Linear Algebra in File
Compression: SVD and DCT

By: Andrew Fraser

How Are Images Stored?

e Images are generally stored and visualized through storing a 2D array of
values, called Raster images, which are meant to correspond to the amount of
shading each pixel has

e [or a colored image, three matrices are used instead to store the Red, Green,
and Blue values of the RGB format

e Popular forms of image storage use different methods to compress their data:

e PNG: Raster format with lossless compression

e JPEG: Discrete Cosine Transform (DCT) with lossy conversion. Known to
compress to 1/10th of a file’s original size with little visual loss.

Effectiveness of Compression

e Many images can be compressed around to around 1/10th of their original size,
while still remaining quite recognizable

e Makes streaming, a service that often loads 60 images per second, into
something possible to do without ridiculously fast internet speeds

e Even in cases where high-quality images must be preserved, lossless
conversions help to keep image sizes down

e Different methods of bit storage can also help in compression

Singular Value Decomposition

e In Linear Algebra, it turns any matrix A into the form UZV'

e Based upon the singular values of A, which are found by taking the square root
of each eigenvalue of ATA

e U = Colspace of A and nullspace of AT, all orthogonalized. mxm

e > = Diagonal matrix, with each diagonal containing a singular value of A, going
from greatest to least. Same size as A, which is mxn

e V= A matrix with its columnspace comprised of the eigenvectors of ATA. Also
happens to be the rowspace of A and nullspace of A all orthogonalized. nxn

e V' =Transpose of V

SVD in File Compression

e With larger matrix sizes, many singular values held in the 2 matrix become very
small

e By removing many smaller values in the 2 matrix while keeping the larger
ones, many rows can be removed from U as well as many columns from V', as
they would just be multiplied by zeroes anyway

e By keeping the larger values, all three matrices that must be stored become
much smaller, but most of the meaningful image values are still kept

e Thus, SVD results in a lossy compression, but it still keeps the image’s
meaning

Discrete Cosine Transformation

e Involves splitting up the image matrix into many NxN matrices, then multiplying
each by the NxN DCT matrix, which is calculated using a complex set of
calculations involving cosine, matrix size, and relative column/row sizes

e Then, for each NxN matrix, symbolized by M, calculate the compressed form of
that matrix by performing the following matrix multiplies:

e D=TMT'

e D = Compressed coefficients of the image matrix and T = The DCT matrix

Discrete Cosine Transformation (contd.)

e Then, each matrix D derived from the previous formula is multiplied by a matrix
Q,, which is a set constant matrix based upon how high quality the user wants
the image to be on a scale of 100. For example, multiplying by Q, results in a
very low quality image with a very high compression ratio, whereas multiplying
by Qg produces a higher quality image that is not compressed as effectively.

e Matrices are ordered by sensitivity to human eye, top left = most sensitive,
bottom right = least sensitive

e Many values that aren’t in the top left end up being nearly zero, allowing for
many to be brought to zero and lots of space to be saved

e Undoing this entire process resulting in decompressing the image

v Insert Format Evaluate Tools Window Help

DiagS:= DiagonalMatrix(S, RowDimension(img), ColumnDimension(img)):
CompressedImage:= U.DiagS.Vt:
Write((cat("/u/class/f/c-fras2/Pictures/", convert(round(C * 100), string), "% Robot SVD.png")), CompressedImage)

S T> = = i} m C & QR @ [search Alt+] Sonin 2y
arkbook | ¢ [Text|Math | C Mapleinput ~ |[LucidaSansT... ~|[12 -] [u EEE I g =i= ‘ »
—— |'/[> with(LinearAlgebra): < with(LinearAlge
= |> with(ImageTools): # Necessary to read images as matrices and manipulate them Execution Group >

|> img:= ToGrayscale(Read("/u/class/f/c-fras2/Downloads/Robot.jpg")): # Reads the black and white <image 'c“::;r”o :
s > Write("/u/class/f/c-fras2/Pictures/Initial Robot.JPG", 1img): Execute >
Format >
Value ;> U:= LinearAlgebra[SingularValues] (img, 'output = U'):
— |> S:= LinearAlgebra[SingularValues](img, 'output = S'):
> Vt:= LinearAlgebra[SingularValues](img, 'output = Vt'):
by L C :=5/100:
7 > for i from (round((RowDimension(S) * C) + 1)) to RowDimension(S) do
=) S[i] := O:
= end do

HOME PLOTS APPS EDITOR PUBLISH VIEW Hie sReoeB@] imer p
——-

Log In

dh g [Q@rndres g insert E1 fx |5 v [> = (S 01

[izl Compare ¥) GoTo v Comment % & 7

i

New Open Save Breakpoints Run Run and E}Advance Run and

o v v (=Print v _{Find ~ Indent ©3 (79 - - Advance Time
FILE | NAVIGATE EDIT BREAKPOINTS RUN =
= = 5] 2 3/ » home » 1005 » cl » f » cfras2 » v R
[OPNOM FZ Editor - /home/1005/cl/f/c-fras2/Documents/DCT_Code.m ®
.| [| pcT_codem | + | Name
o e A = im2double(imread(' fu/class/f/c-fras2/Pictures/Initial Robot.JPG')); o
o 2 D = dct2(A);
Ji= D(abs(D) < .01) = 0O;
4 - count = 0;
1l 5- for m=1: size(D,1)
Lls= E for n=1:size(D,2)
7- if D(m, n) == 0
8 - count = count + 1;
9 - end
10 - end
11 - end
N 12
13 - percent = round((1 - (count/(size(D,1) * size(D,2)))) * 100);
14 - R = 1dct2(D);
15 - filepath = strcat('/u/class/f/c-fras2/Pictures/', num2str(percent), '% Robot DCT.png');
16 - imwrite(R, filepath);
Select &
Command Window ®
LED] £ >> (] LD
~| Ready script NS Col 19

69% DCT 75% SVD

47% DCT 50% SVD

35% DCT 37% SVD

20% DCT 20% SVD

12% DCT 10% SVD

2% DCT 1% SVD

76% DCT 75% SVD

57% DCT 50% SVD

34% DCT 37% SVD

22% DCT 20% SVD

1% DCT 10% SVD

4% DCT 5% SVD

1% DCT 1% SVD

Citations

https://www.math.cuhk.edu.hk/~lmlui/dct.pdf
http://videocodecs.blogspot.com/2007/05/image-coding-fundamentals_08.html
http://www.mvnet.fi/index.php?osio=Tutkielmat&luokka=Yliopisto&sivu=Image_compre

ssion
https://ntrs.nasa.gov/search.jsp?R=19920024689
https://www.sitepoint.com/gif-png-jpg-which-one-to-use/

https://www.math.cuhk.edu.hk/~lmlui/dct.pdf
http://videocodecs.blogspot.com/2007/05/image-coding-fundamentals_08.html
http://www.mvnet.fi/index.php?osio=Tutkielmat&luokka=Yliopisto&sivu=Image_compression
http://www.mvnet.fi/index.php?osio=Tutkielmat&luokka=Yliopisto&sivu=Image_compression
https://ntrs.nasa.gov/search.jsp?R=19920024689
https://www.sitepoint.com/gif-png-jpg-which-one-to-use/

