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11.8 Second-order Systems

A model problem for second order systems is the system of three masses
coupled by springs studied in section 11.1, equation (6):

miaf(t) = —kiwi(t) + kow2(t) — 21 ()],
(1) mas(t) = —kp[wa(t) — w1 (t)] + kslws(t) — w2(t)],
mgl‘g(t) = —]{?3 [ﬂ?g(t) — T2 (t)] — k‘4353(7f).
ky ko k3 _ kg .
10l Figure 22. Three masses
connected by springs. The masses
mp M2 ms slide on a frictionless surface.

In vector-matrix form, this system is a second order system
MR"(t) = KX(t)

where the displacement X, mass matrix M and stiffness matrix K
are defined by the formulas

T mq 0 0 —kl — kz kg 0
X = 2 |, M= 0 mo 0 s K= ]452 —kg - k3 k‘3
T3 0 0 ms 0 kg —]{3 - k4

Because M is invertible, the system can always be written as

X"=AX, A=MT'K.

Converting X" = AX to i’ = Cu

Given a second order n x n system X” = AX, define the variable d and
the 2n x 2n block matrix C' as follows.

e (d) ()

Then each solution X of the second order system X” = AX produces a
corresponding solution U of the first order system i’ = C'd. Similarly,
each solution 4 of W’ = Cu gives a solution X of X" = AX by the
formula X = diag(/,0)u.

Euler’s Substitution X = eMv

The fundamental substitution of L. Euler applies to vector-matrix dif-
ferential systems. In particular, for X/ = AX, the equation X = eM¥v
produces the characteristic equation

det(A — N21) =0,
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and the eigenpair equation
AV =\, v 40,
which means that (A2, V) is an eigenpair of the matrix A.

Negative eigenvalues of A produce complex conjugate values for A.
For instance, A2 = —4 implies A = 424, and then, even though vector v
has real components, the solution % (t) = eV is a vector with complex
entries: X (t) = €2V = cos(2t)V + isin(2t)V.

Details. Compute X’ = 4 eMv = AeMV = AX. Then X" = N?X. If
X = eM¥V is a nonzero solution of X” = AX, then A\*°X = AX holds,
which is equivalent to A>¢ = AV. Then (\2,¥) is an eigenpair of A.
Conversely, if (A2, V) is an eigenpair of A, then the steps reverse to
obtain \2X = AX, which means that X = eV is a nonzero solution of
x" = AX.

By linear algebra, the equation AV = A2¥ has a solution v # 0 if
and only if the homogeneous problem (A — X\2I)¥ = 0 has infinitely
many solutions. Cramer’s Rule implies this event happens exactly when

det(A — N\2I) = 0.

Characteristic Equation for X" = AX

The characteristic equation for the n x n second order system X" = AX
will be derived anew from the corresponding 2n x 2n first order system
i’ = Cu. We will prove the following identity.

Theorem 31 (Characteristic Equation)
Let X” = AX be given with n X n constant matrix A. Let i’ = Cu be its
corresponding first order system, where

. (= AR
u—<i,>7 “(7%)’
Then

(3) det(C — A\I) = (—1)" det(A — \*I).

Proof: The method of proof is to verify the product formula

M| T 110 _ o 1
Al =X MTT ) \A-NT[-X )’

Then the determinant product formula applies to give

(@) det(C — AT) det (%%) — det ( T ) .

Cofactor expansion is applied to give the two identities

I10Y) O‘ I\ n 2

Then (4) implies (3). The proof is complete.
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Solving i’ = Cu and X" = AX

Consider the n x n second order system X” = AX and its corresponding
2n X 2n first order system 4’ = C'd, where

o) e (2)

Theorem 32 (Eigenanalysis of A and ()
Let A be a given n xn constant matrix and define the corresponding 2n x 2n

system by
ol e (0|1 . (X
u-Cu, C—(ﬁ), u—()_(,,)
Then
w S : Aw = Nw,
(6) (C’—AI)( 7 >—0 if and only if { 7 — W

Proof: The result is obtained by block multiplication, because
Al T
o ar= (L),

Theorem 33 (General Solutions of i’ = Cu and X" = AX)
Let A be a given n xn constant matrix and define the corresponding 2n x 2n

system by
i = Ci, CZ(Z é) ﬁ:()i:,).

Assume C' has eigenpairs {()\j,y'j)}?il and ¥1, ..., Y2, are independent.
Let I denote the nxn identity and define W ; = diag(,0)y;, j =1,...,2n.
Then 4/ = Cd and X” = AX have general solutions

d(t) = ceMiy+ -+ cope’tya, (2n x 1),
X(t) = leMW o + -+ copentwog, (nx1).
Proof: Let X,(t) = eM'W;, j=1,...,2n. Then X; is a solution of X" = A%,

because X7/ (t) = eMit(X;)?W; = AR ;(t), by Theorem 32. To be verified is the
independence of the solutions {X j}le. Let Z; = A\;W; and apply Theorem 32
to write ¥ ; = < ‘;,’J ), AW ;= )\?v_&’fj. Suppose constants aq, . .., as, are given
J

such that Z?Zl apX; = 0. Differentiate this relation to give Z?Zl areti'z; =0
for all t. Set t = 0 in the last summation and combine to obtain Z?Zl ary; = 0.
Independence of ¥4, ..., yo, implies that a; = --- = as, = 0. The proof is
complete.
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Eigenanalysis when A has Negative Eigenvalues. If all eigen-
values p of A are negative or zero, then, for some w > 0, eigenvalue p
is related to an eigenvalue A of C' by the relation y = —w? = A\?. Then
A = fwi and w = /[u|. Consider an eigenpair (—w?,¥) of the real n x n
matrix A with w > 0 and let

{ crcoswt + cosinwt w > 0,

u(t) =
c1 + cat w = 0.

Then u”(t) = —w?u(t) (both sides are zero for w = 0). It follows
that ¥(t) = u(t)V satisfies X"(t) = —w?X(t ) and AX (t) u(t)AvV =
—w?k (t). Therefore, X (t) = u(t)V satisfies X" (t) = AR (t).

Theorem 34 (Eigenanalysis Solution of X" = AX)

Let the n X n real matrix A have eigenpairs {(uj,vj)} . Assume p; =
—w] with w; > 0, j = 1,...,n. Assume that Vi, ..., \_f'n are linearly
independent. Then the general solutlon of X"(t) = AX(t) is given in terms
of 2n arbitrary constants aq, ..., an, b1, ..., b, by the formula

" sin w;t
(7) = <a coswjt + b; J )vj

Wi
j=1 J
sin wt

=1t.

w=0

This expression uses the limit convention

w

Proof: The text preceding the theorem and superposition establish that X (t) is
a solution. It only remains to prove that it is the general solution, meaning that
the arbitrary constants can be assigned to allow any possible initial condition
X(0) = X, X'(0) = ¥¢. Define the constants uniquely by the relations

0o = 2?1%‘7]7
0o = Z] 1bVJ’

which is possible by the assumed independence of the vectors {V;}7_;. Then
equation (7) implies X(0) = >°7_, a;V; = Xo and X'(0) = }27_, b;¥; = ¥o.
The proof is complete.
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