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11.8 Second-order Systems

A model problem for second order systems is the system of three masses
coupled by springs studied in section 11.1, equation (6):

m1x
′′
1(t) = −k1x1(t) + k2[x2(t)− x1(t)],

m2x
′′
2(t) = −k2[x2(t)− x1(t)] + k3[x3(t)− x2(t)],

m3x
′′
3(t) = −k3[x3(t)− x2(t)]− k4x3(t).

(1)
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Figure 22. Three masses
connected by springs. The masses
slide on a frictionless surface.

In vector-matrix form, this system is a second order system

M~x ′′(t) = K~x (t)

where the displacement ~x , mass matrix M and stiffness matrix K
are defined by the formulas

~x =

x1x2
x3

 , M=

m1 0 0
0 m2 0
0 0 m3

 , K=

−k1 − k2 k2 0
k2 −k2 − k3 k3
0 k3 −k3 − k4

 .
Because M is invertible, the system can always be written as

~x ′′ = A~x , A = M−1K.

Converting ~x ′′ = A~x to ~u ′ = C~u

Given a second order n× n system ~x ′′ = A~x , define the variable ~u and
the 2n× 2n block matrix C as follows.

~u =

(
~x
~x ′

)
, C =

(
0 I

A 0

)
.(2)

Then each solution ~x of the second order system ~x ′′ = A~x produces a
corresponding solution ~u of the first order system ~u ′ = C~u . Similarly,
each solution ~u of ~u ′ = C~u gives a solution ~x of ~x ′′ = A~x by the
formula ~x = diag(I, 0)~u .

Euler’s Substitution ~x = eλt~v

The fundamental substitution of L. Euler applies to vector-matrix dif-
ferential systems. In particular, for ~x ′′ = A~x , the equation ~x = eλt~v
produces the characteristic equation

det(A− λ2I) = 0,
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and the eigenpair equation

A~v = λ2~v , ~v 6= ~0 ,

which means that (λ2, ~v ) is an eigenpair of the matrix A.

Negative eigenvalues of A produce complex conjugate values for λ.
For instance, λ2 = −4 implies λ = ±2i, and then, even though vector ~v
has real components, the solution ~x (t) = eλt~v is a vector with complex
entries: ~x (t) = e2it~v = cos(2t)~v + i sin(2t)~v .

Details. Compute ~x ′ = d
dt e

λt~v = λeλt~v = λ~x . Then ~x ′′ = λ2 ~x . If
~x = eλt~v is a nonzero solution of ~x ′′ = A~x , then λ2~x = A~x holds,
which is equivalent to λ2~v = A~v . Then (λ2, ~v ) is an eigenpair of A.
Conversely, if (λ2, ~v ) is an eigenpair of A, then the steps reverse to
obtain λ2~x = A~x , which means that ~x = eλt~v is a nonzero solution of
~x ′′ = A~x .

By linear algebra, the equation A~v = λ2~v has a solution ~v 6= ~0 if
and only if the homogeneous problem (A − λ2I)~v = ~0 has infinitely
many solutions. Cramer’s Rule implies this event happens exactly when
det(A− λ2I) = 0.

Characteristic Equation for ~x ′′ = A~x

The characteristic equation for the n× n second order system ~x ′′ = A~x
will be derived anew from the corresponding 2n× 2n first order system
~u ′ = C~u . We will prove the following identity.

Theorem 31 (Characteristic Equation)
Let ~x ′′ = A~x be given with n× n constant matrix A. Let ~u ′ = C~u be its
corresponding first order system, where

~u =

(
~x
~x ′

)
, C =

(
0 I

A 0

)
.

Then
det(C − λI) = (−1)n det(A− λ2I).(3)

Proof: The method of proof is to verify the product formula(
−λI I
A −λI

)(
I 0
λI I

)
=

(
0 I

A− λ2I −λI

)
.

Then the determinant product formula applies to give

det(C − λI) det

(
I 0
λI I

)
= det

(
0 I

A− λ2I −λI

)
.(4)

Cofactor expansion is applied to give the two identities

det

(
I 0
λI I

)
= 1, det

(
0 I

A− λ2I −λI

)
= (−1)n det(A− λ2I).

Then (4) implies (3). The proof is complete.
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Solving ~u ′ = C~u and ~x ′′ = A~x

Consider the n× n second order system ~x ′′ = A~x and its corresponding
2n× 2n first order system ~u ′ = C~u , where

C =

(
0 I

A 0

)
, ~u =

(
~x
~x ′

)
.(5)

Theorem 32 (Eigenanalysis of A and C)
Let A be a given n×n constant matrix and define the corresponding 2n×2n
system by

~u ′ = C~u , C =

(
0 I

A 0

)
, ~u =

(
~x
~x ′

)
.

Then

(C − λI)

(
~w
~z

)
= ~0 if and only if

{
A~w = λ2~w ,
~z = λ~w .

(6)

Proof: The result is obtained by block multiplication, because

C − λI =

(
−λI I
A −λI

)
.

Theorem 33 (General Solutions of ~u ′ = C~u and ~x ′′ = A~x)
Let A be a given n×n constant matrix and define the corresponding 2n×2n
system by

~u ′ = C~u , C =

(
0 I

A 0

)
, ~u =

(
~x
~x ′

)
.

Assume C has eigenpairs {(λj , ~y j)}2nj=1 and ~y 1, . . . , ~y 2n are independent.
Let I denote the n×n identity and define ~w j = diag(I, 0)~y j , j = 1, . . . , 2n.
Then ~u ′ = C~u and ~x ′′ = A~x have general solutions

~u(t) = c1e
λ1t~y 1 + · · ·+ c2ne

λ2nt~y 2n (2n× 1),
~x (t) = c1e

λ1t~w 1 + · · ·+ c2ne
λ2nt~w 2n (n× 1).

Proof: Let ~x j(t) = eλjt~w j , j = 1, . . . , 2n. Then ~x j is a solution of ~x ′′ = A~x ,
because ~x ′′

j (t) = eλjt(λj)
2~w j = A~x j(t), by Theorem 32. To be verified is the

independence of the solutions {~x j}2nj=1. Let ~z j = λj ~w j and apply Theorem 32

to write ~y j =

(
~w j

~z j

)
, A~w j = λ2j ~w j . Suppose constants a1, . . . , a2n are given

such that
∑2n
j=1 ak~x j = 0. Differentiate this relation to give

∑2n
j=1 ake

λjt~z j = 0

for all t. Set t = 0 in the last summation and combine to obtain
∑2n
j=1 ak~y j = 0.

Independence of ~y 1, . . . , ~y 2n implies that a1 = · · · = a2n = 0. The proof is
complete.
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Eigenanalysis when A has Negative Eigenvalues. If all eigen-
values µ of A are negative or zero, then, for some ω ≥ 0, eigenvalue µ
is related to an eigenvalue λ of C by the relation µ = −ω2 = λ2. Then
λ = ±ωi and ω =

√
|µ|. Consider an eigenpair (−ω2, ~v ) of the real n×n

matrix A with ω ≥ 0 and let

u(t) =

{
c1 cosωt+ c2 sinωt ω > 0,
c1 + c2t ω = 0.

Then u′′(t) = −ω2u(t) (both sides are zero for ω = 0). It follows
that ~x(t) = u(t)~v satisfies ~x ′′(t) = −ω2~x (t) and A~x (t) = u(t)A~v =
−ω2~x(t). Therefore, ~x (t) = u(t)~v satisfies ~x ′′(t) = A~x (t).

Theorem 34 (Eigenanalysis Solution of ~x ′′ = A~x)
Let the n × n real matrix A have eigenpairs {(µj , ~v j)}nj=1. Assume µj =
−ω2

j with ωj ≥ 0, j = 1, . . . , n. Assume that ~v 1, . . . , ~vn are linearly
independent. Then the general solution of ~x ′′(t) = A~x (t) is given in terms
of 2n arbitrary constants a1, . . . , an, b1, . . . , bn by the formula

~x (t) =
n∑
j=1

(
aj cosωjt+ bj

sinωjt

ωj

)
~v j(7)

This expression uses the limit convention
sinωt

ω

∣∣∣∣
ω=0

= t.

Proof: The text preceding the theorem and superposition establish that ~x (t) is
a solution. It only remains to prove that it is the general solution, meaning that
the arbitrary constants can be assigned to allow any possible initial condition
~x (0) = ~x0, ~x ′(0) = ~y 0. Define the constants uniquely by the relations

~x0 =
∑n
j=1 aj~v j ,

~y 0 =
∑n
j=1 bj~v j ,

which is possible by the assumed independence of the vectors {~v j}nj=1. Then

equation (7) implies ~x (0) =
∑n
j=1 aj~v j = ~x0 and ~x ′(0) =

∑n
j=1 bj~v j = ~y 0.

The proof is complete.


