11.5 The Eigenanalysis Method

The general solution $\overrightarrow{\mathbf{x}}(t)=e^{A t} \overrightarrow{\mathbf{x}}(0)$ of the linear system

$$
\frac{d}{d t} \overrightarrow{\mathbf{x}}(t)=A \overrightarrow{\mathbf{x}}(t)
$$

can be obtained entirely by eigenanalysis of the matrix A, which involves finding all eigenpairs. The expected case is when the $n \times n$ matrix A has n independent eigenvectors in its list of eigenpairs

$$
\left(\lambda_{1}, \overrightarrow{\mathbf{v}}_{1}\right), \quad\left(\lambda_{2}, \overrightarrow{\mathbf{v}}_{2}\right), \quad \ldots, \quad\left(\lambda_{n}, \overrightarrow{\mathbf{v}}_{n}\right)
$$

It is not required that the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ be distinct. The eigenvalues can be real or complex.

The Eigenanalysis Method for a 2×2 Matrix

Suppose that A is 2×2 real and has eigenpairs

$$
\left(\lambda_{1}, \overrightarrow{\mathbf{v}}_{1}\right), \quad\left(\lambda_{2}, \overrightarrow{\mathbf{v}}_{2}\right),
$$

with $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}$ independent. The eigenvalues λ_{1}, λ_{2} can be both real. Also, they can be a complex conjugate pair $\lambda_{1}=\bar{\lambda}_{2}=a+i b$ with $b>0$.

It will be shown that the general solution of $\overrightarrow{\mathbf{x}}^{\prime}=A \overrightarrow{\mathbf{x}}$ can be written as

$$
\overrightarrow{\mathbf{x}}(t)=c_{1} e^{\lambda_{1} t} \overrightarrow{\mathbf{v}}_{1}+c_{2} e^{\lambda_{2} t} \overrightarrow{\mathbf{v}}_{2} .
$$

The details:

$$
\begin{aligned}
\overrightarrow{\mathbf{x}}^{\prime} & =c_{1}\left(e^{\lambda_{1} t}\right)^{\prime} \overrightarrow{\mathbf{v}}_{1}+c_{2}\left(e^{\lambda_{2} t}\right)^{\prime} \overrightarrow{\mathbf{v}}_{2} & & \text { Differentiate the formula for } \overrightarrow{\mathbf{x}} . \\
& =c_{1} e^{\lambda_{1} t} \lambda_{1} \overrightarrow{\mathbf{v}}_{1}+c_{2} e^{\lambda_{2} t} \lambda_{2} \overrightarrow{\mathbf{v}}_{2} & & \\
& =c_{1} e^{\lambda_{1} t} A \overrightarrow{\mathbf{v}}_{1}+c_{2} e^{\lambda_{2} t} A \overrightarrow{\mathbf{v}}_{2} & & \text { Use } \lambda_{1} \overrightarrow{\mathbf{v}}_{1}=A \overrightarrow{\mathbf{v}}_{1}, \lambda_{2} \overrightarrow{\mathbf{v}}_{2}=A \overrightarrow{\mathbf{v}}_{2} . \\
& =A\left(c_{1} e^{\lambda_{1} t} \overrightarrow{\mathbf{v}}_{1}+c_{2} e^{\lambda_{2} t} \overrightarrow{\mathbf{v}}_{2}\right) & & \text { Factor } A \text { left. } \\
& =A \overrightarrow{\mathbf{x}} & & \text { Definition of } \overrightarrow{\mathbf{x}} .
\end{aligned}
$$

Let's rewrite the solution $\overrightarrow{\mathrm{x}}$ in the vector-matrix form

$$
\overrightarrow{\mathbf{x}}(t)=\left\langle\overrightarrow{\mathbf{v}}_{1} \mid \overrightarrow{\mathbf{v}}_{2}\right\rangle\left(\begin{array}{cc}
e^{\lambda_{1} t} & 0 \\
0 & e^{\lambda_{2} t}
\end{array}\right)\binom{c_{1}}{c_{2}} .
$$

Because eigenvectors $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}$ are assumed independent, then $\left\langle\overrightarrow{\mathbf{v}}_{1} \mid \overrightarrow{\mathbf{v}}_{2}\right\rangle$ is invertible and setting $t=0$ in the previous display gives

$$
\binom{c_{1}}{c_{2}}=\left\langle\overrightarrow{\mathbf{v}}_{1} \mid \overrightarrow{\mathbf{v}}_{2}\right\rangle^{-1} \overrightarrow{\mathbf{x}}(0)
$$

Because c_{1}, c_{2} can be chosen to produce any initial condition $\overrightarrow{\mathbf{x}}(0)$, then $\overrightarrow{\mathbf{x}}(t)$ is the general solution of the system $\overrightarrow{\mathbf{x}}^{\prime}=A \overrightarrow{\mathbf{x}}$.
The general solution expressed as $\overrightarrow{\mathbf{x}}(t)=e^{A t} \overrightarrow{\mathbf{x}}(0)$ leads to the exponential matrix relation

$$
e^{A t}=\left\langle\overrightarrow{\mathbf{v}}_{1} \mid \overrightarrow{\mathbf{v}}_{2}\right\rangle\left(\begin{array}{cc}
e^{\lambda_{1} t} & 0 \\
0 & e^{\lambda_{2} t}
\end{array}\right)\left\langle\overrightarrow{\mathbf{v}}_{1} \mid \overrightarrow{\mathbf{v}}_{2}\right\rangle^{-1}
$$

The formula is immediately useful when the eigenpairs are real.
Complex conjugate eigenvalues. Assume $\lambda_{2}=\bar{\lambda}_{1}$ and λ_{1} not real. Eigenpair $\left(\lambda_{2}, \overrightarrow{\mathbf{v}}_{2}\right)$ is never computed or used, because $A \overrightarrow{\mathbf{v}}_{1}=\lambda_{1} \overrightarrow{\mathbf{v}}_{1}$ implies $A \overline{\overrightarrow{\mathbf{v}}}_{1}=\bar{\lambda}_{1} \overline{\overrightarrow{\mathbf{v}}}_{1}$, which implies $\lambda_{2}\left(=\bar{\lambda}_{1}\right)$ has eigenvector $\overrightarrow{\mathbf{v}}_{2}=\overline{\overrightarrow{\mathbf{v}}}_{1}$.
If A is real, then $e^{A t}$ is real, and taking real parts across the formula for $e^{A t}$ will give a real formula. Due to the unpleasantness of the complex algebra, we will report the answer found, which is real, and then justify it with minimal use of complex numbers.

Define for eigenpair ($\lambda_{1}, \overrightarrow{\mathbf{v}}_{1}$) symbols a, b, P as follows:

$$
\lambda_{1}=a+i b, \quad b>0, \quad P=\left\langle\mathcal{R e}\left(\overrightarrow{\mathbf{v}}_{1}\right) \mid \operatorname{Im}\left(\overrightarrow{\mathbf{v}}_{1}\right)\right\rangle .
$$

Then

$$
e^{A t}=e^{a t} P\left(\begin{array}{rr}
\cos b t & \sin b t \tag{1}\\
-\sin b t & \cos b t
\end{array}\right) P^{-1}
$$

Justification of (1). The formula is established by showing that the matrix $\Phi(t)$ on the right satisfies $\Phi(0)=I$ and $\Phi^{\prime}=A \Phi$. Then by definition, $e^{A t}=$ $\Phi(t)$. For exposition, let

$$
R(t)=e^{a t}\left(\begin{array}{rr}
\cos b t & \sin b t \\
-\sin b t & \cos b t
\end{array}\right), \quad \Phi(t)=P R(t) P^{-1} .
$$

The identity $\Phi(0)=I$ verified as follows.

$$
\begin{aligned}
\Phi(0) & =P R(0) P^{-1} \\
& =P e^{0}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) P^{-1} \\
& =I
\end{aligned}
$$

Write $\lambda_{1}=a+i b$ and $\overrightarrow{\mathbf{v}}_{1}=\mathcal{R e}\left(\overrightarrow{\mathbf{v}}_{1}\right)+i \operatorname{Im}\left(\overrightarrow{\mathbf{v}}_{1}\right)$. The expansion of eigenpair relation $A \overrightarrow{\mathbf{v}}_{1}=\lambda_{1} \overrightarrow{\mathbf{v}}_{1}$ into real and imaginary parts gives the relation

$$
A\left(\mathcal{R e}\left(\overrightarrow{\mathbf{v}}_{1}\right)+i \operatorname{Im}\left(\overrightarrow{\mathbf{v}}_{1}\right)\right)=(a+i b)\left(\mathcal{R e}\left(\overrightarrow{\mathbf{v}}_{1}\right)+i \operatorname{Im}\left(\overrightarrow{\mathbf{v}}_{1}\right)\right),
$$

which shows that

$$
A P=P\left(\begin{array}{rr}
a & b \\
-b & a
\end{array}\right) .
$$

Then

$$
\begin{aligned}
\Phi^{\prime}(t) \Phi^{-1}(t) & =P R^{\prime}(t) P^{-1} P R^{-1}(t) P^{-1} \\
& =P R^{\prime}(t) R^{-1}(t) P^{-1} \\
& =P\left(a I+\left(\begin{array}{rr}
0 & b \\
-b & 0
\end{array}\right)\right) P^{-1} \\
& =P\left(\begin{array}{rr}
a & b \\
-b & a
\end{array}\right) P^{-1} \\
& =A
\end{aligned}
$$

The proof of $\Phi^{\prime}(t)=A \Phi(t)$ is complete.
The formula for $e^{A t}$ implies that the general solution in this special case is

$$
\overrightarrow{\mathbf{x}}(t)=e^{a t}\left\langle\mathcal{R e}\left(\overrightarrow{\mathbf{v}}_{1}\right) \mid \mathcal{I} \mathrm{m}\left(\overrightarrow{\mathbf{v}}_{1}\right)\right\rangle\left(\begin{array}{rr}
\cos b t & \sin b t \\
-\sin b t & \cos b t
\end{array}\right)\binom{c_{1}}{c_{2}}
$$

The values c_{1}, c_{2} are related to the initial condition $\overrightarrow{\mathbf{x}}(0)$ by the matrix identity

$$
\left.\binom{c_{1}}{c_{2}}=\left\langle\mathcal{R e}\left(\overrightarrow{\mathbf{v}}_{1}\right)\right| \mathcal{I} \mathrm{m}\left(\overrightarrow{\mathbf{v}}_{1}\right)\right)^{-1} \overrightarrow{\mathbf{x}}(0\rangle
$$

The Eigenanalysis Method for a 3×3 Matrix

Suppose that A is 3×3 real and has eigenpairs

$$
\left(\lambda_{1}, \overrightarrow{\mathbf{v}}_{1}\right), \quad\left(\lambda_{2}, \overrightarrow{\mathbf{v}}_{2}\right), \quad\left(\lambda_{3}, \overrightarrow{\mathbf{v}}_{3}\right)
$$

with $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}$ independent. The eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ can be all real. Also, there can be one real eigenvalue λ_{3} and a complex conjugate pair of eigenvalues $\lambda_{1}=\bar{\lambda}_{2}=a+i b$ with $b>0$.
The general solution of $\overrightarrow{\mathbf{x}}^{\prime}=A \overrightarrow{\mathbf{x}}$ can be written as

$$
\overrightarrow{\mathbf{x}}(t)=c_{1} e^{\lambda_{1} t} \overrightarrow{\mathbf{v}}_{1}+c_{2} e^{\lambda_{2} t} \overrightarrow{\mathbf{v}}_{2}+c_{3} e^{\lambda_{3} t} \overrightarrow{\mathbf{v}}_{3}
$$

The details, which parallel the 2×2 details, are left as an exercise for the reader.
The solution $\overrightarrow{\mathbf{x}}$ is written in vector-matrix form

$$
\overrightarrow{\mathbf{x}}(t)=\left\langle\overrightarrow{\mathbf{v}}_{1} \mid \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}\right\rangle\left(\begin{array}{ccc}
e^{\lambda_{1} t} & 0 & 0 \\
0 & e^{\lambda_{2} t} & 0 \\
0 & 0 & e^{\lambda_{3} t}
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)
$$

Because the three eigenvectors $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}$ are assumed independent, then $\left\langle\overrightarrow{\mathbf{v}}_{1}\right| \overrightarrow{\mathbf{v}}_{2}\left|\overrightarrow{\mathbf{v}}_{3}\right\rangle$ is invertible. Setting $t=0$ in the previous display gives

$$
\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{2}
\end{array}\right)=\left\langle\overrightarrow{\mathbf{v}}_{1}\right| \overrightarrow{\mathbf{v}}_{2}\left|\overrightarrow{\mathbf{v}}_{3}\right\rangle^{-1} \overrightarrow{\mathbf{x}}(0)
$$

Constants c_{1}, c_{2}, c_{3} can be chosen to produce any initial condition $\overrightarrow{\mathbf{x}}(0)$, therefore $\overrightarrow{\mathbf{x}}(t)$ is the general solution of the 3×3 system $\overrightarrow{\mathbf{x}}^{\prime}=A \overrightarrow{\mathbf{x}}$. There is a corresponding exponential matrix relation

$$
e^{A t}=\left\langle\overrightarrow{\mathbf{v}}_{1}\right| \overrightarrow{\mathbf{v}}_{2}\left|\overrightarrow{\mathbf{v}}_{3}\right\rangle\left(\begin{array}{ccc}
e^{\lambda_{1} t} & 0 & 0 \\
0 & e^{\lambda_{2} t} & 0 \\
0 & 0 & e^{\lambda_{3} t}
\end{array}\right)\left\langle\overrightarrow{\mathbf{v}}_{1}\right| \overrightarrow{\mathbf{v}}_{2}\left|\overrightarrow{\mathbf{v}}_{3}\right\rangle^{-1} .
$$

This formula is normally used when the eigenpairs are real. When there is a complex conjugate pair of eigenvalues $\lambda_{1}=\bar{\lambda}_{2}=a+i b, b>0$, then as was shown in the 2×2 case it is possible to extract a real solution $\overrightarrow{\mathrm{x}}$ from the complex formula and report a real form for the exponential matrix:

$$
\begin{aligned}
e^{A t} & =P\left(\begin{array}{ccc}
e^{a t} \cos b t & e^{a t} \sin b t & 0 \\
-e^{a t} \sin b t & e^{a t} \cos b t & 0 \\
0 & 0 & e^{\lambda_{3} t}
\end{array}\right) P^{-1}, \\
P & =\left\langle\mathcal{R e}\left(\overrightarrow{\mathbf{v}}_{1}\right)\right| \operatorname{I} \mathrm{m}\left(\overrightarrow{\mathbf{v}}_{1}\right)\left|\overrightarrow{\mathbf{v}}_{3}\right\rangle
\end{aligned}
$$

The Eigenanalysis Method for an $n \times n$ Matrix

The general solution formula and the formula for $e^{A t}$ generalize easily from the 2×2 and 3×3 cases to the general case of an $n \times n$ matrix.

Theorem 17 (The Eigenanalysis Method)

Let the $n \times n$ real matrix A have eigenpairs

$$
\left(\lambda_{1}, \overrightarrow{\mathbf{v}}_{1}\right), \quad\left(\lambda_{2}, \overrightarrow{\mathbf{v}}_{2}\right), \quad \ldots, \quad\left(\lambda_{n}, \overrightarrow{\mathbf{v}}_{n}\right),
$$

with n independent eigenvectors $\overrightarrow{\mathbf{v}}_{1}, \ldots, \overrightarrow{\mathbf{v}}_{n}$. Then the general solution of the linear system $\overrightarrow{\mathrm{x}}^{\prime}=A \overrightarrow{\mathrm{x}}$ is given by

$$
\overrightarrow{\mathbf{x}}(t)=c_{1} \overrightarrow{\mathbf{v}}_{1} e^{\lambda_{1} t}+c_{2} \overrightarrow{\mathbf{v}}_{2} e^{\lambda_{2} t}+\cdots+c_{n} \overrightarrow{\mathbf{v}}_{n} e^{\lambda_{n} t} .
$$

The vector-matrix form of the general solution is

$$
\overrightarrow{\mathbf{x}}(t)=\left\langle\overrightarrow{\mathbf{v}}_{1}\right| \cdots\left|\overrightarrow{\mathbf{v}}_{n}\right\rangle \boldsymbol{\operatorname { d i a g }}\left(e^{\lambda_{1} t}, \ldots, e^{\lambda_{n} t}\right)\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)
$$

This form is real provided all eigenvalues are real. A real form can be made from a complex form by following the example of a 3×3 matrix A. The plan is to list all complex eigenvalues first, in pairs, $\lambda_{1}, \bar{\lambda}_{1}, \ldots$, $\lambda_{p}, \bar{\lambda}_{p}$. Then the real eigenvalues r_{1}, \ldots, r_{q} are listed, $2 p+q=n$. Define

$$
\left.P=\left\langle\mathcal{R e}\left(\overrightarrow{\mathbf{v}}_{1}\right)\right| \operatorname{Im}\left(\overrightarrow{\mathbf{v}}_{1}\right)|\ldots| \mathcal{R e}\left(\overrightarrow{\mathbf{v}}_{2 p-1}\right)\left|\operatorname{Im}\left(\overrightarrow{\mathbf{v}}_{2 p-1}\right)\right| \overrightarrow{\mathbf{v}}_{2 p+1}|\cdots| \overrightarrow{\mathbf{v}}_{n}\right\rangle,
$$

$$
R_{\lambda}(t)=e^{a t}\left(\begin{array}{cc}
\cos b t & \sin b t \\
-\sin b t & \cos b t
\end{array}\right), \quad \text { where } \quad \lambda+a+i b, \quad b>0
$$

Then the real vector-matrix form of the general solution is

$$
\overrightarrow{\mathbf{x}}(t)=P \operatorname{diag}\left(R_{\lambda_{1}}(t), \ldots, R_{\lambda_{p}}(t), e^{r_{1} t}, \ldots, e^{r_{q} t}\right)\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)
$$

and

$$
e^{A t}=P \mathbf{d i a g}\left(R_{\lambda_{1}}(t), \ldots, R_{\lambda_{p}}(t), e^{r_{1} t}, \ldots, e^{r_{q} t}\right) P^{-1}
$$

Remark on Euler Atoms. If the characteristic equation is $(\lambda-1)^{3}=0$ and there are three independent eigenvectors, then the general solution $\overrightarrow{\mathbf{x}}(t)=c_{1} e^{\lambda_{1} t} \overrightarrow{\mathbf{v}}_{1}+c_{2} e^{\lambda_{2} t} \overrightarrow{\mathbf{v}}_{2}+c_{3} e^{\lambda_{3} t} \overrightarrow{\mathbf{v}}_{3}$ contains no terms with $t e^{t}$ nor $t^{2} e^{t}$. Our intuition from $(\lambda-1)^{3}=0$ is that solution components should be linear combinations of $e^{t}, t e^{t}, t^{2} e^{t}$. How is that possible? The answer is contained in the linear combination $2 e^{t}+0 t e^{t}+0 t^{2} e^{t}$: it is indeed a linear combination of the Euler atoms.

Spectral Theory Methods

The simplicity of Putzer's spectral method for computing $e^{A t}$ is appreciated, but we also recognize that the literature has an algorithm to compute $e^{A t}$, devoid of differential equations, which is of fundamental importance in linear algebra. The parallel algorithm computes $e^{A t}$ directly from the eigenvalues λ_{j} of A and certain products of the nilpotent matrices $A-\lambda_{j} I$. Called spectral formulas, they can be implemented in a numerical laboratory or computer algebra system, in order to efficiently compute $e^{A t}$, even in the case of multiple eigenvalues.

Theorem 18 (Computing $e^{A t}$ for Simple Eigenvalues)

Let the $n \times n$ matrix A have n simple eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ (possibly complex) and define constant matrices $\overrightarrow{\mathbf{Q}}_{1}, \ldots, \overrightarrow{\mathbf{Q}}_{n}$ by the formulas

$$
\overrightarrow{\mathbf{Q}}_{j}=\Pi_{i \neq j} \frac{A-\lambda_{i} I}{\lambda_{j}-\lambda_{i}}, \quad j=1, \ldots, n .
$$

Then

$$
e^{A t}=e^{\lambda_{1} t} \overrightarrow{\mathbf{Q}}_{1}+\cdots+e^{\lambda_{n} t} \overrightarrow{\mathbf{Q}}_{n} .
$$

Theorem 19 (Computing $e^{A t}$ for Multiple Eigenvalues)
Let the $n \times n$ matrix A have k distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ of algebraic multiplicities m_{1}, \ldots, m_{k}. Let $p(\lambda)=\operatorname{det}(A-\lambda I)$ and define polynomials $a_{1}(\lambda), \ldots, a_{k}(\lambda)$ by the partial fraction identity

$$
\frac{1}{p(\lambda)}=\frac{a_{1}(\lambda)}{\left(\lambda-\lambda_{1}\right)^{m_{1}}}+\cdots+\frac{a_{k}(\lambda)}{\left(\lambda-\lambda_{k}\right)^{m_{k}}} .
$$

Define constant matrices $\overrightarrow{\mathbf{Q}}_{1}, \ldots, \overrightarrow{\mathbf{Q}}_{k}$ by the formulas

$$
\overrightarrow{\mathbf{Q}}_{j}=a_{j}(A) \Pi_{i \neq j}\left(A-\lambda_{i} I\right)^{m_{i}}, \quad j=1, \ldots, k
$$

Then

$$
\begin{equation*}
e^{A t}=\sum_{i=1}^{k} e^{\lambda_{i} t} \overrightarrow{\mathbf{Q}}_{i} \sum_{j=0}^{m_{i}-1}\left(A-\lambda_{i} I\right)^{j} \frac{t^{j}}{j!} . \tag{2}
\end{equation*}
$$

Proof: Let $\overrightarrow{\mathbf{N}}_{i}=\overrightarrow{\mathbf{Q}}_{i}\left(A-\lambda_{i} I\right), 1 \leq i \leq k$. We first prove

Lemma 1 (Properties)

1. $\overrightarrow{\mathbf{Q}}_{1}+\cdots+\overrightarrow{\mathbf{Q}}_{k}=I$,
2. $\mathbf{Q}_{i} \overrightarrow{\mathbf{Q}}_{i}=\overrightarrow{\mathbf{Q}}_{i}$,
3. $\mathbf{Q}_{i} \mathbf{Q}_{j}=\overrightarrow{\mathbf{0}}$ for $i \neq j$,
4. $\overrightarrow{\mathbf{N}}_{i} \overrightarrow{\mathbf{N}}_{j}=\overrightarrow{\mathbf{0}}$ for $i \neq j$,
5. $\overrightarrow{\mathbf{N}}_{i}^{m_{i}}=\overrightarrow{\mathbf{0}}$,
6. $A=\sum_{i=1}^{k}\left(\lambda_{i} \overrightarrow{\mathbf{Q}}_{i}+\overrightarrow{\mathbf{N}}_{i}\right)$.

The proof of $\mathbf{1}$ follows from clearing fractions in the partial fraction expansion of $1 / p(\lambda)$:

$$
1=\sum_{i=1}^{k} a_{i}(\lambda) \frac{p(\lambda)}{\left(\lambda-\lambda_{i}\right)^{m_{i}}} .
$$

The projection property $\mathbf{2}$ follows by multiplication of identity $\mathbf{1}$ by $\overrightarrow{\mathbf{Q}}_{i}$ and then using 2.
The proof of $\mathbf{3}$ starts by observing that $\overrightarrow{\mathbf{Q}}_{i}$ and $\overrightarrow{\mathbf{Q}}_{j}$ together contain all the factors of $p(A)$, therefore $\overrightarrow{\mathbf{Q}}_{i} \overrightarrow{\mathbf{Q}}_{j}=q(A) p(A)$ for some polynomial q. The CayleyHamilton theorem $p(A)=\overrightarrow{\mathbf{0}}$ finishes the proof.
To prove 4, write $\overrightarrow{\mathbf{N}}_{i} \overrightarrow{\mathbf{N}}_{j}=\left(A-\lambda_{i} I\right)\left(A-\lambda_{j} I\right) \overrightarrow{\mathbf{Q}}_{i} \overrightarrow{\mathbf{Q}}_{j}$ and apply 3.
To prove 5, use $\overrightarrow{\mathbf{Q}}_{i}^{m_{i}}=\overrightarrow{\mathbf{Q}}_{i}\left(\right.$ from 2) to write $\overrightarrow{\mathbf{N}}_{i}^{m_{i}}=\left(A-\lambda_{i} I\right)^{m_{i}} \overrightarrow{\mathbf{Q}}_{i}=p(A)=\overrightarrow{\mathbf{0}}$.
To prove $\mathbf{6}$, multiply $\mathbf{1}$ by A and rearrange as follows:

$$
\begin{aligned}
A & =\sum_{i=1}^{k} A \overrightarrow{\mathbf{Q}}_{i} \\
& =\sum_{i=1}^{k} \lambda_{i} \overrightarrow{\mathbf{Q}}_{i}+\left(A-\lambda_{i} I\right) \overrightarrow{\mathbf{Q}}_{i} \\
& =\sum_{i=1}^{k} \lambda_{i} \overrightarrow{\mathbf{Q}}_{i}+\overrightarrow{\mathbf{N}}_{i}
\end{aligned}
$$

To prove (2), multiply $\mathbf{1}$ by $e^{A t}$ and compute as follows:

$$
\begin{aligned}
e^{A t} & =\sum_{i=1}^{k} \overrightarrow{\mathbf{Q}}_{i} e^{A t} \\
& =\sum_{i=1}^{k} \overrightarrow{\mathbf{Q}}_{i} e^{\lambda_{i} I t+\left(A-\lambda_{i} I\right) t} \\
& =\sum_{i=1}^{k=} \mathbf{Q}_{i} e^{\lambda_{i} t} e^{\left(A-\lambda_{i} I\right) t} \\
& =\sum_{i=1}^{k} \overrightarrow{\mathbf{Q}}_{i} e^{\lambda_{i} t} e^{\mathbf{Q}_{i}\left(A-\lambda_{i} I\right) t} \\
& =\sum_{i=1}^{k} \overrightarrow{\mathbf{Q}}_{i} e^{\lambda_{i} t} e^{\mathbf{N}_{i} t} \\
& =\sum_{i=1}^{k} \overrightarrow{\mathbf{Q}}_{i} e^{e_{i} t} \sum_{j=0}^{m_{1}-1}\left(A-\lambda_{i} I\right)^{j} \frac{t^{j}}{j!}
\end{aligned}
$$

Solving Planar Systems $\overrightarrow{\mathbf{x}}^{\prime}(t)=A \overrightarrow{\mathbf{x}}(t)$

A 2×2 real system $\overrightarrow{\mathbf{x}}^{\prime}(t)=A \overrightarrow{\mathbf{x}}(t)$ can be solved in terms of the roots of the characteristic equation $\operatorname{det}(A-\lambda I)=0$ and the real matrix A.

Theorem 20 (Planar System, Putzer's Spectral Formula)

Consider the real planar system $\overrightarrow{\mathbf{x}}^{\prime}(t)=A \overrightarrow{\mathbf{x}}(t)$. Let λ_{1}, λ_{2} be the roots of the characteristic equation $\operatorname{det}(A-\lambda I)=0$. The real general solution $\overrightarrow{\mathbf{x}}(t)$ is given by the formula

$$
\overrightarrow{\mathbf{x}}(t)=e^{A t} \overrightarrow{\mathbf{x}}(0)
$$

where the 2×2 exponential matrix $e^{A t}$ is given as follows.

$$
\begin{array}{ll}
\text { Real } \lambda_{1} \neq \lambda_{2} & e^{A t}=e^{\lambda_{1} t} I+\frac{e^{\lambda_{2} t}-e^{\lambda_{1} t}}{\lambda_{2}-\lambda_{1}}\left(A-\lambda_{1} I\right) . \\
\text { Real } \lambda_{1}=\lambda_{2} & e^{A t}=e^{\lambda_{1} t} I+t e^{\lambda_{1} t}\left(A-\lambda_{1} I\right) . \\
\text { Complex } \lambda_{1}=\bar{\lambda}_{2}, & e^{A t}=e^{a t} \cos b t I+\frac{e^{a t} \sin (b t)}{b}(A-a \\
\lambda_{1}=a+b i, b>0 &
\end{array}
$$

Proof: The formulas are from Putzer's algorithm, or equivalently, from the spectral formulas, with rearranged terms. The complex case is formally the real part of the distinct root case when $\lambda_{2}=\bar{\lambda}_{1}$. The spectral formula is the analog of the second order equation formulas, Theorem 1 in Chapter 5.

Illustrations. Typical cases are represented by the following 2×2 matrices A, which correspond to roots λ_{1}, λ_{2} of the characteristic equation $\operatorname{det}(A-\lambda I)=0$ which are real distinct, real double or complex conjugate. The solution $\overrightarrow{\mathbf{x}}(t)=e^{A t} \overrightarrow{\mathbf{x}}(0)$ is given here in two forms, by writing $e^{A t}$ using 1 a spectral formula and 2 Putzer's spectral formula.

$$
\begin{array}{ll}
\lambda_{1}=5, \lambda_{2}=2 & \text { Real distinct roots. } \\
A=\left(\begin{array}{ll}
-1 & 3 \\
-6 & 8
\end{array}\right) & \boxed{\mathbf{1}} e^{A t}=\frac{e^{5 t}}{3}\left(\begin{array}{ll}
-3 & 3 \\
-6 & 6
\end{array}\right)+\frac{e^{2 t}}{-3}\left(\begin{array}{ll}
-6 & 3 \\
-6 & 3
\end{array}\right) \\
& \mathbf{2} e^{A t}=e^{5 t} I+\frac{e^{2 t}-e^{5 t}}{2-5}\left(\begin{array}{ll}
-6 & 3 \\
-6 & 3
\end{array}\right) \\
\lambda_{1}=\lambda_{2}=3 & \text { Real double root. } \\
A=\left(\begin{array}{rr}
2 & 1 \\
-1 & 4
\end{array}\right) & \mathbf{1} e^{A t}=e^{3 t}\left(I+t\left(\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right)\right) \\
& \mathbf{2} e^{A t}=e^{3 t} I+t e^{3 t}\left(\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right)
\end{array}
$$

$$
\begin{array}{ll}
\lambda_{1}=\bar{\lambda}_{2}=2+3 i & \text { Complex conjugate roots. } \\
A=\left(\begin{array}{rr}
2 & 3 \\
-3 & 2
\end{array}\right) & \boxed{\mathbf{1}} e^{A t}=2 \mathcal{R e}\left(\frac{e^{2 t+3 i t}}{2(3 i)}\left(\begin{array}{cc}
3 i & 3 \\
-3 & 3 i
\end{array}\right)\right) \\
& \mathbf{2} e^{A t}=e^{2 t} \cos 3 t I+\frac{e^{2 t} \sin 3 t}{3}\left(\begin{array}{cc}
0 & 3 \\
-3 & 0
\end{array}\right)
\end{array}
$$

The complex example is typical for real $n \times n$ matrices A with a complex conjugate pair of eigenvalues $\lambda_{1}=\bar{\lambda}_{2}$. Then $\overrightarrow{\mathbf{Q}}_{2}=\overline{\mathbf{Q}}_{1}$. The result is that λ_{2} is not used and we write instead a simpler expression using the college algebra equality $z+\bar{z}=2 \mathcal{R e}(z)$:

$$
e^{\lambda_{1} t} \overrightarrow{\mathbf{Q}}_{1}+e^{\lambda_{2} t} \overrightarrow{\mathbf{Q}}_{2}=2 \mathcal{R e}\left(e^{\lambda_{1} t} \overrightarrow{\mathbf{Q}}_{1}\right) .
$$

This observation explains why $e^{A t}$ is real when A is real, by pairing complex conjugate eigenvalues in the spectral formula.

