Problem 1. (100 points) Matrix Algebra, Chapters 1,2.
Symbol I is used below for the n x n identity. Notation C* means the transpose of matrix

C. Accept as known theorems the following results:

Theorem 1. If C and D are n x n and CD = I, then DC = 1.

Theorem 2. If A and B are invertible n x n, then AB is invertible and (AB)™* = B~14-1.

Theorem 3. If matrices F, G have dimensions allowing F'G to be defined, then (FG)T = GTFT,

Theorem 4. If C is n x n invertible, then C7 is invertible and (C’T)—1 = (C‘l)T. fonf
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In the statement below, either invent a counter example or else explain why it is true (citing

relevant theorems above). Used in the theorems is the definition of inverse: G has an inverse
H if and only if GH = I and HG = 1. —

If matrices A, B are n x n with ATA = I then A~ exists
and AN (A+ BT) = I+ (BAT. (a7 =

£ AA=T by Theorem 1, A= T by defrmon of
Ahos on mverse | 8o AR =T= Ak, => N /\ v
# A exers, AT (AD > = AAA' B by mamx muk popernes
KAt P‘\‘ BT = L f\ 'BT by propesty of adﬁ%”%‘%‘a“ﬁj_
T+A'® = Trig by svbstitution of A’ =g
LeAB = Te@AT b Ticoem 3.
= A (A7) = Tofeay
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Problem 2. (100 points) Elementary Matrices and Toolkit Sequences, Chapters 1,2.
Definition: An elementary matrix E is the matrix answer after applying exactly

one combo, swap or multiply to the identity matrix /. An elimination matrix M is

a product of elementary matrices.

Let A be a 3 x 4 matrix. Find the elimination matrix M which under left multiplication
against matrix A performs (1), (2) and (3) below with one matrix multiply.
MA = (3 (34D - 254 M ts ZxBreoty vy
(1) Replace Row 3 of A with Row 3 minus twice Row 2 to obtain new matrix A;.

1

(2) Swap Row 1 and Row 3 of A; to obtain new matrix A,. p

(3) Multiply Row 3 of Ay by 1/5 to obtain new matrix As.




Problem 3. (100 points) Linear algebraic equations.
System Ad = b with symbols. The Three Possibilities. Chapters 1,2,3.

Let symbols a, b and ¢ denote constants and consider the system of equations

z + by + cz = o«
22 + (b+c)y — az = —a
r + cy + az = -—a

Use techniques learned in this course to briefly explain the following facts. Only write what
1s needed to justify a statement.

A (a) [40%] The system has a unique solution for (¢ — b)(2a + b) # 0.
20(thc —2ab ~b
/AV (b) [30%] The system has no solution if 2a 4+ ¢ = 0 and a # 0 (don’t explain the other
possibilities).

,A = (c) [30%] The system has infinitely many solutions if a = b = ¢ = 0 (don’t explain the ‘
other possibilities).  £xf fam M0 >y el 4G ce o Tleorem . Debedr Fs %
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c) ot o= a b3 laSY row n reduced  matriy,

It A h=C=0 => 0=0 5 jast Fow  of reduced mertix

=7 a free  vorwable 0 thae  ewe m(-,m-te(:, nany Satwtions,



Definition. Vectors 71, ..., 7 are called independent provided solving vector equation

1714 - -+ ¢ty = 0 for constants ¢i, . . . , ¢y, results in the unique solution ¢; = -+ = ¢; = 0.

Otherwise the vectors are called dependent.

Problem 4. (100 points) Linear Independence, Chapters 1,2,3.
Solve parts (a), (b) and (c) using the vectors displayed below. Application of theorems is
expected: the Pivot Theorem, the Rank Test, the Determinant Test. Or, directly use the

definition of independence (above). Details are 75%, answer 25%.

0 0 1 1
. 2 . 0 . 2 . 4
1= 9 , U= 0 , U = 1 ) 4 = 3
0 0 2 2

A (a) [50%)] Show details for the dependence of the 4 vectors.

A~ (b) [20%)] List a maximum number of independent vectors extracted from the 4 vectors.
~(c) [30%] Write each vector not listed in (b) as a linear combination of the reported inde-

pendent vectors. N
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Problem 5. (100 points) Vector general solution of a matrix equation AZ = b,
Chapters 1,2.

Find the vector general solution 7 to the equation A% = b for A
010 4 5
. 0310 - 3
0 41 4 8
000O 0

Expected: (a) [10%] Augmented matrix, (b) [40%] Toolkit steps for the RREF, (c) [10%]

Conversion of RREF to scalar equations, (d) [20%] Last frame Algorithm details to write out
the scalar general solution, (e) [20%)] Conversion of the scalar general solution to the vector
general solution. This answer is in the form of a single vector equation for Z, the solution of
system A¥ = b. The expected components of & are x1, Z, T3, T4.

. - : - . - v 7
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Problem 6. (100 points) Determinants, Chapter 3.
Details 75%, answers 25%.
(a) [20%)] Invent a 3 x 3 non-triangular matrix whose determinant equals 7 + e*. Common

approximations are 7 = 3.14 and e = 2.718, but kindly do not approximate. Expected are

determinant evaluation details.

(b) [20%] There are 50 distinct 5 x 5 matrices A whose entries are restricted to be either 0
or 1. Give one example where |A| = 0 and each row and column of A contains at least two
zeros and at least two ones. Expected is an explanation for [A| = 0.

(c) [60%] Determine all values of « for which A™" exists, where A =21 + C, I is the 3 x 3

1 = -1
identity and C'= | =z 0 1
1 0 -2
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