Linear Algebra in File Compression: SVD and DCT

By: Andrew Fraser

How Are Images Stored?

- Images are generally stored and visualized through storing a 2D array of values, called Raster images, which are meant to correspond to the amount of shading each pixel has
- For a colored image, three matrices are used instead to store the Red, Green, and Blue values of the RGB format
- Popular forms of image storage use different methods to compress their data:
- PNG: Raster format with lossless compression
- JPEG: Discrete Cosine Transform (DCT) with lossy conversion. Known to compress to 1/10th of a file's original size with little visual loss.

Effectiveness of Compression

- Many images can be compressed around to around 1/10th of their original size, while still remaining quite recognizable
- Makes streaming, a service that often loads 60 images per second, into something possible to do without ridiculously fast internet speeds
- Even in cases where high-quality images must be preserved, lossless conversions help to keep image sizes down
- Different methods of bit storage can also help in compression

Singular Value Decomposition

- In Linear Algebra, it turns any matrix A into the form $\mathsf{U}\Sigma\mathsf{V}^{\mathsf{T}}$
- Based upon the singular values of A, which are found by taking the square root of each eigenvalue of A^TA
- U = Colspace of A and nullspace of A^T, all orthogonalized. mxm
- Σ = Diagonal matrix, with each diagonal containing a singular value of A, going from greatest to least. Same size as A, which is mxn
- V = A matrix with its columnspace comprised of the eigenvectors of A^TA. Also happens to be the rowspace of A and nullspace of A all orthogonalized. nxn
- V^{T} = Transpose of V

SVD in File Compression

- With larger matrix sizes, many singular values held in the $\boldsymbol{\Sigma}$ matrix become very small
- By removing many smaller values in the Σ matrix while keeping the larger ones, many rows can be removed from U as well as many columns from V^T, as they would just be multiplied by zeroes anyway
- By keeping the larger values, all three matrices that must be stored become much smaller, but most of the meaningful image values are still kept
- Thus, SVD results in a lossy compression, but it still keeps the image's meaning

Discrete Cosine Transformation

- Involves splitting up the image matrix into many NxN matrices, then multiplying each by the NxN DCT matrix, which is calculated using a complex set of calculations involving cosine, matrix size, and relative column/row sizes
- Then, for each NxN matrix, symbolized by M, calculate the compressed form of that matrix by performing the following matrix multiplies:
- $D = TMT^T$
- D = Compressed coefficients of the image matrix and T = The DCT matrix

Discrete Cosine Transformation (contd.)

- Then, each matrix D derived from the previous formula is multiplied by a matrix Q_{χ} , which is a set constant matrix based upon how high quality the user wants the image to be on a scale of 100. For example, multiplying by Q_{10} results in a very low quality image with a very high compression ratio, whereas multiplying by Q_{90} produces a higher quality image that is not compressed as effectively.
- Matrices are ordered by sensitivity to human eye, top left = most sensitive, bottom right = least sensitive
- Many values that aren't in the top left end up being nearly zero, allowing for many to be brought to zero and lots of space to be saved
- Undoing this entire process resulting in decompressing the image

v <u>I</u>nsert Fo<u>r</u>mat Ev<u>a</u>luate <u>T</u>ools <u>W</u>indow <u>H</u>elp

Номе		PLOTS	APPS	EDITOR	PUBLISH	VIEW					-0.44.90.	Search Documentation	9	Log In
New Op	en Save	G Find Files ∰ Compare → Print →	 	Insert 📑 Comment % Indent 🗊	fx िn ▼ ☆ ☆ ↓	Breakpoints	► Run	Run and Advance	➢ Run Section ♣ Advance	Run and Time				
	FILE		NAVIGATE	EDI	-	BREAKPOINTS			RUN					Ā
← → 1005 → cl → f → c-fras2 →														
	<pre>Edito DCT 1 - 2 - 3 - 4 - 5 - 6 - 8 - 9 - 10 - 11 - 12</pre>	<pre>r - /home/1005, Code.m * + A = im2doubl D = dct2(A); D(abs(D) < . count = 0; for m=1: siz for n=1: if D end end</pre>	<pre>/cl/f/c-fras2/D e(imread('/ 01) = 0; e(D,1) size(D,2) u(m, n) == 0 count = cou</pre>	vocuments/D(/u/class/f/c)) unt + 1;	:T_Code.m -fras2/Pic	tures/Initi	ial Robo	ot.JPG'))	;			•	×	🕤 Name 4
Select a	13 - 14 - 15 - 16 - Comma <i>f</i> _x >>	<pre>percent = ro R = idct2(D) filepath = s imwrite(R, f nd Window</pre>	und((1 - (c ; trcat('/u/c ilepath);	count/(size(D,l) * siz as2/Pictur	e(D,2))))	* 100); str(perc	cent), '۹	Robot DCT.p	ong');			•	
A Read	у										script	Ln 5	C	ol 19

Citations

https://www.math.cuhk.edu.hk/~lmlui/dct.pdf

http://videocodecs.blogspot.com/2007/05/image-coding-fundamentals_08.html

http://www.mvnet.fi/index.php?osio=Tutkielmat&luokka=Yliopisto&sivu=Image_compre

<u>ssion</u>

https://ntrs.nasa.gov/search.jsp?R=19920024689

https://www.sitepoint.com/gif-png-jpg-which-one-to-use/