11.7 Nonhomogeneous Linear Systems

Variation of Parameters

The method of variation of parameters is a general method for solving a linear nonhomogeneous system

$$
\overrightarrow{\mathbf{x}}^{\prime}=A \overrightarrow{\mathbf{x}}+\overrightarrow{\mathbf{F}}(t) .
$$

Historically, it was a trial solution method, whereby the nonhomogeneous system is solved using a trial solution of the form

$$
\overrightarrow{\mathbf{x}}(t)=e^{A t} \overrightarrow{\mathbf{x}}_{0}(t)
$$

In this formula, $\overrightarrow{\mathrm{x}}_{0}(t)$ is a vector function to be determined. The method is imagined to originate by varying $\overrightarrow{\mathbf{x}}_{0}$ in the general solution $\overrightarrow{\mathbf{x}}(t)=$ $e^{A t} \overrightarrow{\mathbf{x}}_{0}$ of the linear homogenous system $\overrightarrow{\mathbf{x}}^{\prime}=A \overrightarrow{\mathbf{x}}$. Hence was coined the names variation of parameters and variation of constants.
Modern use of variation of parameters is through a formula, memorized for routine use.

Theorem 28 (Variation of Parameters for Systems)

Let A be a constant $n \times n$ matrix and $\overrightarrow{\mathbf{F}}(t)$ a continuous function near $t=t_{0}$. The unique solution $\overrightarrow{\mathbf{x}}(t)$ of the matrix initial value problem

$$
\overrightarrow{\mathbf{x}}^{\prime}(t)=A \overrightarrow{\mathbf{x}}(t)+\overrightarrow{\mathbf{F}}(t), \quad \overrightarrow{\mathbf{x}}\left(t_{0}\right)=\overrightarrow{\mathbf{x}}_{0}
$$

is given by the variation of parameters formula

$$
\begin{equation*}
\overrightarrow{\mathbf{x}}(t)=e^{A t} \overrightarrow{\mathbf{x}}_{0}+e^{A t} \int_{t_{0}}^{t} e^{-r A} \overrightarrow{\mathbf{F}}(r) d r \tag{1}
\end{equation*}
$$

Proof of (1). Define

$$
\overrightarrow{\mathbf{u}}(t)=\overrightarrow{\mathbf{x}}_{0}+\int_{t_{0}}^{t} e^{-r A} \overrightarrow{\mathbf{F}}(r) d r .
$$

To show (1) holds, we must verify $\overrightarrow{\mathbf{x}}(t)=e^{A t} \overrightarrow{\mathbf{u}}(t)$. First, the function $\overrightarrow{\mathbf{u}}(t)$ is differentiable with continuous derivative $e^{-t A} \overrightarrow{\mathbf{F}}(t)$, by the fundamental theorem of calculus applied to each of its components. The product rule of calculus applies to give

$$
\begin{aligned}
\overrightarrow{\mathbf{x}}^{\prime}(t) & =\left(e^{A t}\right)^{\prime} \overrightarrow{\mathbf{u}}(t)+e^{A t} \overrightarrow{\mathbf{u}}^{\prime}(t) \\
& =A e^{A t} \overrightarrow{\mathbf{u}}(t)+e^{A t} e^{-A t} \overrightarrow{\mathbf{F}}(t) \\
& =A \overrightarrow{\mathbf{x}}(t)+\overrightarrow{\mathbf{F}}(t) .
\end{aligned}
$$

Therefore, $\overrightarrow{\mathbf{x}}(t)$ satisfies the differential equation $\overrightarrow{\mathbf{x}}^{\prime}=A \overrightarrow{\mathbf{x}}+\overrightarrow{\mathbf{F}}(t)$. Because $\overrightarrow{\mathbf{u}}\left(t_{0}\right)=\overrightarrow{\mathbf{x}}_{0}$, then $\overrightarrow{\mathbf{x}}\left(t_{0}\right)=\overrightarrow{\mathbf{x}}_{0}$, which shows the initial condition is also satisfied. The proof is complete.

Undetermined Coefficients

The trial solution method known as the method of undetermined coefficients can be applied to vector-matrix systems $\overrightarrow{\mathbf{x}}^{\prime}=A \overrightarrow{\mathbf{x}}+\overrightarrow{\mathbf{F}}(t)$ when the components of $\overrightarrow{\mathbf{F}}$ are sums of terms of the form

$$
\text { (polynomial in } t) e^{a t}(\cos (b t) \text { or } \sin (b t)) \text {. }
$$

Such terms are known as Euler solution atoms. It is usually efficient to write $\overrightarrow{\mathbf{F}}$ in terms of the columns $\overrightarrow{\mathbf{e}}_{1}, \ldots, \overrightarrow{\mathbf{e}}_{n}$ of the $n \times n$ identity matrix I, as the combination

$$
\overrightarrow{\mathbf{F}}(t)=\sum_{j=1}^{n} F_{j}(t) \overrightarrow{\mathbf{e}}_{j} .
$$

Then

$$
\overrightarrow{\mathbf{x}}(t)=\sum_{j=1}^{n} \overrightarrow{\mathbf{x}}_{j}(t)
$$

where $\overrightarrow{\mathbf{x}}_{j}(t)$ is a particular solution of the simpler equation

$$
\overrightarrow{\mathbf{x}}^{\prime}(t)=A \overrightarrow{\mathbf{x}}(t)+f(t) \overrightarrow{\mathbf{c}}, \quad f=F_{j}, \quad \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{e}}_{j} .
$$

An initial trial solution $\overrightarrow{\mathbf{x}}(t)$ for $\overrightarrow{\mathbf{x}}^{\prime}(t)=A \overrightarrow{\mathbf{x}}(t)+f(t) \overrightarrow{\mathbf{c}}$ can be determined from the following initial trial solution rule:

Let $f(t)$ be a sum of Euler solution atoms. Identify independent functions whose linear combinations give all derivatives of $f(t)$. The initial trial solution is a linear combination of these functions with undetermined vector coefficients $\left\{\overrightarrow{\mathbf{c}}_{j}\right\}$.

In the well-known scalar case, the trial solution must be modified if its terms contain any portion of the general solution to the homogeneous equation. In the vector case, if $f(t)$ is a polynomial, then the correction rule for the initial trial solution is avoided by assuming the matrix A is invertible. This assumption means that $r=0$ is not a root of $\operatorname{det}(A-r I)=0$, which prevents the homogenous solution from having any polynomial terms.
The initial vector trial solution is substituted into the differential equation to find the undetermined coefficients $\left\{\overrightarrow{\mathbf{c}}_{j}\right\}$, hence finding a particular solution.

Theorem 29 (Polynomial solutions)

Let $f(t)=\sum_{j=0}^{k} p_{j} t^{\frac{j}{j!}}$ be a polynomial of degree k. Assume A is an $n \times n$ constant invertible matrix. Then $\overrightarrow{\mathbf{u}}^{\prime}=A \overrightarrow{\mathbf{u}}+f(t) \overrightarrow{\mathbf{c}}$ has a polynomial solution $\overrightarrow{\mathbf{u}}(t)=\sum_{j=0}^{k} \overrightarrow{\mathbf{c}}_{j}{ }^{t_{j}^{j}}$ of degree k with vector coefficients $\left\{\overrightarrow{\mathbf{c}}_{j}\right\}$ given by the relations

$$
\overrightarrow{\mathbf{c}}_{j}=-\sum_{i=j}^{k} p_{i} A^{j-i-1} \overrightarrow{\mathbf{c}}, \quad 0 \leq j \leq k .
$$

Theorem 30 (Polynomial \times exponential solutions)

Let $g(t)=\sum_{j=0}^{k} p_{j}{ }^{t_{j}^{j}!}$ be a polynomial of degree k. Assume A is an $n \times n$ constant matrix and $B=A-a I$ is invertible. Then $\overrightarrow{\mathbf{u}}^{\prime}=A \overrightarrow{\mathbf{u}}+e^{a t} g(t) \overrightarrow{\mathbf{c}}$ has a polynomial-exponential solution $\overrightarrow{\mathbf{u}}(t)=e^{a t} \sum_{j=0}^{k} \overrightarrow{\mathbf{c}}_{j} \frac{t^{j}}{j!}$ with vector coefficients $\left\{\overrightarrow{\mathbf{c}}_{j}\right\}$ given by the relations

$$
\overrightarrow{\mathbf{c}}_{j}=-\sum_{i=j}^{k} p_{i} B^{j-i-1} \overrightarrow{\mathbf{c}}, \quad 0 \leq j \leq k
$$

Proof of Theorem 29. Substitute $\overrightarrow{\mathbf{u}}(t)=\sum_{j=0}^{k} \overrightarrow{\mathbf{c}}_{j} \frac{t^{j}}{j!}$ into the differential equation, then

$$
\sum_{j=0}^{k-1} \overrightarrow{\mathbf{c}}_{j+1} \frac{t^{j}}{j!}=A \sum_{j=0}^{k} \overrightarrow{\mathbf{c}}_{j} \frac{t^{j}}{j!}+\sum_{j=0}^{k} p_{j} \frac{t^{j}}{j!} \overrightarrow{\mathbf{c}} .
$$

Then terms on the right for $j=k$ must add to zero and the others match the left side coefficients of $t^{j} / j!$, giving the relations

$$
A \overrightarrow{\mathbf{c}}_{k}+p_{k} \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}, \quad \overrightarrow{\mathbf{c}}_{j+1}=A \overrightarrow{\mathbf{c}}_{j}+p_{j} \overrightarrow{\mathbf{c}}
$$

Solving these relations recursively gives the formulas

$$
\begin{aligned}
\overrightarrow{\mathbf{c}}_{k} & =-p_{k} A^{-1} \overrightarrow{\mathbf{c}}, \\
\overrightarrow{\mathbf{c}}_{k-1} & =-\left(p_{k-1} A^{-1}+p_{k} A^{-2}\right) \overrightarrow{\mathbf{c}} \\
& \vdots \\
\overrightarrow{\mathbf{c}}_{0} & =-\left(p_{0} A^{-1}+\cdots+p_{k} A^{-k-1}\right) \overrightarrow{\mathbf{c}}
\end{aligned}
$$

The relations above can be summarized by the formula

$$
\overrightarrow{\mathbf{c}}_{j}=-\sum_{i=j}^{k} p_{i} A^{j-i-1} \overrightarrow{\mathbf{c}}, \quad 0 \leq j \leq k .
$$

The calculation shows that if $\overrightarrow{\mathbf{u}}(t)=\sum_{j=0}^{k} \overrightarrow{\mathbf{c}}_{j} j_{j!}^{t^{j}}$ and $\overrightarrow{\mathbf{c}}_{j}$ is given by the last formula, then $\overrightarrow{\mathbf{u}}(t)$ substituted into the differential equation gives matching LHS and RHS. The proof is complete.

Proof of Theorem 30. Let $\overrightarrow{\mathbf{u}}(t)=e^{a t} \overrightarrow{\mathbf{v}}(t)$. Then $\overrightarrow{\mathbf{u}}^{\prime}=A \overrightarrow{\mathbf{u}}+e^{a t} g(t) \overrightarrow{\mathbf{c}}$ implies $\overrightarrow{\mathbf{v}}^{\prime}=(A-a I) \overrightarrow{\mathbf{v}}+g(t) \overrightarrow{\mathbf{c}}$. Apply Theorem 29 to $\overrightarrow{\mathbf{v}}^{\prime}=B \overrightarrow{\mathbf{v}}+g(t) \overrightarrow{\mathbf{c}}$. The proof is complete.

