
Determining Temperature Distribution of a 2D Heated Plate 
Kristen Stewart 

 
Introduction to Conduction 
 Heat transfer by conduction, convection, and radiation are critical processes in 
mechanical engineering. This project will focus only on heat transfer by conduction through a 
two dimensional plate. On a molecular level, conduction is the process of transferring energy 
from higher energy particles to lower energy particles by collision of particles or lattice 
vibrations. On a macroscopic level, conduction is the heat transfer from a high temperature to a 
lower temperature of an object that is stationary. Conduction can occur through many 
mediums, including solids, liquids, and gases, as long as there is no bulk motion. Heat transfer 
by conduction is used in many daily applications, like heating a pan on a stove or the cooling of 
a room on a winter day by conduction through a window pane. The general form of the heat 
equation, which is the governing equation for all heat transfer applications, is expressed as  
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This can be derived from energy balance principles (energy cannot be created nor destroyed) 
and applies to multidimensional heat transfer. However, assumptions can be made to certain 
cases which will make analysis much simpler. 
 
1D Steady State Conduction 
 Assuming there is no time dependence for the temperature distribution and heat 
transfer only occurs in one dimension, there are a set of equations used to determine the heat 
rate transferred throughout the medium. For one dimensional heat transfer, the heat equation 
simplifies to 	

𝜕/𝑇
𝜕𝑥/ = 0 

This heat equation is important because it implies that the temperature distribution must be 
linear. Using a relationship known as Fourier’s Law, which describes the heat flux through a 
plane wall that has a linear temperature distribution, the heat flux can be expressed as 
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The heat flux, qx’’, is the heat rate per unit area, k is the thermal conductivity which is a 
property of the material, and 45

40
 is the temperature gradient in the direction of the heat 

transfer. Since there is a linear temperature distribution, 45
40
= 65

7
, where L is the length of the 

wall. The negative sign in Fourier’s Law shows that the heat flux is in the direction of decreasing 
temperature, since heat is always transferred from a higher temperature to a lower 
temperature.  
 
2D Steady State Conduction 
 Equations can be simplified to Fourier’s Law for one-dimensional heat transfer, but the 
equations are more complex for heat transfer in multiple directions. Assuming the thermal 



conductivity, k, is a material constant, the heat equation for two dimensions can be simplified 
to  
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This heat equation can be solved using analytical methods of partial differential equations, such 
as separation of variables. However, for engineering purposes, numerical methods can be used 
to closely estimate the solution of the heat equation. One of the most useful methods to 
solving this two dimensional heat equation is nodal analysis. In the case of a heated plate, the 
plate is broken up into discrete points, called nodes, that are evenly spaced throughout the 
plate. Using an energy balance equation at each node, the temperature of each node can be 
determined using Fourier’s Law and a system of equations, as shown below. When converted 
into a matrix, linear algebra techniques can be used to solve the matrix equation. 
 
 
   

  

  

  

𝐸9:(<,:) = 𝐸?@A(<,:) 

𝑞<BC,:	 + 𝑞<DC,: + 𝑞<,:BC + 𝑞<,:DC = 0 

Heat flux is defined as heat rate per unit area, so heat rate can be rewritten as 

𝐴𝑞<BC,:	11 + 𝐴𝑞<DC,:11 + 𝐴𝑞<,:BC11 + 𝐴𝑞<,:DC11 = 0. 

Substituting in Fourier’s Law for each heat flux, 
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Since each node is equally spaced, Dx =Dy,   

−
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Rearranging,  
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Impact of Number of Nodes on Temperature Distribution 
 To illustrate the method of nodal analysis, there will be two heated plates, both with the 
same boundary conditions, but with a different number of nodes for each plate. 

(1) n = 5: 
 
 

 
 
 

Using the equations derived in the previous section, the augmented matrix, [A|b], of 
temperatures at each node, starting from the bottom left node, is shown below. 
 

 

4 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 80
-1 4 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30
0 -1 4 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30
0 0 -1 4 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30
0 0 0 -1 4 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 130
-1 0 0 0 0 4 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50
0 -1 0 0 0 -1 4 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 -1 0 0 0 -1 4 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 -1 0 0 0 -1 4 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 -1 0 0 0 -1 4 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 100
0 0 0 0 0 -1 0 0 0 0 4 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 50
0 0 0 0 0 0 -1 0 0 0 -1 4 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 -1 0 0 0 -1 4 -1 0 0 0 -1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 -1 0 0 0 -1 4 -1 0 0 0 -1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 4 0 0 0 0 -1 0 0 0 0 0 100
0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 4 -1 0 0 0 -1 0 0 0 0 50
0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 4 -1 0 0 0 -1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 4 -1 0 0 0 -1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 4 -1 0 0 0 -1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 4 0 0 0 0 -1 100
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 4 -1 0 0 0 100
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 4 -1 0 0 50
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 4 -1 0 50
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 4 -1 50
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 4 150
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Since [A] is a square matrix and has a nonzero determinant, [A] has an inverse. Therefore, the 
solution to the matrix equation [A]x = b, can be expressed as x = [A]-1b. The solution vector, x, is 
shown below. 

 
Using this solution vector, a contour plot of the temperatures at each node on the plate was 
created and shown below, as a visual representation of the temperature distribution across the 
plate. 

 

T_1 42.1919192
T_2 41.0047591
T_3 43.3422688
T_4 49.6916278
T_5 64.0606061
T_6 47.7629176
T_7 48.4848485
T_8 52.6726884
T_9 61.3636364
T_10 76.5507964
T_11 50.3749029
T_12 52.4990287
T_13 57.5
T_14 66.5394328
T_15 80.7789433
T_16 51.2376651
T_17 53.6363636
T_18 58.28885
T_19 66.5151515
T_20 80.0255439
T_21 50.9393939
T_22 52.5199106
T_23 55.503885
T_24 61.2067793
T_25 72.8080808

x 



 
Now, the number of nodes along each row was increased from n = 5 to n=20 to show how the 
temperature distribution changes, with the same boundary conditions 
(2) n = 20: 
 

 
 
Using the same process as above, the matrix [A] of equations at each node can be obtained. 
The matrix is size 400x400, so the details are omitted. Once the vector of temperatures at each 
node is solved for, a contour plot of the temperature distribution can be created again.  
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For the same boundary conditions on a heated plate, as the number of nodes increases, the 
discontinuities in the temperature distribution across nodes transition to a more continuous 
distribution. To achieve the most accurate approximation, increase the number of nodes until 
there are an infinite number of nodes within the plate.  
 
Impact of Boundary Conditions on Temperature Distribution 

When the temperatures at the boundary of the heated plate are fixed, the temperature 
distribution will be similar to the previous examples. However, in engineering purposes, the 
boundary does not always have a prescribed temperature. Some important applications require 
convection on the outer surface, like air blowing over the surface, so heat is transferred from 
the air to the surface of the plate. The boundary conditions change, so the temperature 
distribution will be described below.  
 
 
   

  

 

Using the same principles of energy balance and heat flux, the equation for the temperature at 
node (m,n) can be derived. 	

𝐸9:(<,:) = 𝐸?@A(<,:) 

𝑞<BC,:	 + 𝑞<DC,: + 𝑞<,:BC + 𝑞M9N = 0 

Heat flux is defined as heat rate per unit area, so heat rate can be rewritten as 
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Substituting in Fourier’s Law for each heat flux from the nodes and the relationship that  
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Since each node is equally spaced, Dx =Dy and multiplying the  equation by 2,   
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Another useful application is when the boundary is insulated, so there is no heat transfer from 
the plate to the surroundings. This occurs when the heat transfer coefficient, h, is equal to 0. 
The equation for an insulated boundary condition would then be expressed as  

4𝑇<,: − 2𝑇<,:BC − 𝑇<DC,: − 𝑇<BC,: = 0 
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Convection Across One Surface, Prescribed Temperatures on Other Surfaces 
Let k = 1 W/mK for a heated plate with n = 5, Dx = 0.2 m: 
 

 

 
 
 
 

 
The augmented matrix [A|b] for the set of nodes, with one side having convection is expressed 
below. 

 
 
 
 

8 -1 0 0 0 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 170
-1 8 -1 0 0 0 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 120
0 -1 8 -1 0 0 0 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 120
0 0 -1 8 -1 0 0 0 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 120
0 0 0 -1 8 0 0 0 0 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 220
-1 0 0 0 0 4 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50
0 -1 0 0 0 -1 4 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 -1 0 0 0 -1 4 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 -1 0 0 0 -1 4 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 -1 0 0 0 -1 4 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 100
0 0 0 0 0 -1 0 0 0 0 4 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 50
0 0 0 0 0 0 -1 0 0 0 -1 4 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 -1 0 0 0 -1 4 -1 0 0 0 -1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 -1 0 0 0 -1 4 -1 0 0 0 -1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 4 0 0 0 0 -1 0 0 0 0 0 100
0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 4 -1 0 0 0 -1 0 0 0 0 50
0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 4 -1 0 0 0 -1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 4 -1 0 0 0 -1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 4 -1 0 0 0 -1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 4 0 0 0 0 -1 100
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 4 -1 0 0 0 100
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 4 -1 0 0 50
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 4 -1 0 50
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 4 -1 50
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 4 150
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From the new contour plot, it can be observed that the side with convection has an effect on 
more nodes than the prescribed temperatures case of a heated plate. More heat is transferred 
on this plate with convection to the surroundings, rather than the prescribed temperatures. 
However, the general shape of the contours is similar to the plate with prescribed 
temperatures. The biggest difference is that as n increases along the bottom of the plate, the 
temperature increases, whereas it was a constant temperature in the prescribed temperature 
case. 
 
Insulation Across One Surface, Prescribed Temperatures on Other Surfaces 
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The augmented matrix [A|b] for the set of nodes, with one side being insulated is expressed 
below. 

 
 
 

 

4 -1 0 0 0 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50
-1 4 -1 0 0 0 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 -1 4 -1 0 0 0 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 -1 4 -1 0 0 0 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 -1 4 0 0 0 0 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
-1 0 0 0 0 4 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50
0 -1 0 0 0 -1 4 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 -1 0 0 0 -1 4 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 -1 0 0 0 -1 4 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 -1 0 0 0 -1 4 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 100
0 0 0 0 0 -1 0 0 0 0 4 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 50
0 0 0 0 0 0 -1 0 0 0 -1 4 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 -1 0 0 0 -1 4 -1 0 0 0 -1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 -1 0 0 0 -1 4 -1 0 0 0 -1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 4 0 0 0 0 -1 0 0 0 0 0 100
0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 4 -1 0 0 0 -1 0 0 0 0 50
0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 4 -1 0 0 0 -1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 4 -1 0 0 0 -1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 4 -1 0 0 0 -1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 4 0 0 0 0 -1 100
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 4 -1 0 0 0 100
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 4 -1 0 0 50
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 4 -1 0 50
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 4 -1 50
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 4 150



Since there is insulation, there is no heat transfer along the bottom surface, so the temperature 
increases significantly along the bottom of the plate. In the case of constant temperature, the 
temperature had a less significant gradient along the bottom of the plate.  
 
As seen from these different cases, linear algebra techniques can be used for a variety of 
boundary conditions, and result in different temperature gradients throughout the plate.  


