ExAM 3 KEY 2270-4

Definition: An abstract vector space V is a data set of packages called **vectors** together with operations of addition (+) and scalar multiplication (\cdot) satisfying the following eight (8) rules:

Closure: If \vec{x} and \vec{y} are in V, then $\vec{x} + \vec{y}$ is defined and in V.

- $(1) \vec{\mathbf{x}} + \vec{\mathbf{y}} = \vec{\mathbf{y}} + \vec{\mathbf{x}}$
- (2) $\vec{x} + (\vec{y} + \vec{z}) = (\vec{x} + \vec{y}) + \vec{z}$
- (3) There is a zero vector $\vec{0}$ in V with $\vec{x} + \vec{0} = \vec{x}$.
- (4) There is a vector $-\vec{\mathbf{x}}$ in V with $\vec{\mathbf{x}} + (-\vec{\mathbf{x}}) = \vec{\mathbf{0}}$.

Closure: If c = constant and $\vec{\mathbf{x}}$ is in V, then $c \cdot \vec{\mathbf{x}}$ is defined and in V.

- (5) $a(\vec{\mathbf{x}} + \vec{\mathbf{y}}) = a\vec{\mathbf{x}} + a\vec{\mathbf{y}}$
- (6) $(a+b) \cdot \vec{\mathbf{x}} = a \cdot \vec{\mathbf{x}} + b \cdot \vec{\mathbf{x}}$
- (7) $(ab) \cdot \vec{\mathbf{x}} = a \cdot (b \cdot \vec{\mathbf{x}})$
- $(8) 1 \cdot \vec{\mathbf{x}} = \vec{\mathbf{x}}$

Definition. If vectors $\vec{b}_1, \vec{b}_2, \ldots, \vec{b}_n$ are a basis for subspace X of an abstract vector space V, and $\vec{\mathbf{x}} = c_1\vec{\mathbf{b}}_1 + c_2\vec{\mathbf{b}}_2 + \cdots + c_n\vec{\mathbf{b}}_n$ is a given linear combination of these vectors, then the uniquely determined constants c_1, c_2, \ldots, c_n are called the *coordinates of* $\vec{\mathbf{x}}$ relative to the basis $\vec{\mathbf{b}}_1, \vec{\mathbf{b}}_2, \ldots, \vec{\mathbf{b}}_n$ and the *coordinate map* is the isomorphism

$$\vec{\mathbf{x}} = c_1 \vec{\mathbf{b}}_1 + c_2 \vec{\mathbf{b}}_2 + \dots + c_n \vec{\mathbf{b}}_n \to \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}.$$

Definition: A subset S of a vector space V is a subspace of V provided

- (1) The zero vector is in S
- (2) If vectors $\vec{\mathbf{x}}$ and $\vec{\mathbf{y}}$ are in S, then $\vec{\mathbf{x}} + \vec{\mathbf{y}}$ is in S.
- (3) If vector $\vec{\mathbf{x}}$ is in S and c is any scalar, then $c\vec{\mathbf{x}}$ is in S.

Definition: Vectors $\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_p$ in an abstract vector space V are said to be **independent** in V provided solving the equation $c_1\vec{\mathbf{v}}_1 + \dots + c_p\vec{\mathbf{v}}_p = \vec{\mathbf{0}}$ for scalars c_1, \dots, c_p has only the zero solution $c_1 = \dots = c_p = 0$.

Some problems have two solutions.

Problem 1. (100 points) Let V be the vector space of all functions on $(-\infty, \infty)$. Define $W = \operatorname{span}\{x, e^x\}$. Assume known that x, e^x are independent functions. Define subspace $S = \operatorname{span}\{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2\}$ where

$$\vec{\mathbf{v}}_1: \ y = x + e^x, \quad \vec{\mathbf{v}}_2: \ y = x - e^x$$

(a) [20%] Explain why S is contained in W, that is, provide details for why linear combinations of vectors $\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2$ are in W.

The Choose $\vec{v} \in S$ where $\vec{v} = c_1 \vec{J}_1 + c_2 \vec{J}_2$ for $c_1, c_2 \in \mathbb{R}$. We find $\vec{v} = c_1 (x + e^x) + c_2 (x - e^x)$ $= c_1 x + c_1 e^x + c_2 x - c_2 e^x$ $= (c_1 + c_2) \times + (c_1 - c_2) e^x$ Since $c_1 + c_2, c_1 - c_2 \in \mathbb{R}$, $\vec{v} \in \mathbb{N}$. Therefore $S \in \mathbb{N}$. \square

(b) [40%] Prove that W = S. Therefore $\dim(S) = \dim(W) = 2$, which proves independence of vectors $\vec{\mathbf{v}}_1: y = x + e^x$, $\vec{\mathbf{v}}_2: y = x - e^x$.

If choose $\vec{n} \in M$ where $\vec{n} \cdot y = qx + c_z e^x$ for $q, c_z \in \mathbb{R}$. We show there exists $d_1, d_2 \in \mathbb{R}$ such that $\begin{cases} c_1 = d_1 + d_2 \\ c_2 = d_1 - d_3 \end{cases}$

has a unique solution. We find

|A| = | 1 -1 = -1-1 = -2 = 0

thus A' exists and the system (1) has

a unique solution by the Invertible Matrix

Theorem. Hence $\vec{N}: y = (d_1 + d_2) \times + (d_1 - d_2) e^{x}$ $= d_1(x + e^{x}) + d_2(x - e^{x})$ $= d_1 \vec{V}_1 + d_2 \vec{V}_2$

and BES. Therefore SEW and W.C.S. meaning S=W. It follows that dim 5 = dim W=2, meaning is and vz are independent.

Problem 1. (100 points) Let V be the vector space of all functions on $(-\infty, \infty)$. Define $W = \operatorname{span}\{x, e^x\}$. Assume known that x, e^x are independent functions. Define subspace $S = \operatorname{span}\{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2\}$ where

$$\vec{\mathbf{v}}_1: \ y = x + e^x, \quad \vec{\mathbf{v}}_2: \ y = x - e^x.$$

 \bigwedge (a) [20%] Explain why S is contained in W, that is, provide details for why linear combinations of vectors $\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2$ are in W.

(b) [40%] Prove that W = S. Therefore $\dim(S) = \dim(W) = 2$, which proves independence of vectors $\vec{\mathbf{v}}_1 : y = x + e^x$, $\vec{\mathbf{v}}_2 : y = x - e^x$.

Let
$$\overline{s} \in S$$
. From part (a), $\overline{s} \in W$.

Let $\overline{s} \in W$. $\Rightarrow \overline{s} = d_1 \times + d_2 e^{\times} = c_1(x + e^{\times}) + c_2(x - e^{\times}) = (c_1 + c_2)x + (c_1 - c_2)e^{\times}$
 $\Rightarrow \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$

Since $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = -2 \neq 0$, there are unique solutions for every tombination of $d_1 \in d_2 = x = x = 0$.

Since $\overline{s} \in W \in S \in S = x = x = x = x = x = x$.

(c) [40%] Define vector $\vec{\mathbf{v}}$ in S by equation $y=2x+3e^x$. Show how to compute d_1, d_2 in the equation $\vec{\mathbf{v}}=d_1\vec{\mathbf{v}}_1+d_2\vec{\mathbf{v}}_2$, using coordinate map methods. The definitions are $\vec{\mathbf{v}}_1: y=x+e^x$, $\vec{\mathbf{v}}_2: y=x-e^x$.

A A-

Expected in (c): Calculations of d_1, d_2 are to be done using column vectors from \mathbb{R}^2 and 2×2 matrices, not functions from V. Zero credit for not using column vectors and coordinate maps.

$$\overline{V} = d_1 \overline{V}_1 + d_2 \overline{V}_2 = d_1 (X + e^X) + d_2 (X - e^X) = d_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + d_2 \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

$$\overline{V} = 2X + 3e^X = \begin{cases} c_1 = 2 \\ c_2 = 3 \end{cases} \quad \text{Coordinate map used, but not explicitly.}$$

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{cases} 1 & 1 \\ 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1/2 \\ 0 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 5/2 \\ 0 & 1 & 1/2 \end{bmatrix} \sim \begin{cases} d_1 = \frac{5}{2} \\ d_2 = \frac{1}{2} \end{cases}$$

$$\begin{bmatrix} 1 & 0 & 5/2 \\ 0 & 1 & 1/2 \end{bmatrix} \sim \begin{cases} d_1 = \frac{5}{2} \\ d_2 = \frac{1}{2} \end{cases}$$

$$\begin{bmatrix} 1 & 0 & 5/2 \\ 0 & 1 & 1/2 \end{bmatrix} \sim \begin{cases} c_1 \\ c_2 \end{bmatrix} \sim \begin{cases} c_1 \\ c_2 \\ c_2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 5/2 \\ 0 & 1 & 1/2 \end{bmatrix} \sim \begin{cases} c_1 \\ c_2 \\ c_2 \end{bmatrix} \sim \begin{cases} c_1 \\ c_2 \\ c_2 \end{cases}$$

$$\begin{bmatrix} 1 & 0 & 5/2 \\ 0 & 1 & 1/2 \end{bmatrix} \sim \begin{cases} c_1 \\ c_2 \\ c_2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 5/2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 5/2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 5/2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 5/2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 1/2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 1/2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 1/2 \\ 0 & 1 & 1/2$$

Definition: A subset S of a vector space V is a subspace of V provided

- (1) The zero vector is in S
- (2) If vectors $\vec{\mathbf{x}}$ and $\vec{\mathbf{y}}$ are in S, then $\vec{\mathbf{x}} + \vec{\mathbf{y}}$ is in S.
- (3) If vector $\vec{\mathbf{x}}$ is in S and c is any scalar, then $c\vec{\mathbf{x}}$ is in S.

Problem 2. (100 points)

(a) [60%] Let V be an abstract vector space. Let $\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2$ be two vectors in V. Define S to be the set of all linear combinations of $\vec{\mathbf{v}}_1 + \vec{\mathbf{v}}_2$, $\vec{\mathbf{v}}_1 - \vec{\mathbf{v}}_2$. Prove that S is a subspace of V, using only the definition of subspace.

Expected: A proof uses the symbols $\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2$ and the 8 rules of a vector space, plus theorems like $0\vec{\mathbf{v}} = \vec{\mathbf{0}}$. Symbols $\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2$ are not assumed to be column vectors.

For
$$0 \in S$$
.
 $S = 5pan \{ V_1 + V_2, V_1 - V_2 \} = c_1(V_1 + V_2) + c_2(V_1 - V_2)$
If $q = c_2 = 0$, $\Rightarrow S = 0$

Let
$$\bar{\chi} \in S \in \bar{V} \in S = \sum_{i=1}^{N} \bar{\chi} = c_1(\bar{V}_1 + \bar{V}_2) + (2(\bar{V}_1 - \bar{V}_2))$$

 $\bar{V} = d_1(\bar{V}_1 + \bar{V}_2) + d_2(\bar{V}_1 - \bar{V}_2)$

$$\begin{array}{lll} X+Y &= C_1(\bar{V}_1+\bar{V}_2)+C_2(\bar{V}_1-\bar{V}_2)+d_1(\bar{V}_1+\bar{V}_2)+d_2(\bar{V}_1-\bar{V}_2)\\ \text{ing(i) from rules of a vector space:} \\ \bar{X}+\bar{Y} &= C_1(\bar{V}_1+\bar{V}_2)+d_1(\bar{V}_1+\bar{V}_2)+G_2(\bar{V}_1-\bar{V}_2)+O_2(\bar{V}_1-\bar{V}_2) \end{array}$$

sing (6) from rules of vector space:

Let
$$\alpha \in \mathbb{R} = \lambda \times \mathbb{R} = \alpha \left[c_1 (V_1 + V_2) + c_2 (V_1 - V_2) \right]$$

Let $\alpha \in \mathbb{R} = \lambda \times \mathbb{R} = \alpha \left[c_1 (V_1 + V_2) + c_2 (V_1 - V_2) \right]$

ising Rule (5):

By definition of a subspace, S is a subspace of V.

Definition: A subset S of a vector space V is a subspace of V provided

- (1) The zero vector is in S
- (2) If vectors \vec{x} and \vec{y} are in S, then $\vec{x} + \vec{y}$ is in S.
- (3) If vector $\vec{\mathbf{x}}$ is in S and c is any scalar, then $c\vec{\mathbf{x}}$ is in S.

(b) [40%] Let V be the vector space of all 2×2 matrices. Invent an example of a non-void subset S of V that satisfies (1) and (2) but fails the third item (3).

Let
$$S = \begin{bmatrix} x & 0 \\ 4 & 6 \end{bmatrix}$$
 S.E. $X \ge 0 \leqslant 4 \ge 0$.

- (2) => If a = S = a => a + a = S since x + x 20 & y + y 2 20
 - (1) Additionally, OES since x can equal 0 & y can equal 0,
 - (3) However, If c=-1, $-\overline{x}$ is not in S, since $x \ge 0 \le y \ge 0$, so it fails (3).

Problem 3. (100 points) Let A be a 4×3 matrix. Assume the determinant of $A^T A$ is zero. Prove that the nullspace of A contains a nonzero vector.

A

A So ATA is not invertible. By the invertible Matrix theorem, an invertible matrix must have a non-zero determinant.

So, ATA has dependent cols.

ATA x = 0 has nontrivial soin

 $x^T A^T A \vec{x} = x^T \vec{0} \Rightarrow (A\vec{x})^T A \vec{x} = \vec{0} \Rightarrow ||A\vec{x}||^2 = \vec{0} \Rightarrow A\vec{x} = \vec{0}$

Since $A\vec{x} = \vec{0}$ Cols blc
has solwhere $\vec{x} \neq \vec{0}$, then $\vec{x} \neq 0$

the Mullspace has a nonzero vector

Problem 4. (100 points)

(a) [40%] Define $\vec{\mathbf{y}} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$, $\vec{\mathbf{u}} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$. Find the orthogonal projection vector $\vec{\mathbf{v}}$ (the shadow projection vector) of $\vec{\mathbf{y}}$ onto the direction of $\vec{\mathbf{u}}$.

(b) [60%] Let $\vec{\mathbf{v}}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\vec{\mathbf{v}}_2 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$, $\vec{\mathbf{x}} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$. Check that $\vec{\mathbf{v}}_1$, $\vec{\mathbf{v}}_2$ are orthogonal and then compute $\vec{\mathbf{v}}$ = the vector projection of $\vec{\mathbf{x}}$ onto the subspace $S = \operatorname{span}\{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2\}$.

Reminder: $\vec{\mathbf{v}}$ is the sum of two shadow projections.

$$\frac{\vec{V}_{1} \cdot \vec{V}_{2}}{\vec{V}_{1} \cdot \vec{V}_{3}} = \frac{\vec{V}_{1} \cdot \vec{X}}{\vec{V}_{1} \cdot \vec{V}_{1}} = \frac{1}{1+1+0} = \frac{1}{1+1+0} = \frac{1}{1+1+0} = \frac{1}{1+1+0} = \frac{1}{1+1+0} = \frac{1}{1+1+1} = \frac{1}{1+1+$$

Problem 5. (100 points) Let A be an $m \times n$ matrix and \vec{b} an $m \times 1$ vector. Let W be the column space of A. Linear equations $A^T A \vec{z} = A^T \vec{b}$ are the **normal equations** for the problem $A\vec{\mathbf{x}} = \vec{\mathbf{b}}$.

(a) [30%] Let
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix}$$
, $\vec{\mathbf{b}} = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$.

Display toolkit steps that verify $A\vec{\mathbf{x}} = \vec{\mathbf{b}}$ has no solution.

Display toolkit steps that verify
$$Ax = b$$
 has no solution.

$$A_{\lambda}^{-1} = b - 1$$

$$A_{\lambda}^{-1$$

(b) [30%] Let $\vec{c} = A\vec{z}$ where \vec{z} is the unique theoretical solution of the normal equations. Explain with a figure: \vec{c} is the nearest point to \vec{b} in the column space W.

(e) [40%] Let
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix}$$
, $\overline{b} = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$. Find vector \vec{x} in the normal equations.

$$V_{2} = A^{T} A \vec{z}^{2} = A^{T} \vec{b}^{2}$$

$$A_{3} = A^{T} \vec{b}^{2}$$

$$A_{4} = A^{T} \vec{b}^{2}$$

$$A_{5} = A^{T} \vec{b}^{2}$$

$$A_{7} =$$

Problem 6. (100 points) The Fundamental Theorem of Linear Algebra contains this statement: The row space and the null space of a matrix are orthogonal. This means that $\vec{R} \cdot \vec{N} = 0$ for each vector \vec{R} in the row space and each vector \vec{N} in the null space.

The four fundamental subspaces in the Fundamental Theorem of Linear algebra are: (1) Nullspace of A, (2) Column Space of A, (3) Row space of A, 4) Nullspace of A^T .

(a) [30%] Define precisely the four fundamental subspaces. For example, the Nullspace of A is the set of all solutions \vec{x} to the matrix equation $A\vec{x} = \vec{0}$.

(2) The Column Space of A is the set of all I.C. of the columns of A.

(3) The Row space of A is the set of all I.c. of the rows of A (equal to the col. space of AT)

(4) The Nullspace of AT is the set of all nonzero rows of A

(b) [30%] Assume A is 20×12 and has rank 10. Equivalently, matrix A has 10 pivots . Report the dimensions of the four fundamental subspaces.

A If
$$m=20$$
 $n=12$ $r=10$
dim Nullspace (A)= $n-r=12-10=[2]$
dim Col(A) = $r=[10]$
dim Pow(A) = $r=[10]$
dim Nullspace (A^T)=[10]

if A has 10 pivot col AT has 10 pivot rows A has 10

hon zero rows

A

⁽¹⁾ The Mullspace of A is the set of all solutions to the homogeneous eq. + = 5.

(c) [40%] Let A be an $m \times n$ matrix. Let $\vec{\mathbf{C}}$ be a linear combination of the columns of A and let $\vec{\mathbf{Y}}$ belong to the nullspace of A^T . Prove that $\vec{\mathbf{C}} \cdot \vec{\mathbf{Y}} = 0$, that is, $\vec{\mathbf{C}}$ and $\vec{\mathbf{Y}}$ are orthogonal.

The Fundamental Theorem of Algebra States that Row (A) I Mullspace (A) Similarly, ROW(AT) I Mullspace (AT) C = part of Col(A) By definition T = part of Mull (AT) of AT, Col (A) = ROW(AT) Therefore, C= part of Row (AT) and by Fund. Theorem of L.A., C. T=0 blc Row(AT) I Null(AT) and i and i are orthogonal.

(c) [40%] Let A be an $m \times n$ matrix. Let $\vec{\mathbf{C}}$ be a linear combination of the columns of A and let $\vec{\mathbf{Y}}$ belong to the nullspace of A^T . Prove that $\vec{\mathbf{C}} \cdot \vec{\mathbf{Y}} = 0$, that is, $\vec{\mathbf{C}}$ and $\vec{\mathbf{Y}}$ are orthogonal.

A.
$$\overrightarrow{C} \cdot \overrightarrow{y} = A \overrightarrow{x} \cdot \overrightarrow{y}$$
 (\overrightarrow{x} being the solution to $\overrightarrow{A} \cdot \overrightarrow{x} + \overrightarrow{C} \cdot \overrightarrow{x}$ known to exist by the definition of linear combination)

 $\overrightarrow{A} \cdot \overrightarrow{y} = (\overrightarrow{A} \cdot \overrightarrow{x})^T \overrightarrow{y} = \overrightarrow{x}^T \overrightarrow{A}^T \overrightarrow{y}$
 $\overrightarrow{A} \cdot \overrightarrow{y} = \overrightarrow{O}$, by the definition of nullspace

 $\overrightarrow{X} \cdot \overrightarrow{A} \cdot \overrightarrow{y} = \overrightarrow{X} \cdot \overrightarrow{O} = \overrightarrow{O}$

Thus, \overrightarrow{C} and \overrightarrow{y} are orthogonal excellent