NAME: _

Please, no books, notes or electronic devices.

Some questions involve proofs. Please divide your time accordingly.

Extra details can appear on the back side or on extra pages. Please supply a road map for details not directly following the problem statement.

Details count 75% and answers count 25%.

QUESTION	VALUE	SCORE
1	100	
2	100	
3	100	
4	100	
5	100	
6	100	
TOTAL	600	

Definition: An *abstract* vector space V is a data set of packages called **vectors** together with operations of addition (+) and scalar multiplication (\cdot) satisfying the following eight (8) rules:

Closure: If \vec{x} and \vec{y} are in V, then $\vec{x} + \vec{y}$ is defined and in V.

(1) $\vec{\mathrm{x}}+\vec{\mathrm{y}}=\vec{\mathrm{y}}+\vec{\mathrm{x}}$

(2) $\vec{\mathbf{x}} + (\vec{\mathbf{y}} + \vec{\mathbf{z}}) = (\vec{\mathbf{x}} + \vec{\mathbf{y}}) + \vec{\mathbf{z}}$

(3) There is a zero vector $\vec{0}$ in V with $\vec{x} + \vec{0} = \vec{x}$.

(4) There is a vector $-\vec{\mathbf{x}}$ in V with $\vec{\mathbf{x}} + (-\vec{\mathbf{x}}) = \vec{\mathbf{0}}$.

Closure: If c = constant and $\vec{\mathbf{x}}$ is in V, then $c \cdot \vec{\mathbf{x}}$ is defined and in V.

- (5) $a(\vec{\mathbf{x}} + \vec{\mathbf{y}}) = a\vec{\mathbf{x}} + a\vec{\mathbf{y}}$
- (6) $(a+b) \cdot \vec{\mathbf{x}} = a \cdot \vec{\mathbf{x}} + b \cdot \vec{\mathbf{x}}$
- (7) $(ab) \cdot \vec{\mathbf{x}} = a \cdot (b \cdot \vec{\mathbf{x}})$
- $(8) \quad 1 \cdot \vec{\mathbf{x}} = \vec{\mathbf{x}}$

Definition. If vectors $\vec{\mathbf{b}}_1, \vec{\mathbf{b}}_2, \dots, \vec{\mathbf{b}}_n$ are a basis for subspace X of an *abstract* vector space V, and $\vec{\mathbf{x}} = c_1\vec{\mathbf{b}}_1 + c_2\vec{\mathbf{b}}_2 + \dots + c_n\vec{\mathbf{b}}_n$ is a given linear combination of these vectors, then the uniquely determined constants c_1, c_2, \dots, c_n are called the *coordinates of* $\vec{\mathbf{x}}$ relative to the basis $\vec{\mathbf{b}}_1, \vec{\mathbf{b}}_2, \dots, \vec{\mathbf{b}}_n$ and the *coordinate map* is the isomorphism

$$\vec{\mathbf{x}} = c_1 \vec{\mathbf{b}}_1 + c_2 \vec{\mathbf{b}}_2 + \dots + c_n \vec{\mathbf{b}}_n \rightarrow \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$

Definition: A subset S of a vector space V is a **subspace** of V provided

- (1) The zero vector is in S
- (2) If vectors $\vec{\mathbf{x}}$ and $\vec{\mathbf{y}}$ are in S, then $\vec{\mathbf{x}} + \vec{\mathbf{y}}$ is in S.
- (3) If vector $\vec{\mathbf{x}}$ is in S and c is any scalar, then $c\vec{\mathbf{x}}$ is in S.

Definition: Vectors $\vec{\mathbf{v}}_1, \ldots, \vec{\mathbf{v}}_p$ in an abstract vector space V are said to be **independent** in V provided solving the equation $c_1\vec{\mathbf{v}}_1 + \cdots + c_p\vec{\mathbf{v}}_p = \vec{\mathbf{0}}$ for scalars c_1, \ldots, c_p has only the zero solution $c_1 = \cdots = c_p = 0$. **Problem 1.** (100 points) Let V be the vector space of all functions on $(-\infty, \infty)$. Define $W = \operatorname{span}\{x, e^x\}$. Assume known that x, e^x are independent functions. Define subspace $S = \operatorname{span}\{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2\}$ where

$$\vec{\mathbf{v}}_1: y = x + e^x, \quad \vec{\mathbf{v}}_2: y = x - e^x.$$

(a) [20%] Explain why S is contained in W, that is, provide details for why linear combinations of vectors $\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2$ are in W.

(b) [40%] Prove that W = S. Therefore $\dim(S) = \dim(W) = 2$, which proves independence of vectors $\vec{\mathbf{v}}_1$: $y = x + e^x$, $\vec{\mathbf{v}}_2$: $y = x - e^x$.

(c) [40%] Define vector $\vec{\mathbf{v}}$ in S by equation $y = 2x + 3e^x$. Show how to compute d_1 , d_2 in the equation $\vec{\mathbf{v}} = d_1\vec{\mathbf{v}}_1 + d_2\vec{\mathbf{v}}_2$, using coordinate map methods. The definitions are $\vec{\mathbf{v}}_1$: $y = x + e^x$, $\vec{\mathbf{v}}_2$: $y = x - e^x$.

Expected in (c): Calculations of d_1, d_2 are to be done using column vectors from \mathcal{R}^2 and 2×2 matrices, not functions from V. Zero credit for not using column vectors and coordinate maps.

Definition: A subset S of a vector space V is a **subspace** of V provided

- (1) The zero vector is in S
- (2) If vectors $\vec{\mathbf{x}}$ and $\vec{\mathbf{y}}$ are in S, then $\vec{\mathbf{x}} + \vec{\mathbf{y}}$ is in S.
- (3) If vector $\vec{\mathbf{x}}$ is in S and c is any scalar, then $c\vec{\mathbf{x}}$ is in S.

Problem 2. (100 points)

(a) [60%] Let V be an *abstract* vector space. Let $\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2$ be two vectors in V. Define S to be the set of all linear combinations of $\vec{\mathbf{v}}_1 + \vec{\mathbf{v}}_2, \vec{\mathbf{v}}_1 - \vec{\mathbf{v}}_2$. Prove that S is a subspace of V, using only the definition of subspace.

Expected: A proof uses the symbols \vec{v}_1, \vec{v}_2 and the 8 rules of a vector space, plus theorems like $0\vec{v} = \vec{0}$. Symbols \vec{v}_1, \vec{v}_2 are not assumed to be column vectors.

Definition: A subset S of a vector space V is a **subspace** of V provided

- (1) The zero vector is in S
- (2) If vectors $\vec{\mathbf{x}}$ and $\vec{\mathbf{y}}$ are in S, then $\vec{\mathbf{x}} + \vec{\mathbf{y}}$ is in S.
- (3) If vector $\vec{\mathbf{x}}$ is in S and c is any scalar, then $c\vec{\mathbf{x}}$ is in S.

(b) [40%] Let V be the vector space of all 2×2 matrices. Invent an example of a non-void subset S of V that satisfies (1) and (2) but fails the third item (3).

Problem 3. (100 points) Let A be a 4×3 matrix. Assume the determinant of $A^T A$ is zero. Prove that the nullspace of A contains a nonzero vector.

Problem 4. (100 points) (a) [40%] Define $\vec{\mathbf{y}} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$, $\vec{\mathbf{u}} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$. Find the orthogonal projection vector $\vec{\mathbf{v}}$ (the shadow projection vector) of $\vec{\mathbf{y}}$ onto the direction of $\vec{\mathbf{u}}$.

(b) [60%] Let
$$\vec{\mathbf{v}}_1 = \begin{pmatrix} 1\\ 1\\ 0 \end{pmatrix}$$
, $\vec{\mathbf{v}}_2 = \begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix}$, $\vec{\mathbf{x}} = \begin{pmatrix} 1\\ 1\\ 2 \end{pmatrix}$. Check that $\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2$ are orthogonal and then compute $\vec{\mathbf{v}} =$ the vector projection of $\vec{\mathbf{x}}$ onto the subspace $S = \mathbf{span}\{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2\}$.

 $\mathbf{Reminder:}\ \vec{\mathbf{v}}$ is the sum of two shadow projections.

Problem 5. (100 points) Let A be an $m \times n$ matrix and $\vec{\mathbf{b}}$ an $m \times 1$ vector. Let W be the column space of A. Linear equations $A^T A \vec{\mathbf{z}} = A^T \vec{\mathbf{b}}$ are the normal equations for the problem $A \vec{\mathbf{x}} = \vec{\mathbf{b}}$.

(a) [30%] Let
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix}, \vec{\mathbf{b}} = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}.$$

Display toolkit steps that verify $A\vec{\mathbf{x}} = \vec{\mathbf{b}}$ has no solution.

(b) [30%] Let $\vec{\mathbf{c}} = A\vec{\mathbf{z}}$ where $\vec{\mathbf{z}}$ is the unique theoretical solution of the normal equations. Explain with a figure: $\vec{\mathbf{c}}$ is the nearest point to $\vec{\mathbf{b}}$ in the column space W.

(c) [40%] Let
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix}$$
, $\vec{\mathbf{b}} = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$. Find vector $\vec{\mathbf{z}}$ in the normal equations.

Problem 6. (100 points) The Fundamental Theorem of Linear Algebra contains this statement: The row space and the null space of a matrix are orthogonal. This means that $\vec{\mathbf{R}} \cdot \vec{\mathbf{N}} = 0$ for each vector $\vec{\mathbf{R}}$ in the row space and each vector $\vec{\mathbf{N}}$ in the null space.

The **four fundamental subspaces** in the Fundamental Theorem of Linear algebra are: (1) Nullspace of A, (2) Column Space of A, (3) Row space of A, 4) Nullspace of A^{T} .

(a) [30%] Define precisely the four fundamental subspaces. For example, the Nullspace of A is the set of all solutions $\vec{\mathbf{x}}$ to the matrix equation $A\vec{\mathbf{x}} = \vec{\mathbf{0}}$.

(b) [30%] Assume A is 20×12 and has rank 10. Equivalently, matrix A has 10 pivots. Report the dimensions of the four fundamental subspaces. (c) [40%] Let A be an $m \times n$ matrix. Let $\vec{\mathbf{C}}$ be a linear combination of the columns of A and let $\vec{\mathbf{Y}}$ belong to the nullspace of A^T . Prove that $\vec{\mathbf{C}} \cdot \vec{\mathbf{Y}} = 0$, that is, $\vec{\mathbf{C}}$ and $\vec{\mathbf{Y}}$ are orthogonal.