MATH 2270-4 Exam 3 S2019

NAME:
Please, no books, notes or electronic devices.

Some questions involve proofs. Please divide your time accordingly.
Extra details can appear on the back side or on extra pages. Please supply a road map for details not directly following the problem statement.

Details count 75% and answers count 25%.

QUESTION	VALUE	SCORE
1	100	
2	100	
3	100	
4	100	
5	100	
6	100	
TOTAL	600	

Definition: An abstract vector space V is a data set of packages called vectors together with operations of addition $(+)$ and scalar multiplication (\cdot) satisfying the following eight (8) rules:

Closure: If $\overrightarrow{\mathbf{x}}$ and $\overrightarrow{\mathbf{y}}$ are in V, then $\overrightarrow{\mathbf{x}}+\overrightarrow{\mathbf{y}}$ is defined and in V.
(1) $\vec{x}+\vec{y}=\vec{y}+\vec{x}$
(2) $\overrightarrow{\mathrm{x}}+(\overrightarrow{\mathrm{y}}+\overrightarrow{\mathrm{z}})=(\overrightarrow{\mathrm{x}}+\overrightarrow{\mathrm{y}})+\overrightarrow{\mathrm{z}}$
(3) There is a zero vector $\overrightarrow{0}$ in V with $\overrightarrow{\mathrm{x}}+\overrightarrow{\mathbf{0}}=\overrightarrow{\mathrm{x}}$.
(4) There is a vector $-\overrightarrow{\mathrm{x}}$ in V with $\overrightarrow{\mathrm{x}}+(-\overrightarrow{\mathrm{x}})=\overrightarrow{\mathbf{0}}$.

Closure: If $c=$ constant and $\overrightarrow{\mathbf{x}}$ is in V, then $c \cdot \overrightarrow{\mathbf{x}}$ is defined and in V.
(5) $a(\overrightarrow{\mathbf{x}}+\overrightarrow{\mathbf{y}})=a \overrightarrow{\mathbf{x}}+a \overrightarrow{\mathbf{y}}$
(6) $(a+b) \cdot \overrightarrow{\mathrm{x}}=a \cdot \overrightarrow{\mathrm{x}}+b \cdot \overrightarrow{\mathrm{x}}$
(7) $(a b) \cdot \overrightarrow{\mathrm{x}}=a \cdot(b \cdot \overrightarrow{\mathrm{x}})$
(8) $1 \cdot \vec{x}=\vec{x}$

Definition. If vectors $\overrightarrow{\mathbf{b}}_{1}, \overrightarrow{\mathrm{~b}}_{2}, \ldots, \overrightarrow{\mathbf{b}}_{n}$ are a basis for subspace X of an abstract vector space V, and $\overrightarrow{\mathbf{x}}=c_{1} \overrightarrow{\mathbf{b}}_{1}+c_{2} \overrightarrow{\mathbf{b}}_{2}+\cdots+c_{n} \overrightarrow{\mathbf{b}}_{n}$ is a given linear combination of these vectors, then the uniquely determined constants $c_{1}, c_{2}, \ldots, c_{n}$ are called the coordinates of $\overrightarrow{\mathbf{x}}$ relative to the basis $\overrightarrow{\mathbf{b}}_{1}, \overrightarrow{\mathbf{b}}_{2}, \ldots, \overrightarrow{\mathbf{b}}_{n}$ and the coordinate map is the isomorphism

$$
\overrightarrow{\mathbf{x}}=c_{1} \overrightarrow{\mathbf{b}}_{1}+c_{2} \overrightarrow{\mathbf{b}}_{2}+\cdots+c_{n} \overrightarrow{\mathbf{b}}_{n} \rightarrow\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right) .
$$

Definition: A subset S of a vector space V is a subspace of V provided
(1) The zero vector is in S
(2) If vectors $\overrightarrow{\mathbf{x}}$ and $\overrightarrow{\mathbf{y}}$ are in S, then $\overrightarrow{\mathbf{x}}+\overrightarrow{\mathbf{y}}$ is in S.
(3) If vector $\overrightarrow{\mathbf{x}}$ is in S and c is any scalar, then $c \overrightarrow{\mathbf{x}}$ is in S.

Definition: Vectors $\overrightarrow{\mathbf{v}}_{1}, \ldots, \overrightarrow{\mathbf{v}}_{p}$ in an abstract vector space V are said to be independent in V provided solving the equation $c_{1} \overrightarrow{\mathbf{v}}_{1}+\cdots+c_{p} \overrightarrow{\mathbf{v}}_{p}=\overrightarrow{\mathbf{0}}$ for scalars c_{1}, \ldots, c_{p} has only the zero solution $c_{1}=\cdots=c_{p}=0$.

Problem 1. (100 points) Let V be the vector space of all functions on $(-\infty, \infty)$. Define $W=\boldsymbol{\operatorname { s p a n }}\left\{x, e^{x}\right\}$. Assume known that x, e^{x} are independent functions. Define subspace $S=\operatorname{span}\left\{\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}\right\}$ where

$$
\overrightarrow{\mathbf{v}}_{1}: y=x+e^{x}, \quad \overrightarrow{\mathbf{v}}_{2}: y=x-e^{x} .
$$

(a) [20\%] Explain why S is contained in W, that is, provide details for why linear combinations of vectors $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}$ are in W.
(b) $[40 \%]$ Prove that $W=S$. Therefore $\operatorname{dim}(S)=\operatorname{dim}(W)=2$, which proves independence of vectors $\overrightarrow{\mathbf{v}}_{1}: y=x+e^{x}, \quad \overrightarrow{\mathbf{v}}_{2}: y=x-e^{x}$.
(c) [40\%] Define vector $\overrightarrow{\mathbf{v}}$ in S by equation $y=2 x+3 e^{x}$. Show how to compute d_{1}, d_{2} in the equation $\overrightarrow{\mathbf{v}}=d_{1} \overrightarrow{\mathbf{v}}_{1}+d_{2} \overrightarrow{\mathbf{v}}_{2}$, using coordinate map methods. The definitions are $\overrightarrow{\mathbf{v}}_{1}: y=x+e^{x}, \quad \overrightarrow{\mathbf{v}}_{2}: y=x-e^{x}$.

Expected in (c): Calculations of d_{1}, d_{2} are to be done using column vectors from \mathcal{R}^{2} and 2×2 matrices, not functions from V. Zero credit for not using column vectors and coordinate maps.

Definition: A subset S of a vector space V is a subspace of V provided
(1) The zero vector is in S
(2) If vectors $\overrightarrow{\mathbf{x}}$ and $\overrightarrow{\mathbf{y}}$ are in S, then $\overrightarrow{\mathbf{x}}+\overrightarrow{\mathbf{y}}$ is in S.
(3) If vector $\overrightarrow{\mathbf{x}}$ is in S and c is any scalar, then $c \overrightarrow{\mathbf{x}}$ is in S.

Problem 2. (100 points)

(a) $[60 \%]$ Let V be an abstract vector space. Let $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}$ be two vectors in V. Define S to be the set of all linear combinations of $\overrightarrow{\mathbf{v}}_{1}+\overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{1}-\overrightarrow{\mathbf{v}}_{2}$. Prove that S is a subspace of V, using only the definition of subspace.

Expected: A proof uses the symbols $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}$ and the 8 rules of a vector space, plus theorems like $0 \overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{0}}$. Symbols $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}$ are not assumed to be column vectors.

Definition: A subset S of a vector space V is a subspace of V provided
(1) The zero vector is in S
(2) If vectors $\overrightarrow{\mathbf{x}}$ and $\overrightarrow{\mathbf{y}}$ are in S, then $\overrightarrow{\mathbf{x}}+\overrightarrow{\mathbf{y}}$ is in S.
(3) If vector $\overrightarrow{\mathbf{x}}$ is in S and c is any scalar, then $c \overrightarrow{\mathbf{x}}$ is in S.
(b) $[40 \%]$ Let V be the vector space of all 2×2 matrices. Invent an example of a non-void subset S of V that satisfies (1) and (2) but fails the third item (3).

Problem 3. (100 points) Let A be a 4×3 matrix. Assume the determinant of $A^{T} A$ is zero. Prove that the nullspace of A contains a nonzero vector.

Problem 4. (100 points)

(a) $[40 \%]$ Define $\overrightarrow{\mathbf{y}}=\left(\begin{array}{r}1 \\ -1 \\ 1\end{array}\right), \overrightarrow{\mathbf{u}}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$. Find the orthogonal projection vector $\overrightarrow{\mathbf{v}}$ (the shadow projection vector) of $\overrightarrow{\mathbf{y}}$ onto the direction of $\overrightarrow{\mathbf{u}}$.
(b) $[60 \%]$ Let $\overrightarrow{\mathbf{v}}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right), \overrightarrow{\mathbf{v}}_{2}=\left(\begin{array}{r}1 \\ -1 \\ 1\end{array}\right), \overrightarrow{\mathrm{x}}=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$. Check that $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}$ are orthogonal and then compute $\overrightarrow{\mathbf{v}}=$ the vector projection of $\overrightarrow{\mathbf{x}}$ onto the subspace $S=\boldsymbol{\operatorname { s p a n }}\left\{\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}\right\}$.

Reminder: $\overrightarrow{\mathbf{v}}$ is the sum of two shadow projections.

Problem 5. (100 points) Let A be an $m \times n$ matrix and $\overrightarrow{\mathbf{b}}$ an $m \times 1$ vector. Let W be the column space of A. Linear equations $A^{T} A \overrightarrow{\mathbf{z}}=A^{T} \overrightarrow{\mathbf{b}}$ are the normal equations for the problem $A \overrightarrow{\mathrm{x}}=\overrightarrow{\mathbf{b}}$.
(a) $[30 \%]$ Let $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 1 & 0\end{array}\right), \overrightarrow{\mathbf{b}}=\left(\begin{array}{r}1 \\ -1 \\ -1\end{array}\right)$.

Display toolkit steps that verify $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ has no solution.
(b) $[30 \%]$ Let $\overrightarrow{\mathbf{c}}=A \overrightarrow{\mathbf{z}}$ where $\overrightarrow{\mathbf{z}}$ is the unique theoretical solution of the normal equations. Explain with a figure: $\overrightarrow{\mathbf{c}}$ is the nearest point to $\overrightarrow{\mathbf{b}}$ in the column space W.
$\underline{\text { (c) }[40 \%] \text { Let } A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 1 & 0\end{array}\right)}, \overrightarrow{\mathbf{b}}=\left(\begin{array}{r}1 \\ -1 \\ -1\end{array}\right)$. Find vector $\overrightarrow{\mathbf{z}}$ in the normal equations.

Problem 6. (100 points) The Fundamental Theorem of Linear Algebra contains this statement: The row space and the null space of a matrix are orthogonal. This means that $\overrightarrow{\mathbf{R}} \cdot \overrightarrow{\mathbf{N}}=0$ for each vector $\overrightarrow{\mathbf{R}}$ in the row space and each vector $\overrightarrow{\mathbf{N}}$ in the null space.

The four fundamental subspaces in the Fundamental Theorem of Linear algebra are: (1) Nullspace of A, (2) Column Space of A, (3) Row space of $A, 4)$ Nullspace of A^{T}.
(a) [30\%] Define precisely the four fundamental subspaces. For example, the Nullspace of A is the set of all solutions $\overrightarrow{\mathrm{x}}$ to the matrix equation $A \overrightarrow{\mathrm{x}}=\overrightarrow{\mathbf{0}}$.
(b) [30\%] Assume A is 20×12 and has rank 10. Equivalently, matrix A has 10 pivots . Report the dimensions of the four fundamental subspaces.
(c) [40\%] Let A be an $m \times n$ matrix. Let $\overrightarrow{\mathbf{C}}$ be a linear combination of the columns of A and let $\overrightarrow{\mathbf{Y}}$ belong to the nullspace of A^{T}. Prove that $\overrightarrow{\mathbf{C}} \cdot \overrightarrow{\mathbf{Y}}=0$, that is, $\overrightarrow{\mathbf{C}}$ and $\overrightarrow{\mathbf{Y}}$ are orthogonal.

