Problem 1. (Chapter 1: 100 points) Solve Linear Algebraic Equations.
Solve the system $A \overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{b}}$ defined by

$$
\left\{\begin{array}{l}
2 x_{1}+x_{2}+8 x_{3}+x_{4}+2 x_{5}=4 \\
x_{1}+3 x_{2}+4 x_{3}+x_{4}+x_{5}=2 \\
2 x_{1}+2 x_{2}+8 x_{3}+x_{4}+x_{5}=4
\end{array} \quad \overrightarrow{\mathbf{u}}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right), \quad \overrightarrow{\mathbf{b}}=\left(\begin{array}{l}
4 \\
2 \\
4
\end{array}\right) .\right.
$$

Expected: (a) Augmented matrix and Toolkit steps to the reduced row echelon form (RREF). (b) Translation of RREF to scalar equations. Identify lead and free variables. (c) Scalar general solution for x_{1} to x_{5}. (d) Write vector formulas for the homogeneous solution $\overrightarrow{\mathbf{u}}_{h}$, a particular solution $\overrightarrow{\mathbf{u}}_{p}$ and the general solution $\overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{u}}_{h}+\overrightarrow{\mathbf{u}}_{p}$.

Problem 2. (Chapters 2 and 3: 100 points) Inverse, Determinant, Cramer's Rule.
(a) $[40 \%]$ Find the inverse of the matrix $A=\left(\begin{array}{lll}1 & 4 & 0 \\ 1 & 5 & 0 \\ 0 & 0 & 1\end{array}\right)$.
(b) $[30 \%]$ Let A be defined as in part (a). Compute the determinant of $\left(\left(A+A^{T}\right)^{-1}\right)^{T}$.
(c) [30\%] Let P, Q, R denote undisclosed real numbers. Define matrix B and vectors $\overrightarrow{\mathbf{x}}$ and $\overrightarrow{\mathbf{c}}$ by the equations

$$
B=\left(\begin{array}{rrr}
-2 & 0 & 0 \\
0 & -1 & 1 \\
2 & 1 & 2
\end{array}\right), \quad \overrightarrow{\mathbf{x}}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right), \quad \overrightarrow{\mathbf{c}}=\left(\begin{array}{c}
P \\
Q \\
R
\end{array}\right) .
$$

Find the value of x_{3} by Cramer's Rule in the system $B \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{c}}$.

Theorem (Wronskian test). Wronskian determinant of f_{1}, f_{2}, f_{3} nonzero at some invented $x=x_{0}$ implies independence of f_{1}, f_{2}, f_{3}.
Theorem (Sampling test). Functions f_{1}, f_{2}, f_{3} are independent if a sampling matrix constructed for some invented samples x_{1}, x_{2}, x_{3} has nonzero determinant.

Problem 3. (Chapters 1 to 4: 100 points) Independence Tests for Functions.
Let V be the vector space of all functions on $(-\infty, \infty)$. Define functions in V by the equations $f_{1}(x)=5+e^{x}, f_{2}(x)=2 x, f_{3}(x)=x+x^{2}$.
(a) [50\%] Construct the Wronskian matrix W of the given functions f_{1}, f_{2}, f_{3}, then invent a value for x such that $|W| \neq 0$.
(b) [50\%] Construct a sampling matrix S for the given functions f_{1}, f_{2}, f_{3}, using invented samples x_{1}, x_{2}, x_{3}, such that $|S| \neq 0$.

Rank test. Vectors $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}$ are independent if their augmented matrix has rank 3.
Determinant test. Vectors $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}$ are independent if their square augmented matrix has nonzero determinant.
Pivot test. Vectors $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}$ are independent if their augmented matrix A has 3 pivot columns.
Orthogonality test. A set of nonzero pairwise orthogonal vectors is independent.
Problem 4. (Chapters 1 to 4: 100 points) Independence Tests for Column Vectors.
Let V be the vector space of all functions on $(-\infty, \infty)$. It is known that the functions $g_{1}(x)=5+e^{x}, g_{2}(x)=2 x-e^{x}, g_{3}(x)=e^{x}$ are independent in V. Let $S=\mathbf{\operatorname { p a n }}\left(g_{1}, g_{2}, g_{3}\right)$. Define a coordinate map isomorphism from S to \mathcal{R}^{3} by

$$
T: c_{1}\left(5+e^{x}\right)+c_{2}\left(2 x-e^{x}\right)+c_{3}\left(e^{x}\right) \quad \text { maps into }\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)
$$

(a) [60\%] Define functions in V by the equations $f_{1}(x)=5+e^{x}, f_{2}(x)=5+2 x, f_{3}(x)=2 x$. Determine the column vectors $\overrightarrow{\mathbf{v}}_{1}=T\left(f_{1}\right), \overrightarrow{\mathbf{v}}_{2}=T\left(f_{2}\right), \overrightarrow{\mathbf{v}}_{3}=T\left(f_{3}\right)$.
(b) [40\%] Because T is one-to-one and onto, then the given functions f_{1}, f_{2}, f_{3} are independent in S if and only if the column vectors $T\left(f_{1}\right), T\left(f_{2}\right), T\left(f_{3}\right)$ are independent in \mathcal{R}^{3}. Show details for one of the above independence tests applied to the column vectors $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}$ calculated in part (a) above.

DEFINITION. Subset S of vector space V is a subspace of V provided (1), (2), (3) hold:
(1) S contains vector $\overrightarrow{\mathbf{0}}$.
(2) If \vec{x} and $\overrightarrow{\mathbf{y}}$ are in S, then $\overrightarrow{\mathbf{x}}+\overrightarrow{\mathbf{y}}$ is in S.
(3) If c is a constant and $\overrightarrow{\mathrm{x}}$ is in S, then $c \overrightarrow{\mathrm{x}}$ is in S.

Problem 5. (Chapters 2, 4 and 6: 100 points) Subspace Definition and Theorems.
(a) $[50 \%]$ Set S consists of all vectors $\overrightarrow{\mathbf{x}}$ with components x_{1}, x_{2}, x_{3} in vector space \mathcal{R}^{3} such that $x_{1}+2 x_{3}=x_{2}$ and $x_{1}+x_{3}=0$. Supply proof details which verify that S is a subspace of \mathcal{R}^{3}. Cite a theorem or else verify conditions (1), (2), (3) in the DEFINITION.
(b) [50\%] Set S consists of all vectors $\overrightarrow{\mathbf{x}}$ in vector space \mathcal{R}^{4} which are linear combinations of the vectors

$$
\overrightarrow{\mathbf{v}}_{1}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
7
\end{array}\right), \quad \overrightarrow{\mathbf{v}}_{2}=\left(\begin{array}{r}
1 \\
-1 \\
0 \\
1
\end{array}\right), \quad \overrightarrow{\mathbf{v}}_{3}=\left(\begin{array}{l}
2 \\
0 \\
1 \\
8
\end{array}\right)
$$

Supply proof details which verify that S is a subspace of \mathcal{R}^{4}. Cite a theorem or else verify conditions (1), (2), (3) in the DEFINITION.

Problem 6. (Chapter 6: 100 points) Gram-Schmidt Orthogonalization Process.
Let S be the subspace of \mathcal{R}^{4} spanned by the independent vectors

$$
\overrightarrow{\mathbf{x}}_{1}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right), \quad \overrightarrow{\mathbf{x}}_{2}=\left(\begin{array}{r}
-1 \\
1 \\
0 \\
1
\end{array}\right), \quad \overrightarrow{\mathbf{x}}_{3}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right)
$$

Find a Gram-Schmidt orthogonal basis $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}$ for subspace S.

Problem 7. (Chapters 1 to 6: 100 points) Symmetric Matrices and the Invertible Matrix Theorem.

Let A be an $m \times n$ matrix and assume that $A^{T} A$ is invertible. Prove that the columns of A are linearly independent.

Expected: A referenced result from "The Invertible Matrix Theorem" should appear as a precisely stated LEMMA, the proof of the LEMMA deferred to the textbook.

Problem 8. (Chapter 5: 100 points) Eigenanalysis and Diagonalization.

The matrix A below has eigenvalues 2,8 and 8 .

$$
A=\left(\begin{array}{rrr}
12 & 4 & -1 \\
-4 & 4 & -2 \\
0 & 0 & 2
\end{array}\right)
$$

(a) [80\%] Compute all eigenpairs of A.

Expected: For each eigenvalue λ, first compute the RREF of $A-\lambda I$, then compute all eigenvectors for λ (they are Strang's solutions).
(b) $[20 \%]$ Is A diagonalizable? Explain why or why not.

Problem 9. (Chapter 6: 100 points) Near Point Theorem and Least Squares.
(a) $[60 \%]$ Define $A=\left(\begin{array}{rr}-1 & 1 \\ 0 & 1 \\ 1 & 1\end{array}\right)$ and $\overrightarrow{\mathbf{b}}=\left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right)$. Write the normal equations for the inconsistent problem $A \overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{b}}$ and solve for the least squares solution $\hat{\mathbf{x}}$.
(b) $[20 \%]$ Least squares can be used to find the best fit line $y=m x+b$ for the (x, y)-data points $(-1,3),(0,1),(1,2)$. Find the line equation by the method of least squares.

Expected: The matrix A you create for part (b) should match the matrix A of part (a). Save time by using the computations from (a).
(c) $[20 \%]$ Continue part (a). Compute vector $\hat{\mathbf{b}}=A \hat{\mathbf{x}}$, which is the near point to $\overrightarrow{\mathbf{b}}$ in the column space of A. Then compute the mean square error, which is the norm of the vector $\vec{b}-\hat{b}$.

Problem 10. (Chapter 7: 100 points) Spectral Theorem and $A Q=Q D$.
The spectral theorem says that a symmetric matrix A satisfies $A Q=Q D$ where Q is orthogonal and D is diagonal. Find Q and D for the symmetric matrix $A=\left(\begin{array}{ll}7 & 3 \\ 3 & 7\end{array}\right)$.

Problem 11. (Chapter 7: 100 points) Singular Value Decomposition.
Determine the singular value decomposition for the matrix $A=\left(\begin{array}{ll}6 & 2 \\ 2 & 6\end{array}\right)$.

Problem 12. (Chapter 4: 100 points) Linear Transformations as Matrix Multiply.
Let the linear transformation T from \mathcal{R}^{2} to \mathcal{R}^{2} be defined by its action on two independent vectors:

$$
T\left(\binom{2}{3}\right)=\binom{4}{3}, \quad T\left(\binom{1}{2}\right)=\binom{4}{1}
$$

Find the unique 2×2 matrix A such that T is defined by the matrix multiply equation $T(\overrightarrow{\mathbf{x}})=A \overrightarrow{\mathbf{x}}$.

Problem 13. (Chapters 4 and 6: 100 points) Orthogonality.
Let symbols a, b, c, d, e, f represent certain real numbers. Define $A=\left(\begin{array}{ccc}a & b & c \\ d & e & f\end{array}\right)$. Define subspaces

$$
\begin{aligned}
& S_{1}=\text { the column space of the transpose matrix } A^{T}=\operatorname{Col}\left(A^{T}\right) \\
& S_{2}=\text { the null space of } A=\operatorname{Null}(A) .
\end{aligned}
$$

Let $\overrightarrow{\mathbf{x}}$ belong to S_{1} and let $\overrightarrow{\mathbf{y}}$ belong to S_{2}. Prove that their dot product is zero: $\overrightarrow{\mathbf{x}} \cdot \overrightarrow{\mathbf{y}}=0$.
Expected: Apply the definition of matrix multiply in terms of dot products. No theorems are used, only definitions.

Problem 14. (Chapters 1 to 7: 100 points) Fundamental Theorem of Linear Algebra.
(a) [40\%] Give a technical definition for each of the four fundamental subspaces appearing in the Fundamental Theorem of Linear Algebra. With each definition, describe how to compute a basis for the subspace.
(b) [30\%] What are the dimensions of the four subspaces?
(c) [30\%] State the orthogonality relations for the four fundamental subspaces.

