MATH 2270-4 Exam $1 \quad$ Spring 2019

NAME:

No books or notes. No electronic devices, please.
Each question has credit 100, with multiple parts given a percentage of the total 100 .
If you must write a solution out of order or on the back side, then supply a road map.
span span

QUESTION	VALUE	SCORE
1	100	
2	100	
3	100	
4	100	
5	100	
6	100	
TOTAL	600	

Problem 1. (100 points) Matrix Algebra, Chapters 1,2.
Symbol I is used below for the $n \times n$ identity. Notation C^{T} means the transpose of matrix C. Accept as known theorems the following results:

Theorem 1. If C and D are $n \times n$ and $C D=I$, then $D C=I$.
Theorem 2. If A and B are invertible $n \times n$, then $A B$ is invertible and $(A B)^{-1}=B^{-1} A^{-1}$.
Theorem 3. If matrices F, G have dimensions allowing $F G$ to be defined, then $(F G)^{T}=G^{T} F^{T}$. Theorem 4. If C is $n \times n$ invertible, then C^{T} is invertible and $\left(C^{T}\right)^{-1}=\left(C^{-1}\right)^{T}$.

In the statement below, either invent a counter example or else explain why it is true (citing relevant theorems above). Used in the theorems is the definition of inverse: G has an inverse H if and only if $G H=I$ and $H G=I$.

If matrices A, B are $n \times n$ with $A^{T} A=I$, then A^{-1} exists and $A^{-1}\left(A+B^{T}\right)=I+(B A)^{T}$.

Problem 2. (100 points) Elementary Matrices and Toolkit Sequences, Chapters 1,2. Definition: An elementary matrix E is the matrix answer after applying exactly one combo, swap or multiply to the identity matrix I. An elimination matrix M is a product of elementary matrices.

Let A be a 3×4 matrix. Find the elimination matrix M which under left multiplication against matrix A performs (1), (2) and (3) below with one matrix multiply.
(1) Replace Row 3 of A with Row 3 minus twice Row 2 to obtain new matrix A_{1}.
(2) Swap Row 1 and Row 3 of A_{1} to obtain new matrix A_{2}.
(3) Multiply Row 3 of A_{2} by $1 / 5$ to obtain new matrix A_{3}.

Problem 3. (100 points) Linear algebraic equations.
System $A \vec{u}=\vec{b}$ with symbols. The Three Possibilities. Chapters $1,2,3$.
Let symbols a, b and c denote constants and consider the system of equations

$$
\left\{\begin{aligned}
x+b y+c z & =a \\
2 x+(b+c) y-a z & =-a \\
x+c y+a z & =-a
\end{aligned}\right.
$$

Use techniques learned in this course to briefly explain the following facts. Only write what is needed to justify a statement.
(a) $[40 \%]$ The system has a unique solution for $(c-b)(2 a+c) \neq 0$.
(b) $[30 \%]$ The system has no solution if $2 a+c=0$ and $a \neq 0$ (don't explain the other possibilities).
(c) [30\%] The system has infinitely many solutions if $a=b=c=0$ (don't explain the other possibilities).

Definition. Vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are called independent provided solving vector equation $c_{1} \vec{v}_{1}+\cdots+c_{k} \vec{v}_{k}=\overrightarrow{0}$ for constants c_{1}, \ldots, c_{k} results in the unique solution $c_{1}=\cdots=c_{k}=0$. Otherwise the vectors are called dependent.

Problem 4. (100 points) Linear Independence, Chapters 1,2,3.
Solve parts (a), (b) and (c) using the vectors displayed below. Application of theorems is expected: the Pivot Theorem, the Rank Test, the Determinant Test. Or, directly use the definition of independence (above). Details are 75\%, answer 25%.

$$
\vec{v}_{1}=\left(\begin{array}{l}
0 \\
2 \\
2 \\
0
\end{array}\right), \quad \vec{v}_{2}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right), \quad \vec{v}_{3}=\left(\begin{array}{l}
1 \\
2 \\
1 \\
2
\end{array}\right), \quad \vec{v}_{4}=\left(\begin{array}{l}
1 \\
4 \\
3 \\
2
\end{array}\right)
$$

(a) [50\%] Show details for the dependence of the 4 vectors.
(b) $[20 \%]$ List a maximum number of independent vectors extracted from the 4 vectors.
(c) $[30 \%]$ Write each vector not listed in (b) as a linear combination of the reported independent vectors.

Problem 5. (100 points) Vector general solution of a matrix equation $A \vec{x}=\vec{b}$, Chapters 1,2.
Find the vector general solution \vec{x} to the equation $A \vec{x}=\vec{b}$ for

$$
A=\left(\begin{array}{llll}
0 & 1 & 0 & 4 \\
0 & 3 & 1 & 0 \\
0 & 4 & 1 & 4 \\
0 & 0 & 0 & 0
\end{array}\right), \quad \vec{b}=\left(\begin{array}{l}
5 \\
3 \\
8 \\
0
\end{array}\right)
$$

Expected: (a) [10\%] Augmented matrix, (b) [40\%] Toolkit steps for the RREF, (c) [10\%] Conversion of RREF to scalar equations, (d) [20\%] Last frame Algorithm details to write out the scalar general solution, (e) [20\%] Conversion of the scalar general solution to the vector general solution. This answer is in the form of a single vector equation for \vec{x}, the solution of system $A \vec{x}=\vec{b}$. The expected components of \vec{x} are $x_{1}, x_{2}, x_{3}, x_{4}$.

Problem 6. (100 points) Determinants, Chapter 3.
Details 75%, answers 25%.
(a) [20\%] Invent a 3×3 non-triangular matrix whose determinant equals $\pi+e^{2}$. Common approximations are $\pi=3.14$ and $e=2.718$, but kindly do not approximate. Expected are determinant evaluation details.
(b) $[20 \%]$ There are 50 distinct 5×5 matrices A whose entries are restricted to be either 0 or 1 . Give one example where $|A|=0$ and each row and column of A contains at least two zeros and at least two ones. Expected is an explanation for $|A|=0$.
(c) $[60 \%]$ Determine all values of x for which A^{-1} exists, where $A=2 I+C, I$ is the 3×3 identity and $C=\left(\begin{array}{ccc}1 & x & -1 \\ x & 0 & 1 \\ 1 & 0 & -2\end{array}\right)$.

