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11.4 Matrix Exponential

The problem
d

dt
has a unique solution, according to the Picard-Lindel6f theorem. Solve
the problem n times, when X equals a column of the identity matrix,
and write w1 (t), ..., W, () for the n solutions so obtained. Define the
matrix exponential e’ by packaging these n solutions into a matrix:

W (1))

(t) = A%(t), %(0) = %o

et = (Wi(t)]...

By construction, any possible solution of %i = AX can be uniquely

expressed in terms of the matrix exponential At by the formula

(1) = eA%(0).

Matrix Exponential Identities

Announced here and proved below are various formulas and identities
for the matrix exponential At

% (eAt) _ g At

66 =1

BeAt = eAtB
JAt Bt _ (A+ B)t
At As _ JA(t+5)

(eAt)*l _ A

eAt = ()P 4+ () Py

At Aot
At C (AT
e e + N ( 1)
eAl = Mt teMU(A — M)
at o3
eAt — ot cosbt I + %mbt(fl —al)
At _ i nt”
—~ nl
eAt — P—lejtp

Columns satisfy X’ = AX.

Where 0 is the zero matrix.
If AB= BA.
If AB= BA.

Since At and As commute.

Equivalently, eAte=4t = T

Putzer's spectral formula —
see page 816.

Ai52><2, )\1%)\2 real.
Ai52><2, )\1:)\2 real.

Ais2x2, A\ =X\ =a+ib,
b> 0.

Picard series. See page 818.

Jordan form J = PAP L.
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Putzer’s Spectral Formula

The spectral formula of Putzer applies to a system X’ = AX to find its
general solution. The method uses matrices P4, ..., P, constructed from
A and the eigenvalues Ai,..., A\, of A, matrix multiplication, and the
solution r(t) of the first order n x n initial value problem

A 0 0 0 O 1
1 X O 0 0 0
1_",(75) — 0 1 A3 0 O f-’(t)’ f-’(()) = .
O 0 0 --- 1 M\, 0

The system is solved by first order scalar methods and back-substitution.
We will derive the formula separately for the 2 x 2 case (the one used
most often) and the n x n case.

Spectral Formula 2 x 2

The general solution of the 2 x 2 system X’ = AX is given by the formula
X(t) = (ri(t)Pr 4 r2(t) P2) X(0),

where 71, ro, P;, P» are defined as follows.

The eigenvalues 7 = A1, Ay are the two roots of the quadratic equation
det(A —rI) = 0.
Define 2 x 2 matrices P;, P» by the formulas
P=1 P=A-X\I

The functions r1(t), r2(t) are defined by the differential system

rlo= A, r1(0)
rh = MXara+r1, 12(0)

1,
0.

Proof: The Cayley-Hamilton formula (A — A\ I)(A — XoI) = 0 is valid for
any 2 x 2 matrix A and the two roots r = Ay, A2 of the determinant equality
det(A —rI) = 0. The Cayley-Hamilton formula is the same as (A — \y) P, = 0,
which implies the identity AP, = Ay P,. Compute as follows.

X'(t) = (ri(t)P1 + r5(t) P2) X (0)
= (Mr1(t) Py + r1(t) Py 4+ Aara(t) Py) X(0)
= (r1(t) A+ Aar2(t) P2) X (0)
= (ri(t)A+ra2(t)AP2) X(0)

A(r1(H)] +r2(t)P2) % (0)
AR (t).
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This proves that X (t) is a solution. Because ®(t) = ri(t) P + r2(t) P2 satisfies
®(0) = I, then any possible solution of X’ = AX can be represented by the
given formula. The proof is complete.

Real Distinct Eigenvalues. Suppose A is 2 x 2 having real distinct
eigenvalues A1, A2 and X (0) is real. Then

At AT

At e — €
ri=et, ry =
A1 — A2

and
At Aot

% (t) = (emf + ﬁm - m)) 2(0).

The matrix exponential formula for real distinct eigenvalues:

At Aot

At :e)\1tI+ €

‘ A — Ao

(A—M\I).

Real Equal Eigenvalues. Suppose A is 2 x 2 having real equal
eigenvalues A\; = Ao and % (0) is real. Then r; = eM? ry = te*! and

%(t) = (M + e (A = MI)) R(0).
The matrix exponential formula for real equal eigenvalues:

At — ety teM (A — M\ ).

Complex Eigenvalues. Suppose A is 2 x 2 having complex eigen-
values A\; = a + bi with b > 0 and A2 = a — bi. If X(0) is real, then a
real solution is obtained by taking the real part of the spectral formula.
This formula is formally identical to the case of real distinct eigenvalues.
Then

Re(X(t)) = (Re(ri(t)I+ Re(m(t)@ — 1)) %(0)
_ <Re(e(“+ib)t)l +Re(e P 4 0 ib)]))) %(0)
qtSin bt

= (eatcosbtl+e b(A—aI)))i(O)

The matrix exponential formula for complex conjugate eigenvalues:

At — eat (cos bt I + Snll)bt(A — a[))) .
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How to Remember Putzer’s 2 x 2 Formula. The expressions

At — 1 (O] + ra(t) (A — M),
et — e

AL — A2

1) pa

ri(t) = Mt ro(t) =

are enough to generate all three formulas. Fraction rg is the d/d\-Newton
quotient for r;. It has limit teMt as \a — A1, therefore the formula
includes the case \; = A9 by limiting. If Ay = Xy = a +ib with b > 0,
then the fraction 73 is already real, because it has for z = eMtand w = M\

the form ‘
z—Z _ sin bt

t) = .
ra(t) w— W b

Taking real parts of expression (1) gives the complex case formula.
Spectral Formula n x n

The general solution of X’ = AX is given by the formula

X(t) = ()P +r2t)Po+ -+ rp(t)Py) X(0),

where r1, ro, ..., 1y, P1, P, ..., P, are defined as follows.

The eigenvalues r = Aq,..., A, are the roots of the polynomial equation
det(A —rI) = 0.

Define n x n matrices Py, ..., P, by the formulas

Pi=1, Py=DP1(A=Nal)=T"1(A-NI), k=2,...,n.

The functions r1(t), ..., r,(t) are defined by the differential system
?”/1 = )\17“1, 7‘1(0) = 1,
Té = ATy + 171, ?”2(0) =0,

= Arn+ra—1, 7m(0)=0.

Proof: The Cayley-Hamilton formula (A — A\ T)--- (A — X\, 1) = 0 is valid for
any n X n matrix A and the n roots r = A1, ..., A\, of the determinant equality
det(A —rI) = 0. Two facts will be used: (1) The Cayley-Hamilton formula
implies AP, = A\, Py; (2) The definition of Py implies A\ Py + Pr+1 = APy for
1 <k <n-—1. Compute as follows.

R'(t) = (r{(t)P, + - -+ 1. (t)P,) X (0)
= ( AT (1) Pr + Zrk1Pk> X(0)

k=1 k=2
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[<]
Il

n—1 n—1
(Z Mtk (8) P+ T () A P + > rkPkH) %(0)

k=1 k=1

Z L (t) ()\kpk + Pk—H) + ’I“n(t)/\nPn> i(O)

(]
Il

n—1
<Zrk VAP, + 1, (t )AP) %(0)
A

Details: Differentiate the formula for X (). Use the differential equa-
tions for rq,...,r,. Split off the last term from the first sum, then re-index
the last sum. Combine the two sums. Use the recursion for P, and
the Cayley-Hamilton formula (A — A\,I)P, = 0. @ Factor out A on the left.

Apply the definition of X ().

This proves that X (t) is a solution. Because B(t) = Y, ri(t) Py satisfies
®(0) = I, then any possible solution of X’ = Ax can be so represented. The
proof is complete.

Proofs of Matrix Exponential Properties

Verify (eAt>/ = Ae™. Let %, denote a column of the identity matrix. Define
% (t) = eA'%. Then
(eM)'%y = %'(1)
= AX(t)
= AeAtfc'o.
At)/

Because this identity holds for all columns of the identity matrix, then (e and

Ae”t have identical columns, hence we have proved the identity (eAt)/ = AeAt.

Verify AB = BA implies Be** = ¢4*B. Define w1(t) = eA!Bw, and
wa(t) = Bet'wy. Calculate Wi(t) = AWi(t) and wh(t) = BAettw, =
ABeA' g = AW (t), due to BA = AB. Because w1(0) = Wo(0) = W, then
the uniqueness assertion of the Picard-Lindeldf theorem implies that w1 (¢) =
W (t). Because W is any vector, then e4*B = BeA*. The proof is complete.

Verify eAteBt = e(ATB) et %o be a column of the identity matrix. Define
R(t) = et tho and ¥ (t) = eA+tB)1%,. We must show that X (t) = ¥ (¢) for
all t. Define i (t) = eB'%y. We will apply the result e*B = BeA?, valid for
BA = AB. The details:

%/(t) =
) At—'/(t)
e Bi ()
Be At—*(t)
X(t).

(
(

)
)

t
f(t
+
4
B)

-
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We also know that ¥'(t) = (A + B)¥ (¢) and since X (0) = ¥ (0) = X, then the
Picard-Lindel6f theorem implies that X (t) = ¥ (¢) for all t. This completes the
proof.

Verify e?te?® = ¢4(+5) | Let t be a variable and consider s fixed. Define
% (t) = eMte* %y and ¥ (t) = eA0+9)K . Then %(0) = ¥ (0) and both satisfy the
differential equation U’(t) = At (¢). By the uniqueness in the Picard-Lindelof
theorem, % (t) = ¥ (t), which implies eA'e* = ¢A() The proof is complete.

o
. "
Verify ¢t = g A”—‘. The idea of the proof is to apply Picard iteration.
n!
n=0
By definition, the columns of e* are vector solutions W (t), ..., W, (t) whose

values at ¢ = 0 are the corresponding columns of the n x n identity matrix.
According to the theory of Picard iterates, a particular iterate is defined by

t
ymaw:m+/ﬂwuﬂw,nzo
0

The vector ¥ o equals some column of the identity matrix. The Picard iterates
can be found explicitly, as follows.

yilt) = Fo+ [y Ayodr
Volt) = Fo+ [y AF1(r)dr
= Fo+ [y A+ At)§odr
= (I+At+ A%*)2)y,,
Falt) = (I+At+A2§+~~+A”%) Yo

The Picard-Lindel6f theorem implies that for ¥o = column k of the identity
matrix,
lim (1) = W),
This being valid for each index k, then the columns of the matrix sum
N /m

Z A™ ﬁ

m=0

converge as N — oo to Wi (t), ..., W, (t). This implies the matrix identity

The proof is complete.

Computing e

Theorem 13 (Computing ¢/t for J Triangular)
If .J is an upper triangular matrix, then a column () of e/t can be com-
puted by solving the system d’(t) = Ju(t), d(0) = V, where V is the
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corresponding column of the identity matrix. This problem can always be
solved by first-order scalar methods of growth-decay theory and the inte-
grating factor method.

Theorem 14 (Exponential of a Diagonal Matrix)
For real or complex constants A1, ..., An,

ediag()\l,...)\n)t — diag (em, o 6)\"t> .

Theorem 15 (Block Diagonal Matrix)
If A=diag(Bi,...,By) and each of By, ..., By is a square matrix, then

et = diag (eBlt, ceey eB’“t) .

Theorem 16 (Complex Exponential)
Given real a, b, then

a b .
—-b a at ( cosbt sin bt)
e =e :

—sinbt cosbt

Exercises 11.4

Matrix Exponential. wo(0) = ( (1) . In these exercises A

1. (Picard) Let A be real 2 x 2. Write | is triangular so that first-order meth-
out the two initial value problems | ods can solve the systems.
which define the columns w(t), 10
‘X}Q(t) of BAt. 5. A= ( )

2. (Picard) Let A be real 3 x 3. Write 1
out the three initial value problems | 6- A= < 0 )

0
0
which define the columns w(t),
Wol(t), Ws(t) of eAt. 7. A= ( 11 )
. 00 )
1
2

3. (Definition) Let A be real 2 x 2.

Show that the solution X(t) =| 8. A= ( -
Al satisfies X' = AR and
X(0) = do. Matrix Exponential Identities.

4. Definition Let A be real n x n. | g,
Show that the solution X(t) =
e1'% (0) satisfies X/ = AX. 10.

11.

Matrix Exponential 2 x 2. Find
et using the formula e4? = (W |wy) | 12:
and the corresponding systems w) = 13.

L 1 S S
Awq, w1(0) = ( 0 ), wWhy = AWa, | 14.
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