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Image compression is a vital tool in sending and receiving images across the web. Its first 

major use came in during the 1960s when satellites used it to transfer images from space to 
Earth. It has become even more useful since the implementation of the internet, as smaller sizes 
became much more important to a media that demanded instant access. The most common use 
today is in streaming websites like Youtube, Netflix, and Hulu, where 60 images or more are 
sent in a single second over the internet. Without image compression, ridiculous internet speeds 
would be needed to do this, but compression allows for up to 10 times less data to be sent in 
order to get the same picture. 
 
Processes of Image Compression 
 

One of the simplest ways to store an image is in the Raster format, which is essentially an 
mxn matrix storing the values of each pixel, where m and n are the length and width of the 
image. For a colored image, the same is done but with three matrices, each one holding the red, 
green, or blue pixel values for the RGB format. The main linear algebra compression algorithms 
use this common method of storing images, as it is quite nice to have a matrix when dealing in 
linear algebra. 
 

One important aspect of image compression is whether it is lossy or lossless. A lossy 
compression results in some information being lost in the compression, but allows for a more 
effective compression. A lossless compression stores all of the same information, but just in a 
compressed state. Usually, the lossless compressions mostly rely on storing bytes differently and 
don’t really apply linear algebra. However, lossy compressions apply multiple linear algebra 
techniques, including the entire process of SVD and various matrix transformations in the DCT. 
 

One example of a common lossless compression is used in the PNG file format. PNG 
files are mostly compressed using binary storage methods, with no data lost. One example of a 
common lossy compression is used in the JPEG file format. JPEG files use a form of the DCT to 
perform a lossy compression, which is much more effective than the PNG format, but results in a 
loss in data. 
 
Singular Value Decomposition 
 

SVD, or Singular Value Decomposition, is a matrix factorization in Linear Algebra 
where A = UΣVT. It is fairly similar to the AP = PD factorization, but it instead uses the square 
root of the eigenvalues of ATA, so it can be used on any matrix. To calculate this factorization, 
the following steps should be performed on a matrix A of size mxn: 
 
Singular values σ1-σn: Found by taking the square root of each eigenvalue of ATA. 
U = A matrix with its columnspace containing the columnspace of A and nullspace of AT as its 
columns. All orthogonalized, mxm. 



Σ = A diagonal matrix each singular value at its diagonals, from largest at 1,1, to smallest at nxn. 
All other values are zeros. Mxn 
V = A matrix with its columnspace comprised of the eigenvectors of ATA. Also happens to be 
the rowspace of A and nullspace of A all orthogonalized. Nxn. 
VT = Transpose of V 
 

This can be used in compression by utilizing the fact that the Σ matrix values go from 
greatest to least. By removing smaller values from this matrix, most of the information in the 
image is kept, while the values needed to be stored is reduced. As more and more of these 
smaller values are set to zero, columns from the U and rows from the VT matrices can be set to 
zero as well, as they would simply be multiplied by zeros from the Σ matrix anyway. Thus, for 
each small value in the SVD that is set to zero, both U and VT also lose an entire row/column, so 
much less needs to be stored entirely. 
 
Discrete Cosine Transform 
 

The DCT, or Discrete Cosine Transform, is a transformation that uses matrix 
multiplications to compress matrix data. First, the image is split into many NxN matrices, with 
the ideal number for N usually being 8. Then, an NxN transformation matrix is created using a 
cosine formula based on the i, j, positions in the matrix. Each NxN square of the image is then 
left multiplied by this matrix, and right multiplied by the transpose of the matrix. 
 

D = TMTT 
 

After this process, there are different NxN quantization matrices ranging from 
compression percentages 0-100% that can be used to compress each transformed matrix. For 
example, the 50% percent matrix creates a reasonably compressed matrix by turning a decent 
amount of values into zeros. A 10% matrix would result in large amounts of compression with a 
lower quality image, while a 90% would perform little compression, but keep almost all of the 
data. For each zero that results in this compression, the image becomes more and more 
compressed. Each i,j value in the NxN matrix of data is divided by the i,j value in the 
quantization matrix, then rounded to the nearest whole number. It is this division that results in 
many zeros in the matrix, allowing for much less data to be stored overall. 
 

By storing all of these NxN matrices with many zeros each, the matrices become much 
less compressed. Then, when a user wants to view the image, the reverse process is performed by 
multiplying each i,j value in the quantization by each value in the data, then left multiplying by 
the  DCT matrix and right multiplying by the . Finally each NxN block is recombined into the 
full raster image block, which can be viewed like a normal image. 
 

M = TTDT 
 
 
 
 



Applying the SVD 
 

For performing the SVD, I decided to use Maple because it is what I was most familiar 
with, and it contains all of the necessary tools to perform an SVD compression. Here is a text 
copy of the code I wrote: 

 
with(LinearAlgebra): 
with(ImageTools): # Necessary to read images as matrices and manipulate them 
img:= ToGrayscale(Read("/u/class/f/c-fras2/Downloads/Robot.jpg")): # Reads the black and 
white image 
Write("/u/class/f/c-fras2/Pictures/Initial Robot.JPG", img): 
U:= LinearAlgebra[SingularValues](img, 'output = U'): 
S:= LinearAlgebra[SingularValues](img, 'output = S'): 
Vt:= LinearAlgebra[SingularValues](img, 'output = Vt'): 
 
C := 5/100: 
for i from (round((RowDimension(S) * C) + 1)) to RowDimension(S) do 
S[i] := 0: 
end do: 
DiagS:= DiagonalMatrix(S, RowDimension(img), ColumnDimension(img)): 
CompressedImage:= U.DiagS.Vt: 
Write((cat("/u/class/f/c-fras2/Pictures/", convert(round(C * 100), string), "% Robot SVD.png")), 
CompressedImage): 
 

This code first reads an image in grayscale, then finds the full SVD decomposition of the 
matrix. Then, it turns a set amount of the smaller Σ values to zeros, allowing U and VT to store 
that many less values as well. The value C is used to easily set what percentage of compression 
is desired, a smaller percentage meaning that more compression occurs but more data is also lost. 
Then, the image is turned back into its original form and written to a file to be viewed. 
 
Applying the DCT 
 

I decided to use Matlab to perform the DCT because it includes many more tools for 
performing the DCT on a matrix than Maple. Matlab included a method that automatically split a 
matrix into 8x8 chunks, then performed the compression itself. It also included a method to 
automatically decompress them. The only missing portion was the quantization matrices, which I 
had to perform manually. Here is the code that I wrote to do this: 
 
 
 
 
 
 
 
 



A = im2double(imread('/u/class/f/c-fras2/Pictures/Initial Robot.JPG')); 
D = dct2(A); 
D(abs(D) < .1) = 0; 
count = 0; 
for m=1: size(D,1) 
    for n=1:size(D,2) 
        if D(m, n) == 0 
            count = count + 1; 
        end 
    end 
end 
 
percent = round((1 - (count/(size(D,1) * size(D,2)))) * 100); 
R = idct2(D); 
filepath = strcat('/u/class/f/c-fras2/Pictures/', num2str(percent), '% Robot DCT.png'); 
imwrite(R, filepath); 
 

First, the image is loaded in and the dct2 method is used to create the DCT compressed 
matrix for A. Then, each value below a certain amount (here it is set to .1) is set to zero. This sets 
the smaller, less useful values in the stored matrix to zero. Then, the number of zeros in the 
matrix is counted to determine the percentage of compression. Finally, the D matrix is inverted 
back into a normal raster matrix, then is written to a file. 
 
Effectiveness of Compression Techniques 
 

The SVD, DCT, and other compression techniques tend to have a golden ratio of 
compression where the image is still very distinguishable, yet a large amount of compression is 
performed. For the SVD and DCT in particular, an average curve looks somewhat like this: 
 

 
 



Based upon this curve, it is clear that the compression starts off by removing many values 
that are unnecessary and barely matter to the visibility of the piece. However, around 15% of the 
remaining data, much more important information starts to be lost. Picture quality starts to 
decrease rapidly. By 10%, things start to get visibly blurry, but still visible. By 1%, the image 
becomes difficult to distinguish. Thus, the golden ratio of compression tends to lie between 15% 
and 25%, depending on how high quality the image needs to be. Below that point, it is often not 
worth the extra bit of compression for such a lower quality image. 
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It is interesting to see how the images get lower in quality in different ways. As you can 
see with the SVD images at 10% and 1%, blurry lines start to appear in the image. It is as if 
entire lines of the image are stripped away. This makes sense in relation to the transformation 
because as each singular value is removed, an entire eigenvector is removed, so lines or 
“vectors” are removed from the image at a time. 

 
In contrast, the DCT becomes spottier in the entire picture, which makes sense because 

values are taken out of the matrix one at a time based on value, not vector by vector. This is 
visible in the sky at the 20% mark, and becomes more visible in other spots at 10% and 2%. The 
image is still recognizable at 2%, which is quite a feat, but the quality is still poor enough that 
the sign can’t be read. 
 

Overall, these results show why the JPEG format uses the DCT. The DCT retains more 
quality overall because it affects the whole image the same way, so everything stays somewhat 
visible even at single percentages of data remaining. However, since the SVD removes entire 
vectors, parts of the image become quite messed up, such as the streaks in the sky at 10%, 
whereas other parts are less affected. 
 
Results - Robot 
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These results further illustrate why the DCT is used in the JPEG algorithm. Even at the 
level of 10% data remaining for the robot, everything is still fairly visible to the viewer. In fact, it 
is possible that the golden ratio for the DCT may even drop into around 10%, as it still retains 
reasonable quality at that point where the SVD does not. Of course, higher percentages are still 
needed if quality is important, but otherwise 10% is actually quite viable. 
 

 
 
Conclusion 
 

The SVD and DCT techniques are both very useful for data compression, and can easily 
compress an image to 30% of its original size with almost no visual difference. However, based 
on these results, the DCT appears to be more effective because it takes its losses throughout the 
entire photo evenly, instead of removing entire vectors of data at a time. To create a high quality 
image that loses almost no important data, the 30% mark seems to be about the spot to stay, as 
very little differences can be seen between that point and the original image. For images that 
don’t worry about quality, about 15% for the SVD and 10% DCT is where the line should likely 
be drawn, as quality becomes too poor past those points to be worth it. 
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