## MATH 2270-2 Exam 1 Spring 2018

## NAME:

No books or notes. No electronic devices, please.

Each question has credit 100, with multiple parts given a percentage of the total 100.

If you must write a solution out of order or on the back side, then supply a road map.

| QUESTION | VALUE | SCORE |
|----------|-------|-------|
| 1        | 100   |       |
| 2        | 100   |       |
| 3        | 100   |       |
| 4        | 100   |       |
| 5        | 100   |       |
| 6        | 100   |       |
| TOTAL    | 600   |       |

## Problem 1. (100 points)

Symbol I is used below for the  $n \times n$  identity. Notation  $C^T$  means the transpose of matrix C. Accept as known theorems the following results:

**Theorem 1.** If A and B are  $n \times n$  and AB = I, then BA = I. **Theorem 2.** If A and B are invertible  $n \times n$ , then AB is invertible and  $(AB)^{-1} = B^{-1}A^{-1}$ . **Theorem 3.** If matrices F, G have dimensions allowing FG to be defined, then  $(FG)^T = G^T F^T$ . **Theorem 4.** If matrices F, G have dimensions allowing F + G to be defined, then  $(F + G)^T = F^T + G^T$ . **Theorem 5.** If C is  $n \times n$  invertible, then  $C^T$  is invertible and  $(C^T)^{-1} = (C^{-1})^T$ . **Theorem 6.** If A and B are  $n \times n$ , then |AB| = |A||B| (Determinant Product Theorem). **Theorem 7.** Assume A is  $n \times n$ . Matrix A is invertible if and only  $|A| \neq 0$ .

In each of parts (a) and (b), either invent a counter example or else explain why it is true citing the theorems above.

- (a) [50%] If matrices A, B are  $n \times n$  with  $A^T = A$  and  $A^{-1}$  exists, then  $A(A^{-1} + B)^T = I + (BA)^T$ .
- (b) [50%] If matrices A, B are  $n \times n$  and  $A^2B^2$  is not invertible, then both A and B have determinant zero.

## Problem 2. (100 points)

Definition: An elementary matrix is the answer after applying exactly one combo, swap or multiply to the identity matrix I. An elimination matrix is a product of elementary matrices.

Let A be a  $3 \times 6$  matrix. Find the elimination matrix E which under left multiplication against matrix A performs (1), (2) and (3) below with one matrix multiply.

- (1) Replace Row 3 of A with Row 3 minus Row 1 to obtain new matrix  $A_1$ .
- (2) Swap Row 2 and Row 3 of  $A_1$  to obtain new matrix  $A_2$ .
- (3) Multiply Row 2 of  $A_2$  by 1/2 to obtain new matrix  $A_3$ .

**Problem 3.** (100 points) Let *a*, *b* and *c* denote constants and consider the system of equations

$$\begin{cases} cx + by + z = a \\ (b+c)x - ay + 2z = -a \\ bx + ay + z = -a \end{cases}$$

Use techniques learned in this course to briefly explain the following facts. Only write what is needed to justify a statement.

- (a) [40%] The system has a unique solution for  $(b-c)(2a+b) \neq 0$ .
- (b) [30%] The system has no solution if b + 2a = 0 and  $a \neq 0$  (don't explain the other possibilities).
- (c) [30%] The system has infinitely many solutions if a = b = c = 0 (don't explain the other possibilities).

**Definition**. Vectors  $\vec{v}_1, \ldots, \vec{v}_k$  are called **independent** provided solving vector equation  $c_1\vec{v}_1 + \cdots + c_k\vec{v}_k = \vec{0}$  for constants  $c_1, \ldots, c_k$  results in the unique solution  $c_1 = \cdots = c_k = 0$ . Otherwise the vectors are called **dependent**.

**Problem 4.** (100 points) Solve parts (a), (b) and (c) using the vectors displayed below. Expected is application of the Pivot Theorem or the definition of independence (above). Details are 75%, answer 25%.

$$\begin{pmatrix} 1\\0\\0\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\0\\2\\2 \end{pmatrix}, \begin{pmatrix} 0\\2\\0\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\2\\2 \end{pmatrix}$$

(a) [50%] Show details for the dependence of the 4 vectors.

(b) [20%] List a maximum number of independent vectors extracted from the 4 vectors.

(c) [30%] Explain why the 4 column vectors fail to span the vector space  $\mathcal{R}^5$ , without using the results from parts (a), (b).

**Problem 5.** (100 points) Find the vector general solution  $\vec{x}$  to the equation  $A\vec{x} = \vec{b}$  for

$$A = \begin{pmatrix} 1 & 0 & 0 & 4 \\ 3 & 0 & 1 & 0 \\ 4 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 0 \\ 4 \\ 4 \\ 0 \end{pmatrix}$$

**Expected**: (a) [10%] Augmented matrix, (b) [40%] Toolkit steps for the RREF, (c) [10%] Conversion of RREF to scalar equations, (d) [20%] Last frame Algorithm details to write out the scalar general solution, (e) [20%] Conversion of the scalar general solution to the vector general solution. This answer is in the form of a single vector equation for  $\vec{x}$ , the solution of system  $A\vec{x} = \vec{b}$ .

Problem 6. (100 points) Determinant problem, chapter 3.

Details 75%, answers 25%.

(a) [30%] Assume given  $3 \times 3$  matrices A, B. Assume  $E_1$ ,  $E_2$ ,  $E_3$  are elementary matrices

representing respectively a combination, a swap and a multiply by 4. Assume  $\det(B) = 5$ and  $E_3E_2E_1A = A^2B^3$ . Let C = -2A. Find all possible values of  $\det(C)$ .

(b) [30%] Determine all values of x for which  $A^{-1}$  exists, where A = I + C, I is the  $3 \times 3$  identity and  $C = \begin{pmatrix} 2 & x & -1 \\ x & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$ .

(c) [40%] Let symbols a, b, c denote constants and define

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & -2 & 0 & 0 \\ a & b & 0 & 1 \\ 1 & c & 1 & 2 \end{pmatrix}$$

Apply the adjugate [adjoint] formula for the inverse

$$A^{-1} = \frac{\operatorname{adj}(A)}{|A|}$$

to find the value of the entry in row 3, column 2 of  $A^{-1}$ .

End Exam 1.