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11.7 Nonhomogeneous Linear Systems

Variation of Parameters

The method of variation of parameters is a general method for
solving a linear nonhomogeneous system

~x ′ = A~x + ~F(t).

Historically, it was a trial solution method, whereby the nonhomogeneous
system is solved using a trial solution of the form

~x (t) = eAt ~x 0(t).

In this formula, ~x 0(t) is a vector function to be determined. The method
is imagined to originate by varying ~x 0 in the general solution ~x(t) =
eAt ~x 0 of the linear homogenous system ~x ′ = A~x . Hence was coined the
names variation of parameters and variation of constants.

Modern use of variation of parameters is through a formula, memorized
for routine use.

Theorem 28 (Variation of Parameters for Systems)
Let A be a constant n × n matrix and ~F (t) a continuous function near
t = t0. The unique solution ~x (t) of the matrix initial value problem

~x ′(t) = A~x(t) + ~F (t), ~x (t0) = ~x 0,

is given by the variation of parameters formula

~x (t) = eAt~x 0 + eAt
∫ t

t0
e−rA~F (r)dr.(1)

Proof of (1). Define

~u (t) = ~x0 +

∫ t

t0

e−rA~F(r)dr.

To show (1) holds, we must verify ~x (t) = eAt~u (t). First, the function ~u(t) is

differentiable with continuous derivative e−tA~F (t), by the fundamental theorem
of calculus applied to each of its components. The product rule of calculus
applies to give

~x ′(t) =
(
eAt
)′
~u (t) + eAt~u ′(t)

= AeAt~u (t) + eAte−At~F(t)

= A~x (t) + ~F(t).

Therefore, ~x (t) satisfies the differential equation ~x ′ = A~x + ~F(t). Because
~u (t0) = ~x0, then ~x (t0) = ~x0, which shows the initial condition is also satisfied.
The proof is complete.
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Undetermined Coefficients

The trial solution method known as the method of undetermined coef-
ficients can be applied to vector-matrix systems ~x ′ = A~x + ~F (t) when
the components of ~F are sums of terms of the form

(polynomial in t)eat(cos(bt) or sin(bt)).

Such terms are known as Euler solution atoms. It is usually efficient
to write ~F in terms of the columns ~e 1, . . . , ~en of the n × n identity
matrix I, as the combination

~F (t) =
n∑

j=1

Fj(t)~e j .

Then

~x(t) =
n∑

j=1

~x j(t),

where ~x j(t) is a particular solution of the simpler equation

~x ′(t) = A~x(t) + f(t)~c , f = Fj , ~c = ~e j .

An initial trial solution ~x(t) for ~x ′(t) = A~x(t)+f(t)~c can be determined
from the following initial trial solution rule:

Let f(t) be a sum of Euler solution atoms. Identify indepen-
dent functions whose linear combinations give all derivatives
of f(t). The initial trial solution is a linear combination of
these functions with undetermined vector coefficients {~c j}.

In the well-known scalar case, the trial solution must be modified if its
terms contain any portion of the general solution to the homogeneous
equation. In the vector case, if f(t) is a polynomial, then the correc-
tion rule for the initial trial solution is avoided by assuming the matrix
A is invertible. This assumption means that r = 0 is not a root of
det(A − rI) = 0, which prevents the homogenous solution from having
any polynomial terms.

The initial vector trial solution is substituted into the differential equa-
tion to find the undetermined coefficients {~c j}, hence finding a particular
solution.

Theorem 29 (Polynomial solutions)
Let f(t) =

∑k
j=0 pj

tj

j! be a polynomial of degree k. Assume A is an n× n

constant invertible matrix. Then ~u ′ = A~u+f(t)~c has a polynomial solution

~u(t) =
∑k

j=0~c j
tj

j! of degree k with vector coefficients {~c j} given by the
relations

~c j = −
k∑

i=j

piA
j−i−1~c , 0 ≤ j ≤ k.
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Theorem 30 (Polynomial × exponential solutions)
Let g(t) =

∑k
j=0 pj

tj

j! be a polynomial of degree k. Assume A is an n × n

constant matrix and B = A − aI is invertible. Then ~u ′ = A~u + eatg(t)~c

has a polynomial-exponential solution ~u (t) = eat
∑k

j=0~c j
tj

j! with vector
coefficients {~c j} given by the relations

~c j = −
k∑

i=j

piB
j−i−1~c , 0 ≤ j ≤ k.

Proof of Theorem 29. Substitute ~u (t) =
∑k

j=0~c j
tj

j! into the differential
equation, then

k−1∑
j=0

~c j+1
tj

j!
= A

k∑
j=0

~c j
tj

j!
+

k∑
j=0

pj
tj

j!
~c .

Then terms on the right for j = k must add to zero and the others match the
left side coefficients of tj/j!, giving the relations

A~ck + pk~c = ~0 , ~c j+1 = A~c j + pj~c .

Solving these relations recursively gives the formulas

~ck = −pkA−1~c ,
~ck−1 = −

(
pk−1A

−1 + pkA
−2)~c ,

...
~c0 = −

(
p0A

−1 + · · ·+ pkA
−k−1)~c .

The relations above can be summarized by the formula

~c j = −
k∑

i=j

piA
j−i−1~c , 0 ≤ j ≤ k.

The calculation shows that if ~u(t) =
∑k

j=0~c j
tj

j! and ~c j is given by the last

formula, then ~u(t) substituted into the differential equation gives matching
LHS and RHS. The proof is complete.

Proof of Theorem 30. Let ~u (t) = eat~v (t). Then ~u ′ = A~u +eatg(t)~c implies
~v ′ = (A− aI)~v + g(t)~c . Apply Theorem 29 to ~v ′ = B~v + g(t)~c . The proof is
complete.


