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In [23]: import numpy as np 
import pandas as pd 
from scipy.stats import binom 
from sympy.stats import Binomial, density 
from sympy import * 
import seaborn as sns 
init_printing() 

Markov Chain
A Markov chain is a mathematical model used to describe processes where certain events repeatedly occur in
discrete time intervals. The process starts with an initial state, and the next state only depends on the previous
state. A Markov chain can be represented using matrices and vectors. The state space is the set of all possible
states of the system. A probability vector is a vector whose entries sum to 1. A transition matrix is a square
matrix that describes the probability of transitioning between any two states in the state space. Each column of
the transition matrix is a probability vector. A state vector describes the current state of the system. It is a
probability vector where each entry is the probability of the system being in that particular state. The Markov
process is modeled by the repeated multiplication of the transition matrix and state vectors. That is, given an
initial state vector  and transition matrix ,x0 P

= P , = P , . . . , = Px1 x0 x2 x1 xk xk−1



Genetic Drift
Genetic drift is an evolutionary process that is always occuring in every population. Rather than being caused
from natural selection, it is the result of the random sampling of organisms during reproduction. It is often said
that genetic drift is the "sampling error" that occurs during reproduction. A common model used to understand
genetic drift is the Wright-Fisher model. This model makes the assumptions that the population is at a constant
size of , there are two alleles or gene variants in the population, denoted  and , and reproduction of the
entire population happens in discrete non-overlapping intervals. A new generation is created by choosing 
alleles uniformly at random with replacement from the previous generation. Thus, the number of each type of
allele in the next generation is a binomial random variable. Let  be the number of  in the current generation.
Then, the probability of having   alleles in the next generation is given by

Just using a binomial random variable, we can simulate genetic drift.

In [6]: def simulate_drift(popsize, num_alleles, generations, trials): 
    df = pd.DataFrame() 
    for trial in range(trials): 
        nums = [num_alleles] 
        for x in range(generations): 
            p = nums[-1]/popsize 
            nums.append(np.random.binomial(popsize, p)) 
        df[trial] = nums 
    return df 

The following simulation uses a population size of 100 individuals, 50 of which are type . The simulation is
performed for 400 generations and is repeated 10 times. As you can see, eventually, all the individiuals are
either all type  or all type . This is a natural property of genetic drift and we will explore it further by using a
Markov chain.
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In [22]: p100 = simulate_drift(100, 50, 400, 10) 
p100.plot(title="2N = 100", legend=False) 

Markov Chain Model
Since there are  individuals in the population and two gene variants, the state space has a size of . Each
entry of the transition matrix  is the probability of choosing  alleles of type  from a population of  alleles of
type , that is,

In [24]: def create_trans_matrix(popsize): 
    row_vectors = [[binom.pmf(x, popsize, n/popsize) for n in range(pops
ize+1)] for x in range(popsize+1)] 
    return np.matrix(row_vectors) 

Here is an example of transition matrix for a population of 2 individuals:

In [25]: A = create_trans_matrix(2) 
Matrix(A) 

As you can see, each column in the transition matrix is a probability vector. Each entry of the state vector  is
the probability that there are  alleles of type  in state . For the initial state vector, we know the number of
alleles in the population, lets call it , so the -th entry of the vector would be  and all the other entries would
be .
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In [26]: def create_init_vec(popsize, n): 
    return np.matrix([[1] if n == x else [0] for x in range(popsize+1)]) 

Here is an example of an initial state vector for population of 2 individuals, and there is 1 individual of type 
and 1 individual of type .

In [27]: x0 = create_init_vec(2, 1) 
Matrix(x0) 

Running the Markov Chain
We can use the following code to run the Markov chain  times.

In [28]: def markov_chain(n, A, x0): 
    x = x0 
    for i in range(n): 
        x = A*x 
    return x 

Let's create a population with 20 individuals, and where there are 15 individuals of type .

In [29]: A = create_trans_matrix(20) 
x = create_init_vec(20, 15) 

Here is the Markov chain at , , :
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In [30]: Matrix(markov_chain(0, A, x)), Matrix(markov_chain(10, A, x)), Matrix(ma
rkov_chain(100, A, x)) 

As you can see, eventually the population acheives one of two states: either all  individuals or all 
individuals. This is competely inline with the computer simulation run before. We can can see interesting
properties of this process by looking closer at the transistion matrix.
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A steady-state vector for a transition matrix  is a vector  such that . The following theorem (Lay
Theorem 4.18) describes an interesting property about the transition matrix of a Markov chain and its steady-
state vector.

Theorem: If  is an  regular stochastic matrix, then  has a unique steady-state vector . Further, if  is
any initial state and  for , then the Markov chain  converges to  as .

Thus every transition matrix has a steady-state vector, and the Markov chain converges to this vector. This falls
inline with what we saw earlier, that is, eventually all the genetic diversity is lost and the population arrives to a
steady state. To find the steady-state vector, we can use eigenanalysis. Since we are looking for a probability
vector, we are interested in the eigenvectors corresponsing to the eigenvalue of 1. For a population of size 5:

In [31]: A = create_trans_matrix(5) 
w, v = np.linalg.eig(A) 
print('Eigenvalues:', w) 
Matrix(v) 

From this, we see that the transition matrix has an eigenvalue of 1 with mulitplicity 2. This corresponding
eigenvectors are  and . What this means is that eventually the population will reach
a steady-state of having no genetic variation. That is, either all  individuals or all  individuals.

P q Pq = q

P n × n P q x0

= Pxk+1 xk k = 1, 2, . . . . ( )xk q k → ∞

(1, 0,⋯ , 0, 0) (0, 0,⋯ , 0, 1)

A1 A2

Eigenvalues: [1.     1.     0.8    0.48   0.0384 0.192 ] 
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Eigendecomposition of Transition Matrix
Since the transition matrix is diagonizable, we can look at the eigenvector decomposition of each state vector to
see what happens when  goes to infinity. Suppose we arrange the eigenvalues in descending order, that is 

 and the set  are the eigenvectors corresponding to this order. Then the 
th state vector can be written as (Lay Ch. 5.6),

If we let , since all eigenvalues except  are less than one, then all the terms will go zero except the first
term. This corresponds to what we have already seen, that the population will reach a steady-state given by an
eigenvector corresponding to . If we factor out , we get

This shows that the steady-state of the population is being approached exponentially at a rate of .
Other theorems in population genetics using methods other than linear algebra agree with this result and show
that the steady-state is approached at a rate of . Indeed, if we compare the value of  with this value
we see that the values are very close.

In [32]: A = create_trans_matrix(25) 
w, v = np.linalg.eig(A) 
print('lambda_2 = ', w[2]) 
print('1 - 1/2N = ', 1 - 1/25) 
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