
MATH 2270-2 Sample Exam 1 S2018

No books or notes. No electronic devices, please.

These problems have credits 10 to 25, which is an estimate of the time required to

write the solution.

This sample will be edited during the semester to reflect course content. Expect to

see problems that appeared on the 2017 final exam.

The actual exam will have the same number of problems, identical problem types,

on exactly the same topics. Covered on the exam are chapters 1, 2, 3 from the 2270

textbook [Lay et al].

Problem 1. (10 points)

(a) Give a counter example or explain why it is true. If A and B are n × n invertible, and

CT denotes the transpose of a matrix C, then (AB−1)T = (BT )−1AT .

(b) Give a counter example or explain why it is true. If square matrices A and B satisfy

AB = I, then BA = I and ATBT = I.

Problem 2. (10 points) Let A be a 3× 4 matrix. Find the elimination matrix E which

under left multiplication against A performs both (1) and (2) with one matrix multiply.

(1) Replace Row 2 of A with Row 2 minus Row 3.

(2) Replace Row 3 of A by Row 3 minus 4 times Row 1.

Problem 3. (30 points) Let a, b and c denote constants and consider the system of

equations  1 b c

1 c −a
2 b + c a


 x

y

z

 =

 −aa
a


Use techniques learned in this course to briefly explain the following facts. Only write what

is needed to justify a statement.

(a). The system has a unique solution for (c− b)(2a− c) 6= 0.



(b). The system has no solution if c = 2a and a 6= 0 (don’t explain the other possibilities).

(c). The system has infinitely many solutions if a = b = c = 0 (don’t explain the other

possibilities).

Definition. Vectors ~v1, . . . , ~vk are called independent provided solving the equation c1~v1 + · · ·+
ck~vk = ~0 for constants c1, . . . , ck has the unique solution c1 = · · · = ck = 0. Otherwise the vectors

are called dependent.

Problem 4. (20 points) Classify the following sets of vectors as Independent or Depen-

dent, using the Pivot Theorem or the definition of independence (above).

Set 1:

1

2

0

 ,

2

2

0



Set 2:

1

0

0

 ,

0

2

0

 ,

1

2

0



Problem 5. (20 points) Find the vector general solution ~x to the equation A~x = ~b for

A =

1 0 0 4

3 0 1 0

4 0 0 1

 , ~b =

0

4

0


Problem 6. (20 points) Determinant problem, chapter 3. Parts reduced on Exam 1.

(a) [10%] True or False? The value of a determinant is the product of the diagonal elements.

(b) [10%] True or False? The determinant of the negative of the n×n identity matrix is −1.

(c) [30%] Assume given 3 × 3 matrices A, B. Suppose E2E1A
2 = AB and E1, E2 are

elementary matrices representing respectively a combination and a multiply by 3. Assume

det(B) = 27. Let C = −A. Find all possible values of det(C).

(d) [20%] Determine all values of x for which (2I + C)−1 fails to exist, where I is the 3× 3

identity and C =

 2 x −1

3x 0 1

1 0 −1

.

2



(e) [30%] Let symbols a, b, c denote constants and define

A =


1 −1 0 0

1 0 0 0

a b 0 1

1 c 1 1
2


Apply the adjugate [adjoint] formula for the inverse

A−1 =
adj(A)

|A|

to find the value of the entry in row 4, column 2 of A−1.

End Exam 1.
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