Problem 1. (100 points) Define matrix A, vector b and vector variable % by the

equations .
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(
/A (a) [40%)] For the system AX = b, display the formula for z, according to Cramer’s Rule.

Don’t compute z;! Don’t expand determinants!
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A (b) [60%] Find the entry in row 3 and column 2 in matrix A~!, by using the adjugate formula
_ adj(4)

for the inverse: A7 =

4]

The answer is a fraction. Matriz A is not triangular, but cofactor expansion applies: |A| = 16.
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Problem 2. (100 points) Define matrix A = ( 6 8 1

8 14 —4
matrix L and an upper triangular matrix U such that A = LU.

) . Find a lower triangular
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Problem 3. (100 points) Vector space V is the set of all functions on 0 < z < oo.
Equations y = 1, y = 22, y = x° represent independent vectors by, by, bs in V and S =
span{g-l, b, 53} is a subspace of V. The coordinate map T from S to R? is defined by

C1 &
cibi+ by +csbs = ey |, or ¢+ cox® + csx® — cy
C3 C3

Define vectors in subspace S:
= 2

Vi oy=1-2% Vo: y=z3—2% V5: y=4+225

Vectors V1, Vo, V3 are mapped by T as follows:

1 0 4
1—z2= | -1], 22—z = | -1|, 4422 — |0
0 1 2

The coordinate map T, an isomorphism, maps independent sets to independent sets.
Therefore, the set {V1, Vs, Vs} is independent in V' if and only if the three column vectors

above are independent in R3.

Apply each of the three independence tests below to establish in-
dependence of vy, vy, V3. Details are expected: explain briefly
how the test applies. Zero credit for no explanation.

The phrase augmented matrix used below means the 3 x 3 matriz (V1|Va|V3).



Problem 4 Continued.

Wronskian test. Nonzero Wronskian determinant of fi, fa, f3 at invented value z = 2

~ implies independence of f1, f2, fa. Vi€, Vo=, va=+s 'fa 'ﬁ:—‘ {2;'
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Problem 4. (100 points) Matrix A = (

B
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) has real eigenpairs

! (a) [30%] Display an invertible matrix P and a diagonal matrix D such that AP = PD.
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time, do not evaluate anything.
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(b) [20%)] Display a symbolic matrix product formula for A in terms of P and D. To save
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Problem 5. (100 points)

Definition: A subset S of a vector space V is a subspace of V provided
(1) The zero vector is in S.

(2) If vectors x and y are in S, then x +y is in S.
(3) If vector x is in S and c is any scalar, then ¢x is in S.

Let vector space V = R"™ and let A be a given m X n matrix.

(a) [60%) Prove by definition that the equation A% = 0 defines a subspace Sof V.
let @ €S.=> AJ=0. lex Ves = AT
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A/ (b) [40%)] Explain why the equation AX = b fails to define a subspace of V when b # 0.
¥ b 0Lk Au=1 so Uis 1n the subsey,
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Problem 6. (100 points) Let v, = | —1|,¥; = | 0|. Define S to be the set of all

0 1
/X( vectors x in R* which satisfy the two restriction equations ¥, - = 0, V¥, - X = 0. Prove that
S is a subspace of R3.
Expected: Cite known theorems, if they apply, to avoid writing a proof. If no theorems are applied,

then verify the 3 conditions for the definition of a subspace (see the preceding exam problem).
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Problem 7. (100 points) Used in this problem are equivalent statements taken from
the Invertible Matrix Theorem, which says that a square matrix C has an inverse C™*
if and only if one of the statements labeled a to X is true. Three of these statements, for
example, are (1) |C| # 0, (2) C has independent columns, (3) the dimension of the nullspace

of C is zero.
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,A' (a) [20%] LetAz(O L

R ) = e
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/\ (b) [80%] Let matrix B be 2 x 3 with dependent columns. Prove or disprove: The 3 x 3
matrix BT B has dependent columns.

) . Compute the 3 x 3 matrix ATA.

% J\ o~ Expected: To prove a claim, assemble details and theorem citations to support the claim. To disprove
i U 3 . . ) .
Y "\" " {L\\ a claim, invent a specific detailed example that violates the claim.
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