Exam 2 KEY 2270-y

Definition: An abstract vector space V' is a data set of packages called vectors together
with operations of addition (4) and scalar multiplication (-) satisfying the following eight
(8) rules:

“Closure: If X and y are’in V', thén X + ¥ is defined and in V.
(1) X+y=y+x
(2) X+F+2)=RX+y)+2
(8) There is a zero vector 0 in V with £+ 0 = %.
(4) There is a vector —% in V with % 4+ (—%) = 0.
Closure: If ¢ = constant and X is in V', then ¢ - X is defined and in V.
(5) a(X+¥)=aX+ay
(6) (a+b)-X=a-X+b-%X
(7) (ab)-X=a-(b-X)
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Definition. If vectors by, by, ..., by are.a basis_for subspace X of an. abstract vector space V, .
and ® = c1by + by 4 -+ + cnby is a given linear combination of these vectors, then the uniquely
determined constants ¢1, ¢, ..., ¢, are called the coordinates of X relative to the basis 51,52, v ,Bn

and the coordinate map is the isomorphism
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Definition: A subset S of a vector space V is a subspace of V provided
(1) The zero vector is in S
(2) If vectors X and ¥ are in S, then X+ is in S.

(8) If vector X is in S and c is any scalar, then ¢X is in S.

Definition: Vectors ¥, ...,V, in an abstract vector space V are said to be independent
in V' provided solving the equation ¢;vy + -+ + ¢V, = 0 for scalars ci, ..., ¢p has only the
zero solution ¢; = -+ = ¢, = 0.
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/Problem 1. (100 points) Let V be the vector space of all functions on (—o0,00)

Define W = span{z,e®}. Assume known that z,e® are independent functions

Define
subspace S = span{Vy, V,} where

Vi:y=xz+e, Vo y=zx—c¢

(a) [20%)] Explain why S is contained in W, that is, provide details for why linear combina-
f,\ tions of vectors Vi, vy are in W.
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(b) [40%)] Prove that W = S. Therefore dim(S)
}\ of vectors v, : y =z + €%,

3

= dim (W) = 2, which proves independence
/N Vo: y=1a—e".
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Problem 1. (100 points) Let V be the vector space of all functions on (—o0, o).
Define W = span{z,e®}. Assume known that z,e” are independent functions. Define

subspace S = span{V;, Vo } where
Vi y=zxz+e", Vo:y=zx-—¢€".

A (a) [20%)] Explain why S is contained in W, that is, provide details for why linear combina-

tions of vectors vy, vy are in W.
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(b) [40%] Prove that W = S. Therefore dim(S) = dim(W) = 2, which proves independence

of vectors v, : y=x+¢€e%, Vy: y=1x—¢€".
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(c) [40%] Define vector ¥ in S by equation y = 2z + 3e®*. Show how to compute d;, dy
in the equation V = d;V| + dyV,, using coordinate map methods. The definitions are

Vi:y=x+e*, Vo: y=zx—¢€". X
. 1]

Expected in (C) Calculations of di, dy are to be done using column vectors from R? and 2 ><

fl( ,A— matrices, not functions from V. Zero credit for not using column vectm{wate maps. | \
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Definition: A subset S of a vector space V is a subspace of V provided
(1) The zero vector is in S
(2) If vectors X and ¥ are in S, then X+ ¥ is in S.

(8) If vector X is in S and c is any scalar, then cX is in S.

Problem 2. (100 points)
(a) [60%)] Let V be an abstract vector space. Let V1, Vi be two vectors in V. Define S to be

/A the set of all linear combinations of V| + Vj, Vi — Vo. Prove that S is a subspace of V, using

only the definition of subspace

Expected: A proof uses the symbols ¥, Vo and the 8 rules of a vector space, plus the-

orems like 0¥ = 0. Symbols vy, V5 are not assumed to be column vectors.
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Definition: A subset S of a vector space V is a subspace of V' provided
(1) The zero vector is in S

(2) If vectors X and ¥ are in S, then X + ¥ isin S.

(3) If vector X isin S and c is any scalar, then ¢X is in S.

(b) [40%] Let V be the vector space of all 2 x 2 matrices. Invent an example of a non-void
/\ subset S of V that satisfies (1) and (2) but fails the third item (3).
/
/

let S - 3 E_J ¢k X20q \{20
(@) =y \F Q&S =3 Ay 5 =D A+l €S swmee Yo i, Ntz 20
(N v”\Ad\ﬂonomj# O€S sine Kk can &uel 0 ¢ \ an equad o,
So - Qes
(9 Woweyex, W c=-}, —X s not

in'S, siNte x>0 S y2zo
€0 it fails (3)



Problem 3. (100 points) Let A be a 4 x 3 matrix. Assume the determinant of AT A

is zero. Prove that the nullspace of A contains a nonzero vector.
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Problem 4. (100 points)

1 1
(a) [40%] Definey = | —1 |, d= |1 |. Find the orthogonal projection vector v (the shadow
' 1 0

projection vector) of ¥ onto the direction of .
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(b) [60%)] Let Vi = | 1|, Va=|—1|,X=|1|. Check that ¥, V; are orthogonal and then
0 1 2

pa
compute V = the vector projection of X onto the subspace S = span{Vi, V,}.

Reminder: v is the sum of two shadow projections.

> 3 ¥
. - \/l D - > = ->
PlnX 2o T 10 g [ Y,
[ ¥ 1#!""6)
N g -
Pave,X = M X v, r V12
\)q‘.‘/ﬁ l+]+7 3
1% 75\ |



A

Problem 5. (100 points) Let A be an m x n matrix and b an m x 1 vector. Let W
be the column space of A. Linear equations ATAZ = ATb are the normal equations for

the problem A% = b.
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(a) [30%) Let A= | 1 1 |,b=] —1
10 -1

Display toolkit steps that verify AX = b has no solution.
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(b) [30%)] Let € = AZ where Z is the unique theoretical solution of the normal equations.

Explain with a figure: € is the nearest point to b in the column space W.
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(c) [40%] Let A= | 1
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) ( ) Find vector Z in the normal equations.
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Problem 6. (100 points) The Fundamental Theorem of Linear Algebra contains
this statement: 1 he row space and the null space of a matrix are orthogonal. This
means that B - N = 0 for each vector R in the row space and each vector N in the null
space.

The four fundamental subspaces in the Fundamental Theorem of Linear algebra are: (1)
Nullspace of A, (2) Column Space of A, (3) Row space of A, 4) Nullspace of AT.

(a) [30%] Define precisely the four fundamental subspaces. For example, the Nullspace of A
is the set of all solutions X to the matrix equation AX = 0
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(b) [30%)] Assume A is 20 x 12 and has rank 10. Equivalently, matrix A has 10 pivots .

Report the dimensions of the four fundamental subspaces.

IBV £ =20 w=12 =10 0 7 .

~

dim Nutlspace ()= n- ¢ = 172 - 10 @
Adim Lot (A = T= LO]
dimn Row (A) = ¢ :ﬁoj
dim Nullspace (A7) - Ok
£ has 10 priet
: AT has \ pruot vows

& Wws O
hWontexp Y OWS



(c) [40%) Let A be an m x n matrix. Let C be a linear combination of the columns of A and
let Y belong to the nullspace of AT. Prove that C.Y= 0, that is, Cand Y are orthogonal.
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(c) [40%] Let A be an m x n matrix. Let C be a linear combination of the columns of A and
let Y belong to the nullspace of AT. Prove that C- Y= 0, that is, Cand Y are orthogonal.
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