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11.5 The Eigenanalysis Method

The general solution ~x (t) = eAt ~x (0) of the linear system

d

dt
~x (t) = A~x (t)

can be obtained entirely by eigenanalysis of the matrix A, which involves
finding all eigenpairs. The expected case is when the n×n matrix A has
n independent eigenvectors in its list of eigenpairs

(λ1, ~v 1), (λ2, ~v 2), . . . , (λn, ~vn).

It is not required that the eigenvalues λ1, . . . , λn be distinct. The
eigenvalues can be real or complex.

The Eigenanalysis Method for a 2× 2 Matrix

Suppose that A is 2× 2 real and has eigenpairs

(λ1, ~v 1), (λ2, ~v 2),

with ~v 1, ~v 2 independent. The eigenvalues λ1, λ2 can be both real. Also,
they can be a complex conjugate pair λ1 = λ2 = a+ ib with b > 0.

It will be shown that the general solution of ~x ′ = A~x can be written as

~x (t) = c1e
λ1t~v 1 + c2e

λ2t~v 2.

The details:

~x ′ = c1(e
λ1t)′~v 1 + c2(e

λ2t)′~v 2 Differentiate the formula for ~x .

= c1e
λ1tλ1~v 1 + c2e

λ2tλ2~v 2

= c1e
λ1tA~v 1 + c2e

λ2tA~v 2 Use λ1~v 1 = A~v 1, λ2~v 2 = A~v 2.

= A
(
c1e

λ1t~v 1 + c2e
λ2t~v 2

)
Factor A left.

= A~x Definition of ~x .

Let’s rewrite the solution ~x in the vector-matrix form

~x (t) = 〈~v 1|~v 2〉
(
eλ1t 0

0 eλ2t

)(
c1
c2

)
.

Because eigenvectors ~v 1, ~v 2 are assumed independent, then 〈~v 1|~v 2〉 is
invertible and setting t = 0 in the previous display gives(

c1
c2

)
= 〈~v 1|~v 2〉−1~x (0).
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Because c1, c2 can be chosen to produce any initial condition ~x(0), then
~x (t) is the general solution of the system ~x ′ = A~x .

The general solution expressed as ~x (t) = eAt ~x (0) leads to the exponen-
tial matrix relation

eAt = 〈~v 1|~v 2〉
(
eλ1t 0

0 eλ2t

)
〈~v 1|~v 2〉−1.

The formula is immediately useful when the eigenpairs are real.

Complex conjugate eigenvalues. Assume λ2 = λ1 and λ1 not real.
Eigenpair (λ2, ~v 2) is never computed or used, because A~v 1 = λ1~v 1

implies A~v 1 = λ1~v 1, which implies λ2 (= λ1) has eigenvector ~v 2 = ~v 1.

If A is real, then eAt is real, and taking real parts across the formula for
eAt will give a real formula. Due to the unpleasantness of the complex
algebra, we will report the answer found, which is real, and then justify
it with minimal use of complex numbers.

Define for eigenpair (λ1, ~v 1) symbols a, b, P as follows:

λ1 = a+ ib, b > 0, P = 〈Re(~v 1)| Im(~v 1)〉.

Then

eAt = eatP

(
cos bt sin bt
− sin bt cos bt

)
P−1.(1)

Justification of (1). The formula is established by showing that the matrix
Φ(t) on the right satisfies Φ(0) = I and Φ′ = AΦ. Then by definition, eAt =
Φ(t). For exposition, let

R(t) = eat
(

cos bt sin bt
− sin bt cos bt

)
, Φ(t) = PR(t)P−1.

The identity Φ(0) = I verified as follows.

Φ(0) = PR(0)P−1

= Pe0
(

1 0
0 1

)
P−1

= I

Write λ1 = a + ib and ~v 1 = Re(~v 1) + i Im(~v 1). The expansion of eigenpair
relation A~v 1 = λ1~v 1 into real and imaginary parts gives the relation

A (Re(~v 1) + i Im(~v 1)) = (a+ ib) (Re(~v 1) + i Im(~v 1)) ,

which shows that

AP = P

(
a b
−b a

)
.
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Then
Φ′(t)Φ−1(t) = PR′(t)P−1PR−1(t)P−1

= PR′(t)R−1(t)P−1

= P

(
aI +

(
0 b
−b 0

))
P−1

= P

(
a b
−b a

)
P−1

= A

The proof of Φ′(t) = AΦ(t) is complete.

The formula for eAt implies that the general solution in this special case
is

~x (t) = eat〈Re(~v 1)| Im(~v 1)〉
(

cos bt sin bt
− sin bt cos bt

)(
c1
c2

)
.

The values c1, c2 are related to the initial condition ~x (0) by the matrix
identity (

c1
c2

)
= 〈Re(~v 1)| Im(~v 1))

−1~x (0〉.

The Eigenanalysis Method for a 3× 3 Matrix

Suppose that A is 3× 3 real and has eigenpairs

(λ1, ~v 1), (λ2, ~v 2), (λ3, ~v 3),

with ~v 1, ~v 2, ~v 3 independent. The eigenvalues λ1, λ2, λ3 can be all real.
Also, there can be one real eigenvalue λ3 and a complex conjugate pair
of eigenvalues λ1 = λ2 = a+ ib with b > 0.

The general solution of ~x ′ = A~x can be written as

~x (t) = c1e
λ1t~v 1 + c2e

λ2t~v 2 + c3e
λ3t~v 3.

The details, which parallel the 2 × 2 details, are left as an exercise for
the reader.

The solution ~x is written in vector-matrix form

~x (t) = 〈~v 1|~v 2, ~v 3〉

 eλ1t 0 0
0 eλ2t 0
0 0 eλ3t


 c1
c2
c3

 .
Because the three eigenvectors ~v 1, ~v 2, ~v 3 are assumed independent,
then 〈~v 1|~v 2|~v 3〉 is invertible. Setting t = 0 in the previous display gives c1

c2
c2

 = 〈~v 1|~v 2|~v 3〉−1~x (0).
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Constants c1, c2, c3 can be chosen to produce any initial condition ~x(0),
therefore ~x(t) is the general solution of the 3×3 system ~x ′ = A~x . There
is a corresponding exponential matrix relation

eAt = 〈~v 1|~v 2|~v 3〉

 eλ1t 0 0
0 eλ2t 0
0 0 eλ3t

 〈~v 1|~v 2|~v 3〉−1.

This formula is normally used when the eigenpairs are real. When there
is a complex conjugate pair of eigenvalues λ1 = λ2 = a+ ib, b > 0, then
as was shown in the 2 × 2 case it is possible to extract a real solution
~x from the complex formula and report a real form for the exponential
matrix:

eAt = P

 eat cos bt eat sin bt 0
−eat sin bt eat cos bt 0

0 0 eλ3t

P−1,
P = 〈Re(~v 1)| Im(~v 1)|~v 3〉.

The Eigenanalysis Method for an n× n Matrix

The general solution formula and the formula for eAt generalize easily
from the 2× 2 and 3× 3 cases to the general case of an n× n matrix.

Theorem 17 (The Eigenanalysis Method)
Let the n× n real matrix A have eigenpairs

(λ1, ~v 1), (λ2, ~v 2), . . . , (λn, ~vn),

with n independent eigenvectors ~v 1, . . . , ~vn. Then the general solution of
the linear system ~x ′ = A~x is given by

~x (t) = c1~v 1e
λ1t + c2~v 2e

λ2t + · · ·+ cn~vne
λnt.

The vector-matrix form of the general solution is

~x (t) = 〈~v 1| · · · |~vn〉diag(eλ1t, . . . , eλnt)

 c1
...
cn

 .
This form is real provided all eigenvalues are real. A real form can be
made from a complex form by following the example of a 3 × 3 matrix
A. The plan is to list all complex eigenvalues first, in pairs, λ1, λ1, . . . ,
λp, λp. Then the real eigenvalues r1, . . . , rq are listed, 2p+ q = n. Define

P = 〈Re(~v 1)| Im(~v 1)| . . . |Re(~v 2p−1)| Im(~v 2p−1)|~v 2p+1| · · · |~vn〉,
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Rλ(t) = eat
(

cos bt sin bt
− sin bt cos bt

)
, where λ+ a+ ib, b > 0.

Then the real vector-matrix form of the general solution is

~x (t) = P diag(Rλ1(t), . . . , Rλp(t), er1t, . . . , erqt)

 c1
...
cn


and

eAt = P diag(Rλ1(t), . . . , Rλp(t), er1t, . . . , erqt)P−1.

Remark on Euler Atoms. If the characteristic equation is (λ−1)3 = 0
and there are three independent eigenvectors, then the general solution
~x(t) = c1e

λ1t~v 1 + c2e
λ2t~v 2 + c3e

λ3t~v 3 contains no terms with tet nor
t2et. Our intuition from (λ−1)3 = 0 is that solution components should
be linear combinations of et, tet, t2et. How is that possible? The answer
is contained in the linear combination 2et + 0tet + 0t2et: it is indeed a
linear combination of the Euler atoms.

Spectral Theory Methods

The simplicity of Putzer’s spectral method for computing eAt is appre-
ciated, but we also recognize that the literature has an algorithm to
compute eAt, devoid of differential equations, which is of fundamental
importance in linear algebra. The parallel algorithm computes eAt di-
rectly from the eigenvalues λj of A and certain products of the nilpotent
matrices A− λjI. Called spectral formulas, they can be implemented
in a numerical laboratory or computer algebra system, in order to effi-
ciently compute eAt, even in the case of multiple eigenvalues.

Theorem 18 (Computing eAt for Simple Eigenvalues)
Let the n × n matrix A have n simple eigenvalues λ1, . . . , λn (possibly

complex) and define constant matrices ~Q 1, . . . , ~Qn by the formulas

~Q j = Πi 6=j
A− λiI
λj − λi

, j = 1, . . . , n.

Then
eAt = eλ1t ~Q 1 + · · ·+ eλnt ~Qn.

Theorem 19 (Computing eAt for Multiple Eigenvalues)
Let the n× n matrix A have k distinct eigenvalues λ1, . . . , λk of algebraic
multiplicities m1, . . . , mk. Let p(λ) = det(A− λI) and define polynomials
a1(λ), . . . , ak(λ) by the partial fraction identity

1

p(λ)
=

a1(λ)

(λ− λ1)m1
+ · · ·+ ak(λ)

(λ− λk)mk
.
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Define constant matrices ~Q 1, . . . , ~Qk by the formulas

~Q j = aj(A)Πi 6=j(A− λiI)mi , j = 1, . . . , k.

Then

eAt =
k∑
i=1

eλit ~Q i

mi−1∑
j=0

(A− λiI)j
tj

j!
.(2)

Proof: Let ~N i = ~Q i(A− λiI), 1 ≤ i ≤ k. We first prove

Lemma 1 (Properties)

1. ~Q1 + · · ·+ ~Qk = I,
2. ~Q i

~Q i = ~Q i,
3. ~Q i

~Q j = ~0 for i 6= j,

4. ~N i
~N j = ~0 for i 6= j,

5. ~Nmi
i = ~0 ,

6. A =
∑k
i=1(λi ~Q i + ~N i).

The proof of 1 follows from clearing fractions in the partial fraction expansion
of 1/p(λ):

1 =

k∑
i=1

ai(λ)
p(λ)

(λ− λi)mi
.

The projection property 2 follows by multiplication of identity 1 by ~Q i and
then using 2.

The proof of 3 starts by observing that ~Q i and ~Q j together contain all the fac-

tors of p(A), therefore ~Q i
~Q j = q(A)p(A) for some polynomial q. The Cayley-

Hamilton theorem p(A) = ~0 finishes the proof.

To prove 4, write ~N i
~N j = (A− λiI)(A− λjI)~Q i

~Q j and apply 3.

To prove 5, use ~Qmi
i = ~Q i (from 2) to write ~Nmi

i = (A−λiI)mi ~Q i = p(A) = ~0 .

To prove 6, multiply 1 by A and rearrange as follows:

A =
∑k
i=1A

~Q i

=
∑k
i=1 λi

~Q i + (A− λiI)~Q i

=
∑k
i=1 λi

~Q i + ~N i

To prove (2), multiply 1 by eAt and compute as follows:

eAt =
∑k
i=1

~Q ie
At

=
∑k
i=1

~Q ie
λiIt+(A−λiI)t

=
∑k
i=1

~Q ie
λite(A−λiI)t

=
∑k
i=1

~Q ie
λite

~Q i(A−λiI)t

=
∑k
i=1

~Q ie
λite

~N it

=
∑k
i=1

~Q ie
λit
∑m1−1
j=0 (A− λiI)j t

j

j!
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Solving Planar Systems ~x ′(t) = A~x (t)

A 2× 2 real system ~x ′(t) = A~x (t) can be solved in terms of the roots of
the characteristic equation det(A− λI) = 0 and the real matrix A.

Theorem 20 (Planar System, Putzer’s Spectral Formula)
Consider the real planar system ~x ′(t) = A~x(t). Let λ1, λ2 be the roots of
the characteristic equation det(A−λI) = 0. The real general solution ~x (t)
is given by the formula

~x (t) = eAt~x (0)

where the 2× 2 exponential matrix eAt is given as follows.

Real λ1 6= λ2 eAt = eλ1tI +
eλ2t − eλ1t

λ2 − λ1
(A− λ1I).

Real λ1 = λ2 eAt = eλ1tI + teλ1t(A− λ1I).

Complex λ1 = λ2,
λ1 = a+ bi, b > 0

eAt = eat cos bt I +
eat sin(bt)

b
(A− aI).

Proof: The formulas are from Putzer’s algorithm, or equivalently, from the
spectral formulas, with rearranged terms. The complex case is formally the
real part of the distinct root case when λ2 = λ1. The spectral formula is the
analog of the second order equation formulas, Theorem 1 in Chapter 5.

Illustrations. Typical cases are represented by the following 2 × 2
matrices A, which correspond to roots λ1, λ2 of the characteristic equa-
tion det(A − λI) = 0 which are real distinct, real double or complex
conjugate. The solution ~x(t) = eAt~x (0) is given here in two forms, by
writing eAt using 1 a spectral formula and 2 Putzer’s spectral
formula.

λ1 = 5, λ2 = 2

A =

(
−1 3
−6 8

) Real distinct roots.

1 eAt =
e5t

3

(
−3 3
−6 6

)
+
e2t

−3

(
−6 3
−6 3

)

2 eAt = e5tI +
e2t − e5t

2− 5

(
−6 3
−6 3

)

λ1 = λ2 = 3

A =

(
2 1
−1 4

) Real double root.

1 eAt = e3t
(
I + t

(
−1 1
−1 1

))

2 eAt = e3tI + te3t
(
−1 1
−1 1

)
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λ1 = λ2 = 2 + 3i

A =

(
2 3
−3 2

) Complex conjugate roots.

1 eAt = 2Re

(
e2t+3it

2(3i)

(
3i 3
−3 3i

))

2 eAt = e2t cos 3tI +
e2t sin 3t

3

(
0 3
−3 0

)

The complex example is typical for real n×n matrices A with a complex

conjugate pair of eigenvalues λ1 = λ2. Then ~Q 2 = ~Q 1. The result is
that λ2 is not used and we write instead a simpler expression using the
college algebra equality z + z = 2Re(z):

eλ1t ~Q 1 + eλ2t ~Q 2 = 2Re
(
eλ1t ~Q 1

)
.

This observation explains why eAt is real when A is real, by pairing
complex conjugate eigenvalues in the spectral formula.


