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Singular Value Decomposition and Discrete Cosine Transform of Images 
 
Introduction:  
 
 Digital cameras have revolutionized pictures. Now if you want to take a photo you can 
pull out your phone and take a photo and instantly see it and have it stored. This is a huge shift 
from the days of film and having to send in the film to be developed and getting it weeks after 
you took the photo. The storage of photos digitally is pretty costly though. Each photo is made 
up of a matrix storing numbers 0-255 for each color red green and blue. Meaning an 8-
megapixel photo has 8 million pixels or 24 million values to store. This is why images are 
usually compressed to reduce the amount of storage it takes to hold the image and for easier 
transmitting of images.  
 
Singular value decomposition method: 
 
 Singular value decomposition (SVD) is the idea that matrix A can be turned into 3 
matrices that which are commonly labeled as U, 𝛴 and VT. If A has m rows and n columns then 
U is an m by m matrix, 𝛴 is an m by n matrix and VT is an n by n matrix. At first, it seems 
counterproductive to divide an image up into 3 separate matrices since that’s roughly 3 times 
the space to be taken up from storing the original image. However, if only some of the rows and 
columns are used when multiplying the matrix back out you can still get a good approximation of 
what A originally was.  
 

(mxm)*(mxn)*(nxn) = (mxn)*(nxn) 
                    = mxn 

 
Now let’s say H is an arbitrary number less than n and m  

 
(mxH)*(HxH)*(Hxn) = (mxH)*(Hxn) 

                     =(mxn) 
 

So now you can see that if we reduced the size of these matrices U, 𝛴, and VT after 
multiplying them together you’ll end up with a matrix of the same size. For image compression, 
this means there won’t be any loss in pixels after it has been compressed down into these 
matrixes. However, SVD does not guarantee that the resulting A will have the same pixel 
values, but generally they will be close. 

 
Before I go into why Multiplying smaller matrixes from the SVD together give a good 

approximation I need to explain how to get the SVD. First, you find AT * A and its eigenvalues 
and eigenvectors.  

 



A = "2 4
1 2&  

AT * A = "2 1
4 2& "

2 4
1 2& = " 5 10

10 20& 

 
 
To find the eigenvalues solve determinant of (AT * A – ƛ*I) set equal to 0 
 

" 5 10
10 20& − ƛ"1 0

0 1& = 0 

 

"5 − ƛ 10
10 20 − ƛ&= 0 

 
 Then take the Determinate 
 

+5 − ƛ 10
10 20 − ƛ+= 0 

 
(5- ƛ)(20 – ƛ) - 100 =0 

 
ƛ1 = 25 
ƛ2 = 0 

 
 Then we need to take the square root of the eigenvalues to get the singular values. We’ll 
call them 𝜎. These values will be the diagonal of 𝛴. 
 
 𝜎1 = 5 
 𝜎2 = 0 
 
 Next find the nullspace of (AT *A – ƛ*I) for each eigenvalue found to find the eigenvectors 
then normalize the vectors. Call these vectors V. 
 

"5 − 25 10
10 20 − 25& V1 = "00& 

  
	𝑥1 = 1/2𝑡,	 𝑥2 = 	𝑡 

 

V1= "12& 

 
 

"5 − 0 10
10 20 − 0& V2="00& 

 
𝑥1 = 	−2𝑡, 	𝑥2 = 𝑡 

 



V2 = "−21 & 

 
 

Now Normalize these Vectors  
 

V1 = 3
√5
"12&							V2 = 3

√5
"−21 &  

 
These are the vectors that will make up the matrix V 

 
 Now we need another set of vectors U to complete the singular value decomposition. 
This is found the same way as finding 𝛴 and V but by using A* AT 
 

A * AT = "2 4
1 2& "

2 1
4 2& = "20 10

10 5 & 

 
The eigenvalues end up being the same as above so we must solve for the 

eigenvectors. 
  

"20 − 25 10
10 5 − 25& U1 = "00& 

  
 𝑥1 = 	2𝑡, 	𝑥2 = 𝑡 
 

U1 = "21& 

 
 

 "20 − 0 10
10 5 − 0& U2 = "00& 

  
 𝑥1 = 	2𝑡, 	𝑥2 = 𝑡 
 

U2 = "−12 & 

 
Now we have all the numbers to fill in matrixes U 𝛴 and VT. 𝛴 is constructed by taking all 

the 𝜎 and putting them in the diagonal of a matrix in decreasing order with size m by n and then 
filling the rest in with zeros. U is formed by taking the spanning the orthonormal U vectors and 
then V matrix can be found by spanning the orthonormal V vectors.  
 

U = 3
√5

 "2 −1
1 2 &, 𝛴 = "5 0

0 0& V = 3
√5
"1 −2
2 1 &  

 
V then must be transposed to VT 



VT = 3
√5
" 1 2
−2 1& 

 
 Now multiplying this back out will give you the original A. We can ignore small singular 
values and the corresponding vectors in VT and U these new matrixes and end up with a good 
approximation of A. In this example it is easy to see that using the second singular value of 0 
and its vectors would be pointless since you will end up with the zero vector anyways so it can 
be thrown away. This is the real reason it can be used as image compression to turn one matrix 
into 3.  
 
 Using a program to do the SVD then selectively ignoring the smaller singular values in 
the new matrixes we can see how a good approximation is given using this 548 by 825 pixel 
image below. 
 

 
 

Now if we compress it using SVD and reconstruct it by only using some of the singular 
values we can see a good approximation 
 



 
Number of Singular values used and compression ratio in order of left to right top to bottom  
(1 : 0.00304, 8 : 0.02436, 15 : 0.04568, 22 : 0.06700, 29 : 0.08832, 36 : 0.10965, 43 : 0.13097, 
50 : 0.15229, 57 : 0.17361)  
 

The first image is using just 1 singular value and doesn’t look like much of anything but 
using just 8 singular values like in the second and it begins to take shape. Using 43 singular 
values the image is almost identical to the original and is much smaller.  

 



This shows the error between the original photo vs. the number of singular values used. 
Even at 8 singular values this error is relatively low, but the image is hard to made out. At 
around 29 singular vales the error stops decreasing sharply and is about where the photo starts 
to look very similar to the original even though it is using just 8.832% of the space that the 
original is. At 43 singular values the image is nearly identical to the original both in terms of 
looks and the error. 
 

 
Discrete Cosine Transform method: 
 
 Discrete Cosine Transform (DCT) is the method of compression that JPEG file format 
uses to compress photos. At a very abstract level it will transform the image into a signal that 
the high frequency values of can be considered unimportant since the coefficients are generally 
so small and then can be thrown away. The general way to compress and image is to divide it 
into 8 by 8 matrixes and then apply DCT to the chunks of the image. The spatial equation (F(i,j)) 
to turn each chunk into a signal equation (F(u,v)) is show here: 
 

F(u,v) = 67
8
9
(;<) ∗ 67

?
9
6;<9 ∑ ∑ 𝐴(𝑖)𝐴(𝑗) cos GH∗I78 (2𝑖 + 1)K cos G

H∗L
7?

(2𝑗 + 1)K?M3
NOP

8M3
QOP 𝐹(𝑖, 𝑗) 

 

A(x)=S
3
√7
	𝑓𝑜𝑟	𝑥 = 0

1	𝑓𝑜𝑟	𝑥	 ≠ 0
X 

 
A 1-dimensional version of this equation would be  

 

F(u) = 67
8
9
(;<) ∑ 𝐴(𝑖) cos GH∗I78 (2𝑖 + 1)K

8M3
QOP 𝐹(𝑖) 

 

A(x)=S
3
√7
	𝑓𝑜𝑟	𝑥 = 0

1	𝑓𝑜𝑟	𝑥	 ≠ 0
X 

 
Now to show and example I will use the simpler 1-dimensional version. Say we have a 

Matrix that is 1 by 6 like this 
 

F(x) =[84 6 20 33 68 48 15 12] 
 

After we do DCT to these values we get  
 

F(u) = [101.1 20.3 −11.3 54.7 38.2 7.1 20.8 15.0] 
 

Then the numbers at the end can be ignored and the inverse DCT can be applied to this 
set to give you an approximation of the original F(x). In this case only the first 4 numbers were 



used to compute the inverse DCT and the rest were set to zero which is a pretty extreme 
example, but it still manages to get pretty close for only having half of the data. 
 

F(x) ≈ [63.1 36.7 16.9 27.9 54.1 58.8 30.4 −2.0] 
 

For a 2-dimensional version of this like how a photograph would be compressed the high 
frequency numbers won’t be at the end of the list since DCT will produce a coefficient matrix 
instead. The numbers that can be selectively ignored will still be the high frequency values, but 
these are now in the bottom right of the matrix.   
 
 Using a program to compute the DCT of an image and then reconstructing it and 
ignoring the high frequency values we can see how DCT can compress an image. 
 

  
 
 This is the uncompressed Image for reference to the compressed images below. 
 

 

 



Number of values in each 8 by 8 block and compression ratio in order of left to right top to 
bottom (0 : 0.0, 1 : 0.016, 15 : 0.234, 28 : 0.438, 39: 0.609, 48 : 0.75, 55 : 0.860, 60 : 0.937, 63 : 
0.984) 
 

The top row of photos are the only ones the show any degradation and using only the 
top 15 lowest frequency values it is almost impossible to tell the difference. All the rest of the 
photos look almost identical even though they use a faction of data the original image uses. 
JPEG images end up being compressed more by doing Huffman compression (a form of 
lossless compression) on the DCT Matrix to further reduce the size of the image. 

 
 
 The error for the DCT compressed photos is much steeper. Until the value of 15 

per 8 by 8 block where is it nearly 0 and this image cannot be distinguished from the original. 
Any values past using 15 per 8 by 8 block have a unnoticeable error between the original even 
though they use a faction of the space the original does. 
 

Conclusion:  
 
Both of these compression algorithms were done on black and white images since it was 

easier to compress just one matrix of black and white than 3 matrices of red, green, and blue. 
For a colored image the SVD or DCT would be applied to the colors red, green, and blue 
separately and then the matrices will be “stacked” on top of each other. 

 
These algorithms are both very useful to compress photos to a very high level but since 

they can compress and image so much the resulting image may not look like the original. The 
main problem with these is finding a balance between reducing the number of bits it takes to 
store the image and the quality of the resulting compressed image. 
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