Problem 1. (100 points) Matrix Algebra, Chapters 1,2.

Symbol I is used below for the $n \times n$ identity. Notation C^T means the transpose of matrix C. Accept as known theorems the following results:

Theorem 1. If C and D are $n \times n$ and CD = I, then DC = I.

Theorem 2. If A and B are invertible $n \times n$, then AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.

Theorem 3. If matrices F, G have dimensions allowing FG to be defined, then $(FG)^T = G^T F^T$.

Theorem 4. If C is $n \times n$ invertible, then C^T is invertible and $(C^T)^{-1} = (C^{-1})^T$.

In the statement below, either invent a counter example or else explain why it is true (citing relevant theorems above). Used in the theorems is the definition of inverse: G has an inverse H if and only if GH = I and HG = I.

If matrices
$$A$$
, B are $n\times n$ with $A^TA=I$, then A^{-1} exists and $A^{-1}(A+B^T)=I+(BA)^T$. $(\wedge^T\wedge)^{-1}=\text{I}^{-1}$

If
$$A^TA = I$$
, by Theorem 1, $AA^T = I$. By definition of inverses, A has an inverse, so $AA^T = I = A^TA$, $\Longrightarrow A^{-1} = A^T$.

If A^T exists, $A^T(A+B^T) = A^TA+A^TB^T$ by matrix mult. properties $A^TA+A^TB^T = I+A^TB^T$ by property of identity.

 $I+A^TB^T = I+A^TB^T$ by substitution of $A^T = A^{-1}I+A^TB^T = I+(BA)^TI$ by Theorem 3.

 $I=A^TA+A^TB^T = I+(BA)^TI$

TRUE

Problem 2. (100 points) Elementary Matrices and Toolkit Sequences, Chapters 1,2. Definition: An elementary matrix E is the matrix answer after applying exactly one combo, swap or multiply to the identity matrix I. An elimination matrix M is a product of elementary matrices.

Let A be a 3×4 matrix. Find the elimination matrix M which under left multiplication against matrix A performs (1), (2) and (3) below with one matrix multiply.

- (1) Replace Row 3 of A with Row 3 minus twice Row 2 to obtain new matrix A_1 .
- (2) Swap Row 1 and Row 3 of A_1 to obtain new matrix A_2 .

(3) Multiply Row 3 of A_2 by 1/5 to obtain new matrix A_3 .

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad (1) \quad A_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$

$$\begin{array}{c} (3) \\ A_3 = \begin{bmatrix} 0 & -2 & 1 \\ 0 & 1 & 0 \\ 1/5 & 0 & 0 \end{bmatrix} \end{array}$$

$$M = \begin{bmatrix} 0 & -2 & 1 \\ 0 & 1 & 0 \\ 1/5 & 0 & 0 \end{bmatrix}$$

Problem 3. (100 points) Linear algebraic equations.

System $A\vec{u} = \vec{b}$ with symbols. The Three Possibilities. Chapters 1,2,3.

Let symbols a, b and c denote constants and consider the system of equations

$$\begin{cases} x + by + cz = a \\ 2x + (b+c)y - az = -a \\ x + cy + az = -a \end{cases}$$

Use techniques learned in this course to briefly explain the following facts. Only write what is needed to justify a statement.

 $\fine (a)$ [40%] The system has a unique solution for $(c-b)(2a+b) \neq 0$. $\fine (b)$ [30%] The system has no solution if 2a+c=0 and $a\neq 0$ (don't explain the other possibilities).

A - (c) [30%] The system has infinitely many solutions if a = b = c = 0 (don't explain the other possibilities). Explain no signal eq.

other possibilities). Explain no signal eq. cite a Theorem. Dotail 75%.

a) If solution is unique of Ax=b => X=A1b=> A must exist For R' to exist, |A| =0

$$A = \begin{bmatrix} 1 & b & c \\ 2 & b + c & -\alpha \end{bmatrix}$$

$$\begin{bmatrix} 1 & c & \alpha \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & b & c \\ 2 & b+c & -a \\ 1 & c & a \end{bmatrix}$$

$$(cofactor expansion on Prow 1)$$

$$|A| = +1 [(b+c)a + ac] - b[2a+a] + c[2c - (b+c)]$$

$$= ab+ac+ac - 2ab-ab+2c^2 - bc-c^2$$

$$|A| = -2ab+2ac+2ac+3$$

$$|A| = -2ab + 2ac + c^2 - bc$$

= $2a(-b+c) + c(c-b) = (c-b)(2a+c)$

If $(c+b)(2a+b) \neq 0 \Rightarrow |A| \neq 0$, so A has an inverse and a unique

b)
$$\begin{bmatrix} 1 & b & c & a \\ 2 & b+c & -a & -a \\ 1 & c & a & -a \end{bmatrix}$$
 combo(1,2,-2) $\begin{bmatrix} 1 & b & c & a \\ 0 & -b+c & -a2c & -3a \\ 0 & -b+c & a-c & -2a \end{bmatrix}$ $= > \begin{bmatrix} 1 & b & c & a \\ 0 & -b+c & -a2c & -3a \\ 0 & 0 & 2a+c & a \end{bmatrix}$

2a+C=a by last row of matrix

If $2a+c=0 \notin a\neq 0 \Rightarrow 0=a_4$ where $a\neq 0$, so this is a signal equation & the system has no solution.

c) 2a+c=a by last row in reduced matrix.

If a=b=c=0=> 0=0 is last row of reduced matrix

=> z is a free variable so there are infinitely many solutions.

Definition. Vectors $\vec{v}_1, \dots, \vec{v}_k$ are called **independent** provided solving vector equation $c_1\vec{v}_1 + \cdots + c_k\vec{v}_k = \vec{0}$ for constants c_1, \ldots, c_k results in the unique solution $c_1 = \cdots = c_k = 0$. Otherwise the vectors are called dependent.

Problem 4. (100 points) Linear Independence, Chapters 1,2,3.

Solve parts (a), (b) and (c) using the vectors displayed below. Application of theorems is expected: the Pivot Theorem, the Rank Test, the Determinant Test. Or, directly use the definition of independence (above). Details are 75%, answer 25%.

$$\vec{v}_1 = \begin{pmatrix} 0 \\ 2 \\ 2 \\ 0 \end{pmatrix}, \quad \vec{v}_2 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad \vec{v}_3 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \end{pmatrix}, \quad \vec{v}_4 = \begin{pmatrix} 1 \\ 4 \\ 3 \\ 2 \end{pmatrix}$$

A (a) [50%] Show details for the dependence of the 4 vectors.

(b) [20%] List a maximum number of independent vectors extracted from the 4 vectors.

(c) [30%] Write each vector not listed in (b) as a linear combination of the reported inde-

*Thm: If one vector is the o'vector => Imearly dependent vectors

This
$$\begin{bmatrix} 0 & 0 & 1 & 1 \\ 2 & 0 & 2 & 4 \\ 2 & 0 & 1 & 3 \\ 0 & 0 & 2 & 2 \end{bmatrix}$$
 $\begin{bmatrix} 2 & 0 & 2 & 4 \\ 0 & 0 & 1 & 1 \\ 2 & 0 & 1 & 3 \\ 0 & 0 & 2 & 2 \end{bmatrix}$ $\begin{bmatrix} 2 & 0 & 2 & 4 \\ 0 & 0 & 1 & 1 \\ 2 & 0 & 1 & 3 \\ 0 & 0 & 2 & 2 \end{bmatrix}$ $\begin{bmatrix} 2 & 0 & 2 & 4 \\ 0 & 0 & 1 & 1 \\ 2 & 0 & 1 & 3 \\ 0 & 0 & 2 & 2 \end{bmatrix}$ $\begin{bmatrix} 2 & 0 & 2 & 4 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 2 & 2 \end{bmatrix}$ $\begin{bmatrix} 2 & 0 & 2 & 4 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 2 & 2 \end{bmatrix}$ $\begin{bmatrix} 2 & 0 & 2 & 4 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 2 & 2 \end{bmatrix}$ $\begin{bmatrix} 2 & 0 & 2 & 4 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 2 & 2 \end{bmatrix}$ $\begin{bmatrix} 2 & 0 & 2 & 4 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 2 & 2 \end{bmatrix}$

$$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 2 & 2 \end{bmatrix} \xrightarrow{\text{combo}(2,3,1)} \begin{bmatrix} 1 & 0 & 12 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 2 \end{bmatrix} \xrightarrow{\text{combo}(2,4,2)} \begin{bmatrix} 1 & 0 & 12 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 2 \end{bmatrix} \xrightarrow{\text{combo}(2,1,1)} \begin{bmatrix} 1 & 0 & 12 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

0011 RREF By pivot Theorem, only 2 columns of the 4 are pivot columns so the 4 vectors are dependent.

ViaV3 are pivot columns => max independent rectors=2

c)
$$C_{1}\vec{V}_{1} + C_{2}\vec{V}_{2} = \vec{V}_{2}$$
 $c_{1}\begin{bmatrix}0\\2\\2\\2\\0\end{bmatrix} + c_{3}\begin{bmatrix}1\\2\\1\\2\end{bmatrix} = \begin{bmatrix}0\\0\\0\\0\end{bmatrix}$
 $c_{1}+c_{3}=0$
 $c_{1}+c_{3}=0$
 $c_{2}+c_{3}=0$
 $c_{3}=0$
 $c_{3}=0$

Problem 5. (100 points) Vector general solution of a matrix equation $A\vec{x} = \vec{b}$, Chapters 1,2.

Find the vector general solution \vec{x} to the equation $A\vec{x} = \vec{b}$ for

$$A = \begin{pmatrix} 0 & 1 & 0 & 4 \\ 0 & 3 & 1 & 0 \\ 0 & 4 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 5 \\ 3 \\ 8 \\ 0 \end{pmatrix}$$

Expected: (a) [10%] Augmented matrix, (b) [40%] Toolkit steps for the RREF, (c) [10%] Conversion of RREF to scalar equations, (d) [20%] Last frame Algorithm details to write out the scalar general solution, (e) [20%] Conversion of the scalar general solution to the vector general solution. This answer is in the form of a single vector equation for \vec{x} , the solution of system $A\vec{x} = \vec{b}$. The expected components of \vec{x} are x_1, x_2, x_3, x_4 .

$$\begin{bmatrix}
0 & 1 & 0 & 4 & | & 5 \\
0 & 3 & 1 & 0 & | & 3 \\
0 & 4 & 1 & 4 & | & 8 \\
0 & 0 & 0 & 0
\end{bmatrix}
\xrightarrow{\text{combo}(1,2,3)}
\begin{bmatrix}
0 & 1 & 0 & 4 & | & 5 \\
0 & 0 & 1 & -12 & -12 \\
0 & 4 & 1 & 4 & | & 8 \\
0 & 0 & 0 & 0
\end{bmatrix}
\xrightarrow{\text{combo}(1,3,4)}
\begin{bmatrix}
0 & 1 & 0 & 4 & | & 5 \\
0 & 0 & 1 & -12 & -12 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

Combo
$$(2,3,-1)$$
 $\begin{bmatrix} 0 & 1 & 0 & 4 & 5 \\ 0 & 0 & 1 & -12 & -12 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ $*2 \text{ lead Variables}$

$$2 \text{ free Variables}$$
 $X_2 + 4X_4 = 5$
 2 free Variables $X_3 - 12X_4 = -12$
 $0 = 0$

$$X_1 = free$$
 $X_2 = 5 - 4X_4 =$
 $X_3 = -12 + 12 \times 4$
 $X_4 = free$
 $X_1 = t_1$
 $X_2 = 5 - 4t_2$
 $X_3 = -12 + 12 \times 4$
 $X_4 = t_2$

$$X_1 = free$$
 $X_2 = 5 - 4X_4 =$
 $X_2 = 5 - 4X_4 =$
 $X_3 = -12 + 12 \times 4$
 $X_4 = free$
 $X_4 = free$
 $X_1 = t_1$
 $X_2 = 5 - 4X_4 =$
 $X_2 = 5 - 4t_2$
 $X_3 = -12 + 12 \times 4$
 $X_4 = t_2$
 $X_4 = t_2$
 $X_4 = t_2$
 $X_4 = t_2$

Problem 6. (100 points) Determinants, Chapter 3.

Details 75%, answers 25%.

- (a) [20%] Invent a 3×3 non-triangular matrix whose determinant equals $\pi + e^2$. Common approximations are $\pi = 3.14$ and e = 2.718, but kindly do not approximate. Expected are determinant evaluation details.
- (b) [20%] There are 50 distinct 5×5 matrices A whose entries are restricted to be either 0 or 1. Give one example where |A| = 0 and each row and column of A contains at least two zeros and at least two ones. Expected is an explanation for |A| = 0.
- (c) [60%] Determine all values of x for which A^{-1} exists, where A = 2I + C, I is the 3×3 identity and $C = \begin{pmatrix} 1 & x & -1 \\ x & 0 & 1 \\ 1 & 0 & -2 \end{pmatrix}$.
- a) set top row as (100) in order to use cofactor expansion to easily calculate determinant:

*other values in column I do not affect determinant

because determinant = $+1 | \pi^- e| - 0 | 2 | - e| + 0 | 2 | \pi^- |$ = $+1 | \pi^- e| = \pi(1) - (-e)(e) = \pi + e^2$

b)
$$|A| = (row1)$$

 $|A| = (row1)$
 $|A| = (ro$

* ROW 2 & ROW 3 are equivalent, so after completing the rref (A), there will be at least 1 row of zeros. The |A| = |rref(A)|, & if there is a now of zeros the determinant will be 0. (Pick the row of zeros to do cofactor expansion on, and all cross out 7 determinants will be multiplied by 0, so the |A| = 0)

c)
$$A = 2I + C = 2\begin{bmatrix} 106 \\ 010 \end{bmatrix} + \begin{bmatrix} 1 & x - 1 \\ x & 0 & 1 \\ 1 & 0 - 2 \end{bmatrix} = \begin{bmatrix} 2 & 00 \\ 0 & 20 \end{bmatrix} + \begin{bmatrix} x & - 1 \\ x & 0 & 1 \\ 1 & 0 & - 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & x & -1 \\ x & 2 & 1 \\ 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} x & -1 \\ x & 0 & 1 \\ 1 & 0 & - 2 \end{bmatrix} + \begin{bmatrix} x & -1 \\ x & 0 & 1 \\ 1 & 0 & - 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & x & -1 \\ x & 2 & 1 \\ 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} x & -1 \\ x & 2 & 1 \\ 1 & 0 & - 2 \end{bmatrix} + \begin{bmatrix} x & -1 \\ x & 2 & 1 \\ 1 & 0 & - 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & x & -1 \\ x & 2 & 1 \\ 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 3 & x \\ x & 2 & -1 \\ x & 1 \end{bmatrix} + \begin{bmatrix} x & -1 \\ x & 2 & 1 \end{bmatrix} = \begin{bmatrix} x & -$$

A' exists for all x values except x=-2