## MATH 2270-2 Exam 2 S2018

NAME:
Please, no books, notes or electronic devices.
Questions 4, 8, 9, 10 involve proofs. Please divide your time accordingly.

Extra details can appear on the back side or on extra pages. Please supply a road map for details not on the front side.

Details count $75 \%$ and answers count $25 \%$.

| QUESTION | VALUE | SCORE |
| ---: | ---: | ---: |
| 1 | 100 |  |
| 2 | 100 |  |
| 3 | 100 |  |
| 4 | 100 |  |
| 5 | 100 |  |
| 6 | 100 |  |
| 7 | 100 |  |
| 8 | 100 |  |
| 9 | 100 |  |
| 10 | 100 |  |
| TOTAL | 1000 |  |

Problem 1. (100 points) Define matrix $A$, vector $\vec{b}$ and vector variable $\vec{x}$ by the equations

$$
A=\left(\begin{array}{rrr}
-2 & 3 & 0 \\
0 & -4 & 1 \\
1 & 4 & 1
\end{array}\right), \quad \vec{b}=\left(\begin{array}{r}
-3 \\
5 \\
1
\end{array}\right), \quad \vec{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) .
$$

For the system $A \vec{x}=\vec{b}$, display the formula for $x_{3}$ according to Cramer's Rule. To save time, do not compute determinants!

Problem 2. (100 points) Define matrix $A=\left(\begin{array}{rrr}2 & 3 & 0 \\ 6 & 8 & 1 \\ 8 & 14 & -4\end{array}\right)$. Find a lower triangular matrix $L$ and an upper triangular matrix $U$ such that $A=L U$.

Problem 3. (100 points) Find the complete vector solution $\vec{x}=\vec{x}_{h}+\vec{x}_{p}$ for the nonhomogeneous system

$$
\left(\begin{array}{lllll}
0 & 3 & 1 & 0 & 0 \\
0 & 3 & 3 & 0 & 6 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{l}
3 \\
1 \\
0
\end{array}\right)
$$

Expected: (a) Augmented matrix. (b) Toolkit steps to RREF. (c) Translation of RREF to scalar equations. (d) Scalar general solution. (e) Find the homogeneous solution $\vec{x}_{h}$, which is a linear combination of Strang's special solutions. (f) Find a particular solution $\vec{x}_{p}$. (g) Write the vector general solution $\overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{x}}_{h}+\overrightarrow{\mathbf{x}}_{p}$.

## Problem 4. (100 points)

Definition. If $\overrightarrow{\mathbf{b}}_{1}, \overrightarrow{\mathbf{b}}_{2}, \overrightarrow{\mathbf{b}}_{3}$ are a basis for subspace $W$ of vector space $V$, and $\overrightarrow{\mathbf{x}}=c_{1} \vec{b}_{1}+$ $c_{2} \vec{b}_{2}+c_{3} \vec{b}_{3}$ is a given linear combination of these vectors, then the uniquely determined constants $c_{1}, c_{2}, c_{3}$ are called the coordinates of $\vec{x}$ relative to the basis $\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}$.

Below, let $V$ be the vector space of all functions on $(-\infty, \infty)$. Define subspace $S=$ $\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ where $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ are independent vectors defined respectively by the equations $y=1+x, y=2+x^{2}, y=2+x+x^{2}$.
(a) $[40 \%]$ Let $W=\operatorname{span}\left\{1, x, x^{2}\right\}$. Assume known that $1, x, x^{2}$ are independent functions. Already, $S=\operatorname{span}\left\{1+x, 2+x^{2}, 2+x+x^{2}\right\}$ is a subset of $W$. Prove that $W$ is a subset of $S$ (this proves that $W=S$, therefore $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}$ are independent).
(b) $\left[60 \%\right.$ ] Define vector $\overrightarrow{\mathbf{v}}$ in $S$ by equation $y=3+4 x+x^{2}$. Compute $c_{1}, c_{2}, c_{3}$ satisfying the equation $\vec{v}=c_{1} \overrightarrow{\mathbf{v}} 1+c_{2} \overrightarrow{\mathbf{v}}_{2}+c_{3} \overrightarrow{\mathbf{v}}_{3}$, using coordinate map methods.

Expected in (b): Vectors $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}$ are defined by $1+x, 2+x^{2}, 2+x+x^{2}$, respectively. Calculations of $c_{1}, c_{2}, c_{3}$ are to be done using column vectors from $\mathcal{R}^{3}$, not functions from $V$. Zero credit for not using column vectors.

Problem 5. ( 100 points) The functions $1, x^{2}, x^{4}$ represent independent vectors $\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}$ in the vector space $V$ of all functions on $0<x<\infty$. The set $S=\operatorname{span}\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$ is a subspace of $V$. Let vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ in $V$ be defined by the functions $1-x^{2}, x^{4}+x^{2}, 3+2 x^{4}$, respectively. The coordinate map defined by

$$
c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}+c_{3} \vec{u}_{3} \rightarrow\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)
$$

maps the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ into the following images in $\mathcal{R}^{3}$, respectively:

$$
\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right), \quad\left(\begin{array}{l}
3 \\
0 \\
2
\end{array}\right) .
$$

The independence tests below can decide independence of vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ by formulating the independence question in vector space $V$ or in vector space $\mathcal{R}^{3}$, because the coordinate map takes independent sets to independent sets.

Check below all independence tests which apply to decide independence of $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$. Explain how each checked test applies, giving details/reasons. Zero credit for checking a box without explanation.

$\square$ Wronskian test | Nonzero Wronskian determinant of $f_{1}, f_{2}, f_{3}$ at |
| :--- |
| invented value $x=x_{0}$ implies independence of |
|  |
| $f_{1}, f_{2}, f_{3}$. |

## Explain:

$\square$ Sampling test
Nonzero sampling determinant for invented samples $x=x_{1}, x_{2}, x_{3}$ implies independence of $f_{1}, f_{2}, f_{3}$.

## Explain:

$\square$ Rank test
Three column vectors are independent if their augmented matrix has rank 3 .

## Explain:

$\square$ Determinant test
Three column vectors are independent if their augmented matrix is square and has nonzero determinant.

## Explain:

$\square$ Orthogonality test
Three column vectors are independent if they are all nonzero and pairwise orthogonal.

## Explain:

$\square$ Pivot test

Explain:

Three column vectors are independent if their augmented matrix $A$ has 3 pivot columns.

Problem 6. (100 points) Consider a $3 \times 3$ real matrix $A$ with eigenpairs

$$
\left(5,\left(\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right)\right), \quad\left(2+i,\left(\begin{array}{l}
i \\
1 \\
0
\end{array}\right)\right), \quad\left(2-i,\left(\begin{array}{r}
-i \\
1 \\
0
\end{array}\right)\right) .
$$

(a) $[30 \%]$ Display an invertible matrix $P$ and a diagonal matrix $D$ such that $A P=P D$. Matrices $P$ and $D$ can contain complex numbers.
(b) [30\%] Display a real invertible matrix $P_{1}$ and a real diagonal matrix $D_{1}$ such that $A P_{1}=P_{1} D_{1}$. Neither $P_{1}$ nor $D_{1}$ can contain complex numbers. The construction of $D_{1}$ uses the map $a+i b \rightarrow\left(\begin{array}{rr}a & b \\ -b & a\end{array}\right)$.
(c) $[40 \%]$ Display a matrix product formula for $A$ in which the factors contain only real numbers. To save time, do not evaluate any matrix products.

## Problem 7. (100 points)

Definition: A subset $S$ of a vector space $V$ is a subspace of $V$ provided
(1) The zero vector is in $S$
(2) If vectors $\overrightarrow{\mathbf{x}}$ and $\overrightarrow{\mathbf{y}}$ are in $S$, then $\overrightarrow{\mathbf{x}}+\overrightarrow{\mathbf{y}}$ is in $S$.
(3) If vector $\overrightarrow{\mathrm{x}}$ is in $S$ and $c$ is any scalar, then $c \overrightarrow{\mathrm{x}}$ is in $S$.

Let $V$ be the vector space of all real-valued functions on $(-\infty, \infty)$. Invent an example of a nonvoid subset $S$ of $V$ that satisfies two of the items in the above definition of subspace, but fails the third item.

Problem 8. ( 100 points) Define $S$ to be the set of all vectors $\overrightarrow{\mathbf{x}}$ in $\mathcal{R}^{3}$ whose components $x_{1}, x_{2}, x_{3}$ satisfy the two restriction equations $x_{1}+x_{2}=x_{3}$ and $2 x_{1}+5 x_{2}=x_{3}$. Prove that $S$ is a subspace of $\mathcal{R}^{3}$.
Expected: Cite a known theorem or else verify the 3 conditions for the definition of a subspace (see the preceding exam problem).

Problem 9. (100 points) Let $A$ be a $4 \times 3$ matrix. Assume the columns of $A^{T} A$ are independent. Prove or disprove that $A$ has independent columns.

Expected: To prove a claim, assemble details and theorem citations to support the claim. To disprove a claim, invent a specific detailed example that violates the claim.

Problem 10. ( $\mathbf{1 0 0}$ points) Let $U$ be a $2 \times 2$ matrix with $U^{T} U=I$. Let $\overrightarrow{\mathbf{u}}_{1}, \overrightarrow{\mathbf{u}}_{2}$ denote the columns of $U$. Prove that the columns of $U$ are orthonormal.

