11.8 Second-order Systems

A model problem for second order systems is the system of three masses coupled by springs studied in section 11.1, equation (6):

$$
\begin{align*}
m_{1} x_{1}^{\prime \prime}(t) & =-k_{1} x_{1}(t)+k_{2}\left[x_{2}(t)-x_{1}(t)\right], \\
m_{2} x_{2}^{\prime \prime}(t) & =-k_{2}\left[x_{2}(t)-x_{1}(t)\right]+k_{3}\left[x_{3}(t)-x_{2}(t)\right], \tag{1}\\
m_{3} x_{3}^{\prime \prime}(t) & =-k_{3}\left[x_{3}(t)-x_{2}(t)\right]-k_{4} x_{3}(t) .
\end{align*}
$$

Figure 22. Three masses connected by springs. The masses slide on a frictionless surface.

In vector-matrix form, this system is a second order system

$$
M \overrightarrow{\mathbf{x}}^{\prime \prime}(t)=K \overrightarrow{\mathbf{x}}(t)
$$

where the displacement $\overrightarrow{\mathbf{x}}$, mass matrix M and stiffness matrix K are defined by the formulas

$$
\overrightarrow{\mathbf{x}}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right), \quad M=\left(\begin{array}{ccc}
m_{1} & 0 & 0 \\
0 & m_{2} & 0 \\
0 & 0 & m_{3}
\end{array}\right), \quad K=\left(\begin{array}{ccc}
-k_{1}-k_{2} & k_{2} & 0 \\
k_{2} & -k_{2}-k_{3} & k_{3} \\
0 & k_{3} & -k_{3}-k_{4}
\end{array}\right) .
$$

Because M is invertible, the system can always be written as

$$
\overrightarrow{\mathbf{x}}^{\prime \prime}=A \overrightarrow{\mathbf{x}}, \quad A=M^{-1} K
$$

Converting $\overrightarrow{\mathbf{x}}^{\prime \prime}=A \overrightarrow{\mathbf{x}}$ to $\overrightarrow{\mathbf{u}}^{\prime}=C \overrightarrow{\mathbf{u}}$

Given a second order $n \times n$ system $\overrightarrow{\mathbf{x}}^{\prime \prime}=A \overrightarrow{\mathbf{x}}$, define the variable $\overrightarrow{\mathbf{u}}$ and the $2 n \times 2 n$ block matrix C as follows.

$$
\overrightarrow{\mathbf{u}}=\binom{\overrightarrow{\mathbf{x}}}{\overrightarrow{\mathbf{x}}^{\prime}}, \quad C=\left(\begin{array}{c|c}
0 & I \tag{2}\\
\hline A & 0
\end{array}\right) .
$$

Then each solution $\overrightarrow{\mathbf{x}}$ of the second order system $\overrightarrow{\mathbf{x}}^{\prime \prime}=A \overrightarrow{\mathbf{x}}$ produces a corresponding solution $\overrightarrow{\mathbf{u}}$ of the first order system $\overrightarrow{\mathbf{u}}^{\prime}=C \overrightarrow{\mathbf{u}}$. Similarly, each solution $\overrightarrow{\mathbf{u}}$ of $\overrightarrow{\mathbf{u}}^{\prime}=C \overrightarrow{\mathbf{u}}$ gives a solution $\overrightarrow{\mathbf{x}}$ of $\overrightarrow{\mathbf{x}}^{\prime \prime}=A \overrightarrow{\mathbf{x}}$ by the formula $\overrightarrow{\mathbf{x}}=\boldsymbol{\operatorname { d i a g }}(I, 0) \overrightarrow{\mathbf{u}}$.

Euler's Substitution $\overrightarrow{\mathbf{x}}=e^{\lambda t} \overrightarrow{\mathbf{v}}$

The fundamental substitution of L. Euler applies to vector-matrix differential systems. In particular, for $\overrightarrow{\mathbf{x}}^{\prime \prime}=A \overrightarrow{\mathbf{x}}$, the equation $\overrightarrow{\mathbf{x}}=e^{\lambda t} \overrightarrow{\mathbf{v}}$ produces the characteristic equation

$$
\operatorname{det}\left(A-\lambda^{2} I\right)=0,
$$

and the eigenpair equation

$$
A \overrightarrow{\mathbf{v}}=\lambda^{2} \overrightarrow{\mathbf{v}}, \quad \overrightarrow{\mathbf{v}} \neq \overrightarrow{\mathbf{0}}
$$

which means that $\left(\lambda^{2}, \overrightarrow{\mathbf{v}}\right)$ is an eigenpair of the matrix A.
Negative eigenvalues of A produce complex conjugate values for λ. For instance, $\lambda^{2}=-4$ implies $\lambda= \pm 2 i$, and then, even though vector $\overrightarrow{\mathbf{v}}$ has real components, the solution $\overrightarrow{\mathbf{x}}(t)=e^{\lambda t} \overrightarrow{\mathbf{v}}$ is a vector with complex entries: $\overrightarrow{\mathbf{x}}(t)=e^{2 i t} \overrightarrow{\mathbf{v}}=\cos (2 t) \overrightarrow{\mathbf{v}}+i \sin (2 t) \overrightarrow{\mathbf{v}}$.
Details. Compute $\overrightarrow{\mathbf{x}}^{\prime}=\frac{d}{d t} e^{\lambda t} \overrightarrow{\mathbf{v}}=\lambda e^{\lambda t} \overrightarrow{\mathbf{v}}=\lambda \overrightarrow{\mathbf{x}}$. Then $\overrightarrow{\mathbf{x}}^{\prime \prime}=\lambda^{2} \overrightarrow{\mathbf{x}}$. If $\overrightarrow{\mathbf{x}}=e^{\lambda t} \overrightarrow{\mathbf{v}}$ is a nonzero solution of $\overrightarrow{\mathbf{x}}^{\prime \prime}=A \overrightarrow{\mathbf{x}}$, then $\lambda^{2} \overrightarrow{\mathbf{x}}=A \overrightarrow{\mathbf{x}}$ holds, which is equivalent to $\lambda^{2} \overrightarrow{\mathbf{v}}=A \overrightarrow{\mathbf{v}}$. Then $\left(\lambda^{2}, \overrightarrow{\mathbf{v}}\right)$ is an eigenpair of A. Conversely, if $\left(\lambda^{2}, \overrightarrow{\mathbf{v}}\right)$ is an eigenpair of A, then the steps reverse to obtain $\lambda^{2} \overrightarrow{\mathbf{x}}=A \overrightarrow{\mathbf{x}}$, which means that $\overrightarrow{\mathbf{x}}=e^{\lambda t} \overrightarrow{\mathbf{v}}$ is a nonzero solution of $\overrightarrow{\mathrm{x}}^{\prime \prime}=A \overrightarrow{\mathrm{x}}$.
By linear algebra, the equation $A \overrightarrow{\mathbf{v}}=\lambda^{2} \overrightarrow{\mathbf{v}}$ has a solution $\overrightarrow{\mathbf{v}} \neq \overrightarrow{\mathbf{0}}$ if and only if the homogeneous problem $\left(A-\lambda^{2} I\right) \overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{0}}$ has infinitely many solutions. Cramer's Rule implies this event happens exactly when $\operatorname{det}\left(A-\lambda^{2} I\right)=0$.

Characteristic Equation for $\overrightarrow{\mathrm{x}}^{\prime \prime}=A \overrightarrow{\mathrm{x}}$

The characteristic equation for the $n \times n$ second order system $\overrightarrow{\mathbf{x}}^{\prime \prime}=A \overrightarrow{\mathrm{x}}$ will be derived anew from the corresponding $2 n \times 2 n$ first order system $\overrightarrow{\mathbf{u}}^{\prime}=C \overrightarrow{\mathbf{u}}$. We will prove the following identity.
Theorem 31 (Characteristic Equation)
Let $\overrightarrow{\mathbf{x}}^{\prime \prime}=A \overrightarrow{\mathbf{x}}$ be given with $n \times n$ constant matrix A. Let $\overrightarrow{\mathbf{u}}^{\prime}=C \overrightarrow{\mathbf{u}}$ be its corresponding first order system, where

$$
\overrightarrow{\mathbf{u}}=\binom{\overrightarrow{\mathbf{x}}}{\overrightarrow{\mathbf{x}}^{\prime}}, \quad C=\left(\begin{array}{c|c}
0 & I \\
\hline A & 0
\end{array}\right) .
$$

Then

$$
\begin{equation*}
\operatorname{det}(C-\lambda I)=(-1)^{n} \operatorname{det}\left(A-\lambda^{2} I\right) \tag{3}
\end{equation*}
$$

Proof: The method of proof is to verify the product formula

$$
\left(\begin{array}{r|r}
-\lambda I & I \\
\hline A & -\lambda I
\end{array}\right)\left(\begin{array}{r|r}
I & 0 \\
\hline \lambda I & I
\end{array}\right)=\left(\begin{array}{r|r}
0 & I \\
\hline A-\lambda^{2} I & -\lambda I
\end{array}\right) .
$$

Then the determinant product formula applies to give

$$
\operatorname{det}(C-\lambda I) \operatorname{det}\left(\begin{array}{r|r}
I & 0 \tag{4}\\
\hline \lambda I & I
\end{array}\right)=\operatorname{det}\left(\begin{array}{r|r}
0 & I \\
\hline A-\lambda^{2} I & -\lambda I
\end{array}\right) .
$$

Cofactor expansion is applied to give the two identities

$$
\operatorname{det}\left(\begin{array}{r|r}
I & 0 \\
\hline \lambda I & I
\end{array}\right)=1, \quad \operatorname{det}\left(\begin{array}{r|r}
0 & I \\
\hline A-\lambda^{2} I & -\lambda I
\end{array}\right)=(-1)^{n} \operatorname{det}\left(A-\lambda^{2} I\right) .
$$

Then (4) implies (3). The proof is complete.

Solving $\overrightarrow{\mathbf{u}}^{\prime}=C \overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{x}}^{\prime \prime}=A \overrightarrow{\mathbf{x}}$

Consider the $n \times n$ second order system $\overrightarrow{\mathbf{x}}^{\prime \prime}=A \overrightarrow{\mathbf{x}}$ and its corresponding $2 n \times 2 n$ first order system $\overrightarrow{\mathbf{u}}^{\prime}=C \overrightarrow{\mathbf{u}}$, where

$$
C=\left(\begin{array}{c|c}
0 & I \tag{5}\\
\hline A & 0
\end{array}\right), \quad \overrightarrow{\mathbf{u}}=\binom{\overrightarrow{\mathbf{x}}}{\overrightarrow{\mathbf{x}}^{\prime}} .
$$

Theorem 32 (Eigenanalysis of A and C)
Let A be a given $n \times n$ constant matrix and define the corresponding $2 n \times 2 n$ system by

$$
\overrightarrow{\mathbf{u}}^{\prime}=C \overrightarrow{\mathbf{u}}, \quad C=\left(\begin{array}{c|c}
0 & I \\
\hline A & 0
\end{array}\right), \quad \overrightarrow{\mathbf{u}}=\binom{\overrightarrow{\mathbf{x}}}{\overrightarrow{\mathbf{x}}^{\prime}} .
$$

Then

$$
(C-\lambda I)\binom{\overrightarrow{\mathbf{w}}}{\overrightarrow{\mathbf{z}}}=\overrightarrow{\mathbf{0}} \quad \text { if and only if } \quad\left\{\begin{align*}
A \overrightarrow{\mathbf{w}} & =\lambda^{2} \overrightarrow{\mathbf{w}}, \tag{6}\\
\overrightarrow{\mathbf{z}} & =\lambda \overrightarrow{\mathbf{w}} .
\end{align*}\right.
$$

Proof: The result is obtained by block multiplication, because

$$
C-\lambda I=\left(\begin{array}{c|c}
-\lambda I & I \\
\hline A & -\lambda I
\end{array}\right) .
$$

Theorem 33 (General Solutions of $\overrightarrow{\mathbf{u}}^{\prime}=C \overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{x}}^{\prime \prime}=A \overrightarrow{\mathbf{x}}$)
Let A be a given $n \times n$ constant matrix and define the corresponding $2 n \times 2 n$ system by

$$
\overrightarrow{\mathbf{u}}^{\prime}=C \overrightarrow{\mathbf{u}}, \quad C=\left(\begin{array}{c|c}
0 & I \\
\hline A & 0
\end{array}\right), \quad \overrightarrow{\mathbf{u}}=\binom{\overrightarrow{\mathbf{x}}}{\overrightarrow{\mathbf{x}}^{\prime}} .
$$

Assume C has eigenpairs $\left\{\left(\lambda_{j}, \overrightarrow{\mathbf{y}}_{j}\right)\right\}_{j=1}^{2 n}$ and $\overrightarrow{\mathbf{y}}_{1}, \ldots, \overrightarrow{\mathbf{y}}_{2 n}$ are independent. Let I denote the $n \times n$ identity and define $\overrightarrow{\mathbf{w}}_{j}=\operatorname{diag}(I, 0) \overrightarrow{\mathbf{y}}_{j}, j=1, \ldots, 2 n$. Then $\overrightarrow{\mathbf{u}}^{\prime}=C \overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{x}}^{\prime \prime}=A \overrightarrow{\mathbf{x}}$ have general solutions

$$
\begin{array}{lr}
\overrightarrow{\mathbf{u}}(t)=c_{1} e^{\lambda_{1} t} \overrightarrow{\mathbf{y}}_{1}+\cdots+c_{2 n} e^{\lambda_{2 n} t} \overrightarrow{\mathbf{y}}_{2 n} & (2 n \times 1), \\
\overrightarrow{\mathbf{x}}(t)=c_{1} e^{\lambda_{1} t} \overrightarrow{\mathbf{w}}_{1}+\cdots+c_{2 n} e^{\lambda_{2 n} t} \overrightarrow{\mathbf{w}}_{2 n} & (n \times 1) .
\end{array}
$$

Proof: Let $\overrightarrow{\mathbf{x}}_{j}(t)=e^{\lambda_{j} t} \overrightarrow{\mathbf{w}}_{j}, j=1, \ldots, 2 n$. Then $\overrightarrow{\mathbf{x}}_{j}$ is a solution of $\overrightarrow{\mathbf{x}}^{\prime \prime}=A \overrightarrow{\mathbf{x}}$, because $\overrightarrow{\mathbf{x}}_{j}^{\prime \prime}(t)=e^{\lambda_{j} t}\left(\lambda_{j}\right)^{2} \overrightarrow{\mathbf{w}}_{j}=A \overrightarrow{\mathbf{x}}_{j}(t)$, by Theorem 32. To be verified is the independence of the solutions $\left\{\overrightarrow{\mathbf{x}}_{j}\right\}_{j=1}^{2 n}$. Let $\overrightarrow{\mathbf{z}}_{j}=\lambda_{j} \overrightarrow{\mathbf{w}}_{j}$ and apply Theorem 32 to write $\overrightarrow{\mathbf{y}}_{j}=\binom{\overrightarrow{\mathbf{w}}_{j}}{\overrightarrow{\mathbf{z}}_{j}}, A \overrightarrow{\mathbf{w}}_{j}=\lambda_{j}^{2} \overrightarrow{\mathbf{w}}_{j}$. Suppose constants $a_{1}, \ldots, a_{2 n}$ are given such that $\sum_{j=1}^{2 n} a_{k} \overrightarrow{\mathbf{x}}_{j}=0$. Differentiate this relation to give $\sum_{j=1}^{2 n} a_{k} e^{\lambda_{j} t} \overrightarrow{\mathbf{z}}_{j}=0$ for all t. Set $t=0$ in the last summation and combine to obtain $\sum_{j=1}^{2 n} a_{k} \overrightarrow{\mathbf{y}}_{j}=0$. Independence of $\overrightarrow{\mathbf{y}}_{1}, \ldots, \overrightarrow{\mathbf{y}}_{2 n}$ implies that $a_{1}=\cdots=a_{2 n}=0$. The proof is complete.

Eigenanalysis when A has Negative Eigenvalues. If all eigenvalues μ of A are negative or zero, then, for some $\omega \geq 0$, eigenvalue μ is related to an eigenvalue λ of C by the relation $\mu=-\omega^{2}=\lambda^{2}$. Then $\lambda= \pm \omega i$ and $\omega=\sqrt{|\mu|}$. Consider an eigenpair $\left(-\omega^{2}, \overrightarrow{\mathbf{v}}\right)$ of the real $n \times n$ matrix A with $\omega \geq 0$ and let

$$
u(t)= \begin{cases}c_{1} \cos \omega t+c_{2} \sin \omega t & \omega>0 \\ c_{1}+c_{2} t & \omega=0\end{cases}
$$

Then $u^{\prime \prime}(t)=-\omega^{2} u(t)$ (both sides are zero for $\omega=0$). It follows that $\overrightarrow{\mathbf{x}}(t)=u(t) \overrightarrow{\mathbf{v}}$ satisfies $\overrightarrow{\mathbf{x}}^{\prime \prime}(t)=-\omega^{2} \overrightarrow{\mathbf{x}}(t)$ and $A \overrightarrow{\mathbf{x}}(t)=u(t) A \overrightarrow{\mathbf{v}}=$ $-\omega^{2} \overrightarrow{\mathbf{x}}(t)$. Therefore, $\overrightarrow{\mathbf{x}}(t)=u(t) \overrightarrow{\mathbf{v}}$ satisfies $\overrightarrow{\mathbf{x}}^{\prime \prime}(t)=A \overrightarrow{\mathbf{x}}(t)$.

Theorem 34 (Eigenanalysis Solution of $\overrightarrow{\mathbf{x}}^{\prime \prime}=A \overrightarrow{\mathrm{x}}$)
Let the $n \times n$ real matrix A have eigenpairs $\left\{\left(\mu_{j}, \overrightarrow{\mathbf{v}}_{j}\right)\right\}_{j=1}^{n}$. Assume $\mu_{j}=$ $-\omega_{j}^{2}$ with $\omega_{j} \geq 0, j=1, \ldots, n$. Assume that $\overrightarrow{\mathbf{v}}_{1}, \ldots, \overrightarrow{\mathbf{v}}_{n}$ are linearly independent. Then the general solution of $\overrightarrow{\mathbf{x}}^{\prime \prime}(t)=A \overrightarrow{\mathbf{x}}(t)$ is given in terms of $2 n$ arbitrary constants $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ by the formula

$$
\begin{equation*}
\overrightarrow{\mathbf{x}}(t)=\sum_{j=1}^{n}\left(a_{j} \cos \omega_{j} t+b_{j} \frac{\sin \omega_{j} t}{\omega_{j}}\right) \overrightarrow{\mathbf{v}}_{j} \tag{7}
\end{equation*}
$$

This expression uses the limit convention $\left.\frac{\sin \omega t}{\omega}\right|_{\omega=0}=t$.
Proof: The text preceding the theorem and superposition establish that $\overrightarrow{\mathbf{x}}(t)$ is a solution. It only remains to prove that it is the general solution, meaning that the arbitrary constants can be assigned to allow any possible initial condition $\overrightarrow{\mathbf{x}}(0)=\overrightarrow{\mathbf{x}}_{0}, \overrightarrow{\mathbf{x}}^{\prime}(0)=\overrightarrow{\mathbf{y}}_{0}$. Define the constants uniquely by the relations

$$
\begin{aligned}
\overrightarrow{\mathbf{x}}_{0} & =\sum_{j=1}^{n} a_{j} \overrightarrow{\mathbf{v}}_{j}, \\
\overrightarrow{\mathbf{y}}_{0} & =\sum_{j=1}^{n} b_{j} \overrightarrow{\mathbf{v}}_{j},
\end{aligned}
$$

which is possible by the assumed independence of the vectors $\left\{\overrightarrow{\mathbf{v}}_{j}\right\}_{j=1}^{n}$. Then equation (7) implies $\overrightarrow{\mathbf{x}}(0)=\sum_{j=1}^{n} a_{j} \overrightarrow{\mathbf{v}}_{j}=\overrightarrow{\mathbf{x}}_{0}$ and $\overrightarrow{\mathbf{x}}^{\prime}(0)=\sum_{j=1}^{n} b_{j} \overrightarrow{\mathbf{v}}_{j}=\overrightarrow{\mathbf{y}}_{0}$. The proof is complete.

