## **Differential Equations 2280** Midterm Exam 1 Exam Date: Friday, 26 February 2016 at 12:50pm

**Instructions**: This in-class exam is designed for 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count 3/4, answers count 1/4.

#### 1. (Quadrature Equations)

(a) [40%] Solve  $y' = \frac{2x^3}{1+x^2}$ .

(b) [60%] Find the position x(t) from the velocity model  $\frac{d}{dt}(e^{-t}v(t)) = 2e^t$ , v(0) = 5 and the position model  $\frac{dx}{dt} = v(t), x(2) = 2.$ 

Solution to Problem 1. (a) Answer  $y = x^2 - \ln(x^2 + 1) + c$ . The integral of  $F(x) = \frac{2x^3}{1+x^2}$  is found by substitution  $u = 1 + x^2$ , resulting in the new integration problem  $\int F dx = \int \frac{u-1}{u} du = \int (1) du - \int \frac{du}{u}$ .

(b) Velocity  $v(t) = 2e^{2t} + 3e^t$  by quadrature. Integrate  $x'(t) = 2e^{2t} + 3e^t$  with x(0) = 2 to obtain position  $x(t) = e^{2t} + 3e^t + c$ , where  $c = 2 - e^4 - 3e^2$ .

#### 2. (Classification of Equations)

The differential equation y' = f(x, y) is defined to be **separable** provided f(x, y) = F(x)G(y) for some functions F and G.

(a) [40%] The equation  $y' + x(y+3) = ye^x + 3x$  is separable. Provide formulas for F(x) and G(y).

(b) [60%] Apply partial derivative tests to show that y' = x + y is linear but not separable. Supply all details.

#### Solution to Problem 2.

(a) The equation is  $y' = ye^x - xy = (e^x - x)y$ . Then  $F(x) = e^x - x$ , G(y) = y.

(b) Let f(x,y) = x+y. Then  $\partial f/\partial y = 1$ , which is independent of y, hence the equation y' = f(x,y) is linear. The negative test is  $\frac{\partial f/\partial y}{f}$  depends on x. In this case, the fraction is

$$\frac{\partial f/\partial y}{f} = \frac{1}{f} = \frac{1}{x+y}$$

At y = 0, this reduces to 1/x, which depends on x, therefore the equation y' = f(x, y) is not separable.

Name.

## 3. (Solve a Separable Equation)

Given  $(5y + 10)y' = (xe^{-x} + \sin(x)\cos(x))(y^2 + 3y - 4).$ 

Find a non-equilibrium solution in implicit form.

To save time, do not solve for y explicitly and do not solve for equilibrium solutions. Solution to Problem 3.

The solution by separation of variables identifies the separated equation y' = F(x)G(y) using

$$F(x) = xe^{-x} + \sin(x)\cos(x), \quad G(y) = \frac{y^2 + 3y - 4}{5y + 10}.$$

The integral of F is done by parts and also by u-substitution.

$$\int F dx = \int x e^{-x} dx + \int \sin(x) \cos(x) dx$$
  

$$= I_1 + I_2.$$

$$I_1 = \int x e^{-x} dx$$
  

$$= -x e^{-x} - \int e^{-x} dx, \text{ parts } u = x, dv = e^{-x} dx,$$
  

$$= x e^{-x} - e^{-x} + c_1$$

$$I_2 = \int \sin(x) \cos(x) dx$$
  

$$= \int u du, \quad u = \sin(x), du = \cos(x) dx,$$
  

$$= \frac{1}{2} \sin^2(x) + c_2$$

Then  $\int F dx = xe - x - e^{-x} + \frac{1}{2}\sin^2(x) + c_3.$ 

The integral of 1/G(y) requires partial fractions. The details:

$$\int \frac{dx}{G(y(x))} = \int \frac{5u+10}{u^2+3u-4} du, \quad u = y(x), du = y'(x)dx,$$
  
=  $\int \frac{5u+10}{(u+4)(u-1)} du$   
=  $\int \frac{A}{u+4} + \frac{B}{u-1} du, \quad A, B$  determined later  
=  $A \ln |u+4| + B \ln |u-1| + c_4$ 

The partial fraction problem

$$\frac{5u+10}{(u+4)(u-1)} = \frac{A}{u+4} + \frac{B}{u-1}$$

can be solved in a variety of ways, with answer  $A = \frac{-20+10}{-5} = 2$  and  $B = \frac{15}{5} = 3$ . The final implicit solution is obtained from  $\int \frac{dx}{G(y(x))} = \int F(x) dx$ , which gives the equation

$$2\ln|y+4| + 3\ln|y-1| = xe - x - e^{-x} + \frac{1}{2}\sin^2(x) + c.$$

#### Name.

#### 4. (Linear Equations)

(a) [60%] Solve the linear model  $2x'(t) = -64 + \frac{10}{3t+2}x(t)$ , x(0) = 32. Show all integrating factor steps.

(b) [20%] Solve  $\frac{dy}{dx} - (\cos(x))y = 0$  using the homogeneous linear equation shortcut.

(c) [20%] Solve  $5\frac{dy}{dx} - 7y = 10$  using the superposition principle  $y = y_h + y_p$  shortcut. Expected are answers for  $y_h$  and  $y_p$ .

#### Solution to Problem 4.

(a) The answer is v(t) = 32 + 48t. The details:

$$\begin{split} v'(t) &= -32 + \frac{5}{3t+2} v(t), \\ v'(t) &+ \frac{-5}{3t+2} v(t) = -32, \text{ standard form } v' + p(t)v = q(t) \\ p(t) &= \frac{-5}{3t+2}, \\ W &= e^{\int p \, dt}, \text{ integrating factor} \\ W &= e^u, \quad u = \int p \, dt = -\frac{5}{3} \ln |3t+2| = \ln \left( |3t+2|^{-5/3} \right) \\ W &= (3t+2)^{-5/3}, \text{ Final choice for } W. \end{split}$$

Then replace the left side of v' + pv = q by (vW)'/W to obtain

$$\begin{aligned} v'(t) &+ \frac{-5}{3t+2} v(t) = -32, & \text{standard form } v' + p(t)v = q(t) \\ \frac{(vW)'}{W} &= -32, & \text{Replace left side by quotient } (vW)'/W \\ (vW)' &= -32W, & \text{cross-multiply} \\ vW &= -32 \int W dt, & \text{quadrature step.} \end{aligned}$$

The evaluation of the integral is from the power rule:

$$\int -32W \, dt = -32 \int (3t+2)^{-5/3} dt = -32 \frac{(3t+2)^{-2/3}}{(-2/3)(3)} + c.$$

Division by  $W = (3t+2)^{-5/3}$  then gives the general solution

$$v(t) = \frac{c}{W} - \frac{32}{-2}(3t+2)^{-2/3}(3t+2)^{5/3}.$$

Constant c evaluates to c = 0 because of initial condition v(0) = 32. Then

$$v(t) = \frac{32}{-2}(3t+2)^{-2/3}(3t+2)^{5/3} = 16(3t+2)^{-\frac{2}{3}+\frac{5}{3}} = 16(3t+2).$$

(b) The answer is y = constant divided by the integrating factor:  $y = \frac{c}{W}$ . Because  $W = e^u$  where  $u = \int -\cos(x)dx = -\sin x$ , then  $y = ce^{\sin x}$ .

(c) The equilibrium solution (a constant solution) is  $y_p = -\frac{10}{7}$ . The homogeneous solution is  $y_h = ce^{7x/5} = constant$  divided by the integrating factor. Then  $y = y_p + y_h = -\frac{10}{7} + ce^{7x/5}$ .

# 5. (Stability)

Assume an autonomous equation x'(t) = f(x(t)). Draw a phase portrait with at least 12 threaded curves, using the phase line diagram given below. Add these labels as appropriate: funnel, spout, node [neither spout nor funnel], stable, unstable.



## Solution to Problem 5.

The graphic is drawn using increasing and decreasing curves, which may or may not be depicted with turning points. The rules:

- 1. A curve drawn between equilibria is increasing if the sign is PLUS.
- 2. A curve drawn between equilibria is decreasing if the sign is MINUS.
- 3. Label: FUNNEL, STABLE

The signs left to right are PLUS MINUS crossing the equilibrium point.

4. Label: SPOUT, UNSTABLE

The signs left to right are MINUS PLUS crossing the equilibrium point.

5. Label: NODE, UNSTABLE

The signs left to right are PLUS PLUS crossing the equilibrium point, or The signs left to right are MINUS MINUS crossing the equilibrium point.

The answer:

x = -10: FUNNEL, STABLE x = -5: SPOUT, UNSTABLE x = -3: FUNNEL, STABLE x = 0: SPOUT, UNSTABLE x = 3: NODE, UNSTABLE

## Name.

# 6. (ch3)

Using Euler's theorem on Euler solution atoms and the characteristic equation for higher order constant-coefficient differential equations, solve (a), (b), (c).

(a) [40%] Find a constant coefficient differential equation ay'' + by' + cy = 0 which has particular solutions  $-5e^{-x} + xe^{-x}$ ,  $10e^{-x} + xe^{-x}$ .

(b) [30%] Given characteristic equation  $r(r-2)(r^3+4r)(r^2+2r+37) = 0$ , solve the differential equation.

(c) [30%] Given mx''(t) + cx'(t) + kx(t) = 0, which represents an unforced damped springmass system. Assume m = 4, c = 4, k = 129. Classify the equation as over-damped, critically damped or under-damped. Illustrate in a spring-mass-dashpot drawing the assignment of physical constants m, c, k and the initial conditions x(0) = 1, x'(0) = 0.

## Solution to Problem 6.

## 6(a)

Multiply the first solution by 2 and add it to the second solution. Then Euler atom  $xe^{-x}$  is a solution, which implies that r = -1 is a double root of the characteristic equation. Then the characteristic equation should be (r - (-1))(r - (-1)) = 0, or  $r^2 + 2r + 1 = 0$ . The differential equation is y'' + 2y' + y = 0.

## 6(b)

The characteristic equation factors into  $r^2(r-2)(r^2+4)((r+1)^2+36) = 0$  with roots  $r = 0, 0; 2; \pm 2i; -1\pm 6i$ . Then y is a linear combination of the Euler solution atoms  $1, x, e^{2x}, \cos(2x), \sin(2x); e^{-x}\cos(6x), e^{-x}$ 

# 6(c)

Use  $4r^2 + 4r + 129 = 0$  and the quadratic formula to obtain roots  $r = -1/2 + 4\sqrt{2}i$ ,  $-1/2 - 4\sqrt{2}i$ and Euler solution atoms  $e^{-x/2} \cos 4\sqrt{2}t$ ,  $e^{-x/2} \sin 4\sqrt{2}t$ . Then y is a linear combination of these two solution atoms, and it oscillates, therefore the classification is **under-damped**. The illustration shows a spring, a dashpot and a mass with labels k, c, m. Initial conditions mean mass elongation x = 1, at rest.

#### 7. (ch3)

Determine for  $y^{(3)} + y^{(2)} = x + 2e^{-x} + \sin x$  the corrected trial solution for  $y_p$  according to the method of undetermined coefficients. Do not evaluate the undetermined coefficients! The trial solution should be the one with fewest Euler solution atoms.

#### Solution to Problem 7.

The homogeneous equation  $y^{(3)}+y^{(2)}=0$  has solution  $y_h = c_1+c_2x+c_3e^{-x}$ , because the characteristic polynomial has root 1.

1 Rule I constructs an initial trial solution y from the list of independent Euler solution atoms

 $e^{-x}$ , 1, x,  $\cos x$ ,  $\sin x$ .

Linear combinations of these atoms are supposed to reproduce, by assignment of constants, all derivatives of  $F(x) = x + 2e^{-x} + \sin x$ , which is the right side of the differential equation. Each of  $y_1$  to  $y_4$  in the display below is constructed to have the same **base atom**, which is the Euler atom obtained by stripping the power of x. For example,  $x = xe^{0x}$  strips to base atom  $e^{0x}$  or 1.

$$y = y_1 + y_2 + y_3 + y_4, y_1 = d_1 e^{-x}, y_2 = d_2 + d_3 x, y_3 = d_4 \cos x, y_4 = d_5 \sin x.$$

**2** Rule II is applied individually to each of  $y_1, y_2, y_3, y_4$  to give the corrected trial solution

$$\begin{array}{rcl} y &=& y_1 + y_2 + y_3 + y_4 \\ y_1 &=& d_1 x e^{-x}, \\ y_2 &=& x^2 (d_2 + d_3 x), \\ y_3 &=& d_4 \cos x, \\ y_4 &=& d_5 \sin x. \end{array}$$

The powers of x multiplied in each case are selected to eliminate terms in the initial trial solution which duplicate homogeneous equation Euler solution atoms. The factor used is exactly  $x^s$  of the Edwards-Penney table, where s is the multiplicity of the characteristic equation root r that produced the related atom in the homogeneous solution  $y_h$ . The atoms in  $y_3, y_4$  are not solutions of the homogeneous equation, therefore  $y_3, y_4$  are unaltered.