate $x^{\prime}(t)=2 t e^{t}+5 e^{t}$ with $x(0)=2$ to obtain position $x(t)=(2 t+3) e^{t}-1$. The integral of $t e^{t}$ is found using integration by parts. See Exercise 1.2-10 in Edwards-Penney and the solution to (a) above.

Name.
2. (Solve a Separable Equation)

The differential equation $y^{\prime}=f(x, y)$ is defined to be separable provided $f(x, y)=$ $F(x) G(y)$ for some functions F and G.
(a) $[30 \%]$ The equation $y^{\prime}+x(y+3)=y e^{x}+3 x$ is separable. Provide formulas for the functions F and G.
(b) [70\%] Find a non-equilibrium solution in implicit form for the separable equation

$$
(10) y^{\prime}=\left(\frac{1}{1+x^{2}}+\ln |x|\right)\left(y^{2}-3 y+2\right)
$$

To save time, do not solve for y explicitly and do not solve for equilibrium solutions.

Solution to Problem 2.

(a) The equation is $y^{\prime}=y e^{x}-x y=\left(e^{x}-x\right) y$. Then $F(x)=e^{x}-x, G(y)=y$.
(b) The solution by separation of variables identifies the separated equation $y^{\prime}=F(x) G(y)$ using definitions

$$
F(x)=\frac{1}{1+x^{2}}+\ln |x|, \quad G(y)=\frac{y^{2}-3 y+2}{10} .
$$

The integral of F is from standard formulas and/or integration by parts.

$$
\begin{aligned}
\int F d x & =\int \frac{1}{1+x^{2}}+\ln |x| d x \\
& =I_{1}+I_{2} . \\
I_{1} & =\int \frac{1}{1+x^{2}} d x \\
& =\arctan (x)+c_{1}, \\
I_{2} & =\int \ln |x| d x \\
& =\int u d v, \quad \operatorname{parts} \quad u=\ln |x|, d v=d x, \\
& =u v-\int v d u, \quad v=x, d u=d x / x, \\
& =x \ln |x|-\int 1 d x, \\
& =x \ln |x|-x+c_{2} .
\end{aligned}
$$

Then $\int F(x) d x=\arctan (x)+x \ln |x|-x+c_{3}$.
The integral of $1 / G(y)$ requires partial fractions. The details:

$$
\begin{aligned}
\int \frac{d x}{G(y(x))} & =\int \frac{10}{u^{2}-3 u+2} d u, \quad u=y(x), d u=y^{\prime}(x) d x \\
& =\int \frac{10}{(u-2)(u-1)} d u \\
& =\int \frac{A}{u-2}+\frac{B}{u-1} d u, \quad A, B \quad \text { determined later, } \\
& =A \ln |u-2|+B \ln |u-1|+c_{4}
\end{aligned}
$$

The partial fraction problem

$$
\frac{10}{(u-2)(u-1)}=\frac{A}{u-2}+\frac{B}{u-1}
$$

can be solved in a variety of ways, with answer $A=10$ and $B=-10$. The final implicit solution is obtained from $\int \frac{d x}{G(y(x))}=\int F(x) d x$, which gives the equation

$$
10 \ln |y-2|-10 \ln |y-1|=\arctan (x)+x \ln |x|-x+c .
$$

Name.

3. (Linear Equations)

(a) $[60 \%]$ Solve the linear model $2 x^{\prime}(t)=-32+\frac{10}{3 t+2} x(t), x(0)=16$. Show all integrating factor steps.
(b) $[20 \%]$ Solve $\frac{d y}{d x}+(\sin (x)) y=0$ using the homogeneous linear equation shortcut.
(c) $[20 \%]$ Solve $5 \frac{d y}{d x}=21 y+7$ using the superposition principle $y=y_{h}+y_{p}$ shortcut.

Expected are answers for y_{h} and y_{p}.

Solution to Problem 3.

(a) The answer is $v(t)=16+24 t$. The details:

$$
\begin{aligned}
& v^{\prime}(t)=-16+\frac{5}{3 t+2} v(t), \\
& v^{\prime}(t)+\frac{-5}{3 t+2} v(t)=-16, \quad \text { standard form } v^{\prime}+p(t) v=q(t) \\
& p(t)=\frac{-5}{3 t+2}, \\
& W=e^{\int p d t}, \quad \text { integrating factor } \\
& W=e^{u}, \quad u=\int p d t=-\frac{5}{3} \ln |3 t+2|=\ln \left(|3 t+2|^{-5 / 3}\right) \\
& W=(3 t+2)^{-5 / 3}, \quad \text { Final choice for } W .
\end{aligned}
$$

Then replace the left side of $v^{\prime}+p v=q$ by $(v W)^{\prime} / W$ to obtain

$$
\begin{aligned}
& v^{\prime}(t)+\frac{-5}{3 t+2} v(t)=-16, \quad \text { standard form } v^{\prime}+p(t) v=q(t) \\
& \frac{(v W)^{\prime}}{W}=-32, \quad \text { Replace left side by quotient }(v W)^{\prime} / W \\
& (v W)^{\prime}=-16 W, \quad \text { cross-multiply } \\
& v W=-16 \int W d t, \quad \text { quadrature step. }
\end{aligned}
$$

The evaluation of the integral is from the power rule:

$$
\int-16 W d t=-16 \int(3 t+2)^{-5 / 3} d t=-32 \frac{(3 t+2)^{-2 / 3}}{(-2 / 3)(3)}+c .
$$

Division by $W=(3 t+2)^{-5 / 3}$ then gives the general solution

$$
v(t)=\frac{c}{W}-\frac{16}{-2}(3 t+2)^{-2 / 3}(3 t+2)^{5 / 3} .
$$

Constant c evaluates to $c=0$ because of initial condition $v(0)=16$. Then

$$
v(t)=\frac{16}{-2}(3 t+2)^{-2 / 3}(3 t+2)^{5 / 3}=8(3 t+2)^{-\frac{2}{3}+\frac{5}{3}}=8(3 t+2) .
$$

(b) The answer is $y=$ constant divided by the integrating factor: $y=\frac{c}{W}$. Because $W=e^{u}$ where $u=\int \sin (x) d x=-\cos x$, then $y=c e^{\cos x}$.
(c) The equilibrium solution (a constant solution) is $y_{p}=-\frac{7}{21}$. The homogeneous solution is $y_{h}=c e^{21 x / 5}=$ constant divided by the integrating factor. Then $y=y_{p}+y_{h}=-\frac{1}{3}+c e^{21 x / 5}$.

Name.

4. (Stability)

Assume an autonomous equation $x^{\prime}(t)=f(x(t))$. Draw a phase portrait with at least 12 threaded curves, using the phase line diagram given below. Add these labels as appropriate: funnel, spout, node [neither spout nor funnel], stable, unstable.

Solution to Problem 4.

The graphic is drawn using increasing and decreasing curves, which may or may not be depicted with turning points. The rules:

1. A curve drawn between equilibria is increasing if the sign is PLUS.
2. A curve drawn between equilibria is decreasing if the sign is MINUS.
3. Label: FUNNEL, STABLE

The signs left to right are PLUS MINUS crossing the equilibrium point.
4. Label: SPOUT, UNSTABLE

The signs left to right are MINUS PLUS crossing the equilibrium point.
5. Label: NODE, UNSTABLE

The signs left to right are PLUS PLUS crossing the equilibrium point, or The signs left to right are MINUS MINUS crossing the equilibrium point.

The answer:
$x=-7$: FUNNEL, STABLE
$x=-2$: SPOUT, UNSTABLE
$x=0$: NODE, UNSTABLE
$x=3$: NODE, UNSTABLE
$x=6$: FUNNEL, STABLE

Name.
5. (ch3)

Using Euler's theorem on Euler solution atoms and the characteristic equation for higher order constant-coefficient differential equations, solve (a), (b), (c).
(a) $[40 \%]$ Find a constant coefficient differential equation $a y^{\prime \prime \prime}+b y^{\prime \prime}+c y^{\prime}+d y=0$ which has a particular solution $-5 e^{-x}+x e^{-x}+10$.
(b) $[30 \%]$ Given characteristic equation $r^{2}(r+2)\left(r^{3}-2 r\right)\left(r^{2}+2 r+17\right)=0$, solve the differential equation.
(c) [20\%] Given $m x^{\prime \prime}(t)+c x^{\prime}(t)+k x(t)=0$, which represents an unforced damped springmass system. Assume $m=4, c=4, k=65$. Classify the equation as over-damped, critically damped or under-damped. Illustrate in a spring-mass-dashpot drawing the assignment of physical constants m, c, k and the initial conditions $x(0)=1, x^{\prime}(0)=0$.
(d) [10\%] Given $m x^{\prime \prime}(t)+c x^{\prime}(t)+k x(t)=0$, which represents an unforced damped springmass system. Assume $m=4, c=4, k=65$. Illustrate in a spring-mass-dashpot drawing the assignment of physical constants m, c, k and coordinates for $x(t)$. Explain the physical meaning of the initial conditions $x(0)=1, x^{\prime}(0)=0$.

Solution to Problem 5.

5(a)
A solution of a constant-coefficient linear homogeneous differential equation is a linear combinations of Euler solution atoms. The given particular solution is a linear combination of Euler atoms e^{-x}, $x e^{-x}, 1$. Because $1=e^{0 x}$, then one root of the characteristic equation is $r=0$. Due to Euler's multiplicity theorem, the Euler atoms $e^{-x}, x e^{-x}$ account for a double root $r=-1,-1$. Then the characterisitic equation has factors $(r+1),(r+1), r$ [College Algebra Root-Factor Theorem applied]. The characteristic equation is then

$$
(r+1)(r+1) r=0
$$

which is $r^{3}+2 r^{2}+r=0$. Solving backwards gives the differential equation $y^{\prime \prime \prime}+2 y^{\prime \prime}+y^{\prime}=0$.
The answer is the differential equation $y^{\prime \prime \prime}+2 y^{\prime \prime}+y^{\prime}=0$.

5(b)

The characteristic equation factors into $r^{3}(r+2)\left(r^{2}-2\right)\left(r^{2}+2 r+17\right)=0$ with roots $r=0,0,0 ;-2 ; \sqrt{2} ;-\sqrt{2} ;-1 \pm$ 4i. Then y is a linear combination of the Euler solution atoms, which are

$$
1, x, x^{2}, e^{-2 x}, e^{x \sqrt{2}}, e^{-x \sqrt{2}}, e^{-x} \cos (4 x), e^{-x} \sin (4 x)
$$

5(c)
Use $4 r^{2}+4 r+65=0$ and the quadratic formula to obtain roots $r=-1 / 2+4 i,-1 / 2-4 i$ and Euler solution atoms $e^{-x / 2} \cos 4 t, e^{-x / 2} \sin 4 t$. Then y is a linear combination of these two solution atoms, and it oscillates, therefore the classification is under-damped.
5(d)
The illustration shows a spring, a dashpot and a mass with labels k, c, m. Initial conditions mean mass elongation $x=1$, at rest.
A dashpot is represented as a cylinder and piston with rod, the rod attached to the mass. Variable x is positive in the down direction and negative in the up direction. The equilibrium position is $x=0$.

The physical meaning of $x(0)=1$ and $x^{\prime}(0)=0$ is the mass is pulled downward one unit from equilibrium ($x=0$) and released.

