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9.2 Eigenanalysis II

Discrete Dynamical Systems

The matrix equation

~y =
1

10

 5 4 0
3 5 3
2 1 7

 ~x(1)

predicts the state ~y of a system initially in state ~x after some fixed
elapsed time. The 3×3 matrix A in (1) represents the dynamics which
changes the state ~x into state ~y . An equation ~y = A~x like equation (1)
is called a discrete dynamical system and A is called a transition
matrix, provided A has nonnegative entries and column sums equal to
one (see Stochastic Matrices below).

The eigenpairs of A in (1) are shown in details page 658 to be (1, ~v 1),
(1/2, ~v 2), (1/5, ~v 3) where the eigenvectors are given by

~v 1 =

 1
5/4

13/12

 , ~v 2 =

 −1
0
1

 , ~v 3 =

 −4
3
1

 .(2)

Market Shares

A typical application of discrete dynamical systems is telephone long
distance company market shares x1, x2, x3, which are fractions of the
total market for long distance service. If three companies provide all the
services, then their market fractions add to one: x1 + x2 + x3 = 1. The
equation ~y = A~x gives the market shares of the three companies after a
fixed time period, say one year. Then market shares after one, two and
three years are given by the iterates

~y 1 = A~x ,
~y 2 = A2~x ,
~y 3 = A3~x .

Fourier’s replacement model gives succinct and useful formulas for the
iterates: if ~x = a1~v 1 + a2~v 2 + a3~v 3, then

~y 1 = A~x = a1λ1~v 1 + a2λ2~v 2 + a3λ3~v 3,
~y 2 = A2~x = a1λ

2
1~v 1 + a2λ

2
2~v 2 + a3λ

2
3~v 3,

~y 3 = A3~x = a1λ
3
1~v 1 + a2λ

3
2~v 2 + a3λ

3
3~v 3.

The advantage of Fourier’s model is that an iterate An is computed
directly, without computing the powers before it. Because λ1 = 1 and
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limn→∞ |λ2|n = limn→∞ |λ3|n = 0, then for large n

~yn ≈ a1(1)~v 1 + a2(0)~v 2 + a3(0)~v 3 =

 a1
5a1/4

13a1/12

 .
The numbers a1, a2, a3 are related to x1, x2, x3 by the equations a1 −
a2 − 4a3 = x1, 5a1/4 + 3a3 = x2, 13a1/12 + a2 + a3 = x3. Due to
x1 +x2 +x3 = 1, the value of a1 is known, a1 = 3/10. The three market
shares after a long time period are therefore predicted to be 3/10, 3/8,
39/120. The reader should verify the identity 3

10 + 3
8 + 39

120 = 1.

Stochastic Matrices

The special matrix A in (1) is a stochastic matrix, defined by the
properties

n∑
i=1

aij = 1, akj ≥ 0, k, j = 1, . . . , n.

The definition is memorized by the phrase each column sum is one.
Stochastic matrices appear in Leontief input-output models, pop-
ularized by 1973 Nobel Prize economist Wassily Leontief.

Theorem 9 (Stochastic Matrix Properties)
Let A be a stochastic matrix. Then

(a) If ~x is a vector with x1 + · · ·+ xn = 1, then ~y = A~x satisfies
y1 + · · ·+ yn = 1.

(b) If ~v is the sum of the columns of I, then AT~v = ~v . Therefore,
(1, ~v ) is an eigenpair of AT .

(c) The characteristic equation det(A− λI) = 0 has a root λ = 1.
All other roots satisfy |λ| < 1.

Proof of Stochastic Matrix Properties:
(a)

∑n
i=1 yi =

∑n
i=1

∑n
j=1 aijxj =

∑n
j=1 (

∑n
i=1 aij)xj =

∑n
j=1(1)xj = 1.

(b) Entry j of AT~v is given by the sum
∑n

i=1 aij = 1.

(c) Apply (b) and the determinant rule det(BT ) = det(B) with B = A − λI
to obtain eigenvalue 1. Any other root λ of the characteristic equation has a
corresponding eigenvector ~x satisfying (A− λI)~x = ~0 . Let index j be selected
such that M = |xj | > 0 has largest magnitude. Then

∑
i 6=j aijxj+(ajj−λ)xj =

0 implies λ =
∑n

i=1 aij
xj
M

. Because
∑n

i=1 aij = 1, λ is a convex combination of

n complex numbers {xj/M}nj=1. These complex numbers are located in the unit
disk, a convex set, therefore λ is located in the unit disk. By induction on n,
motivated by the geometry for n = 2, it is argued that |λ| = 1 cannot happen for
λ an eigenvalue different from 1 (details left to the reader). Therefore, |λ| < 1.
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Details for the eigenpairs of (1): To be computed are the eigenvalues and
eigenvectors for the 3× 3 matrix

A =
1

10

 5 4 0
3 5 3
2 1 7

 .

Eigenvalues. The roots λ = 1, 1/2, 1/5 of the characteristic equation det(A−
λI) = 0 are found by these details:

0 = det(A− λI)

=

∣∣∣∣∣∣
.5− λ .4 0
.3 .5− λ .3
.2 .1 .7− λ

∣∣∣∣∣∣
=

1

10
− 8

10
λ+

17

10
λ2 − λ3 Expand by cofactors.

= − 1

10
(λ− 1)(2λ− 1)(5λ− 1) Factor the cubic.

The factorization was found by long division of the cubic by λ − 1, the idea
born from the fact that 1 is a root and therefore λ − 1 is a factor (the Factor
Theorem of college algebra). An answer check in maple:

A:=(1/10)*Matrix([[5,4,0],[3,5,3],[2,1,7]]);

B:=A-lambda*Matrix([[1,0,0],[0,1,0],[0,0,1]]);

linalg[eigenvals](A); factor(linalg[det](B));

Eigenpairs. To each eigenvalue λ = 1, 1/2, 1/5 corresponds one rref calcula-
tion, to find the eigenvectors paired to λ. The three eigenvectors are given by
(2). The details:

Eigenvalue λ = 1.

A− (1)I =

 .5− 1 .4 0
.3 .5− 1 .3
.2 .1 .7− 1


≈

 −5 4 0
3 −5 3
2 1 −3

 Multiply rule, multiplier=10.

≈

 0 0 0
3 −5 3
2 1 −3

 Combination rule twice.

≈

 0 0 0
1 −6 6
2 1 −3

 Combination rule.

≈

 0 0 0
1 −6 6
0 13 −15

 Combination rule.

≈

 0 0 0
1 0 − 12

13
0 1 − 15

13

 Multiply rule and combination
rule.
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≈

 1 0 − 12
13

0 1 − 15
13

0 0 0

 Swap rule.

= rref(A− (1)I)

An equivalent reduced echelon system is x− 12z/13 = 0, y − 15z/13 = 0. The
free variable assignment is z = t1 and then x = 12t1/13, y = 15t1/13. Let
x = 1; then t1 = 13/12. An eigenvector is given by x = 1, y = 4/5, z = 13/12.

Eigenvalue λ = 1/2.

A− (1/2)I =

 .5− .5 .4 0
.3 .5− .5 .3
.2 .1 .7− .5


=

 0 4 0
3 0 3
2 1 2

 Multiply rule, factor=10.

≈

 0 1 0
1 0 1
0 0 0

 Combination and multiply
rules.

= rref(A− .5I)

An eigenvector is found from the equivalent reduced echelon system y = 0,
x+ z = 0 to be x = −1, y = 0, z = 1.

Eigenvalue λ = 1/5.

A− (1/5)I =

 .5− .2 .4 0
.3 .5− .2 .3
.2 .1 .7− .2


≈

 3 4 0
1 1 1
2 1 5

 Multiply rule.

≈

 1 0 4
0 1 −3
0 0 0

 Combination rule.

= rref(A− (1/5)I)

An eigenvector is found from the equivalent reduced echelon system x+4z = 0,
y − 3z = 0 to be x = −4, y = 3, z = 1.

An answer check in maple:

A:=(1/10)*Matrix([[5,4,0],[3,5,3],[2,1,7]]);

linalg[eigenvects](A);
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Coupled and Uncoupled Systems

The linear system of differential equations

x′1 = −x1 − x3,
x′2 = 4x1 − x2 − 3x3,
x′3 = 2x1 − 4x3,

(3)

is called coupled, whereas the linear system of growth-decay equations

y′1 = −3y1,
y′2 = −y2,
y′3 = −2y3,

(4)

is called uncoupled. The terminology uncoupled means that each dif-
ferential equation in system (4) depends on exactly one variable, e.g.,
y′1 = −3y1 depends only on variable y1. In a coupled system, one of the
differential equations must involve two or more variables.

Matrix characterization

Coupled system (3) and uncoupled system (4) can be written in matrix
form, ~x ′ = A~x and ~y ′ = D~y , with coefficient matrices

A =

−1 0 −1
4 −1 −3
2 0 −4

 and D =

−3 0 0
0 −1 0
0 0 −2

 .
If the coefficient matrix is diagonal, then the system is uncoupled. If
the coefficient matrix is not diagonal, then one of the corresponding
differential equations involves two or more variables and the system is
called coupled or cross-coupled.

Solving Uncoupled Systems

An uncoupled system consists of independent growth-decay equations
of the form u′ = au. The solution formula u = ceat then leads to the
general solution of the system of equations. For instance, system (4) has
general solution

y1 = c1e
−3t,

y2 = c2e
−t,

y3 = c3e
−2t,

(5)

where c1, c2, c3 are arbitrary constants. The number of constants
equals the dimension of the diagonal matrix D.
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Coordinates and Coordinate Systems

If ~v 1, ~v 2, ~v 3 are three independent vectors in R3, then the matrix

P = 〈〈〈~v 1, ~v 2, ~v 3〉〉〉

is invertible. The columns ~v 1, ~v 2, ~v 3 of P are called a coordinate
system. The matrix P is called a change of coordinates.

Every vector ~v in R3 can be uniquely expressed as

~v = t1~v 1 + t2~v 2 + t3~v 3.

The values t1, t2, t3 are called the coordinates of ~v relative to the basis
~v 1, ~v 2, ~v 3, or more succinctly, the coordinates of ~v relative to P .

Viewpoint of a Driver

The physical meaning of a coordinate system ~v 1, ~v 2, ~v 3 can be un-
derstood by considering an auto going up a mountain road. Choose
orthogonal ~v 1 and ~v 2 to give positions in the driver’s seat and define
~v 3 be the seat-back direction. These are local coordinates as viewed
from the driver’s seat. The road map coordinates x, y and the altitude z
define the global coordinates for the auto’s position ~p = x~ı+ y~+ z~k.

~v 1

~v 3

~v 2

Figure 2. An auto seat.
The vectors ~v 1(t), ~v 2(t), ~v 3(t) form
an orthogonal triad which is a local
coordinate system from the driver’s
viewpoint. The orthogonal triad
changes continuously in t.

Change of Coordinates

A coordinate change from ~y to ~x is a linear algebraic equation ~x = P~y
where the n× n matrix P is required to be invertible (det(P ) 6= 0). To
illustrate, an instance of a change of coordinates from ~y to ~x is given by
the linear equations

~x =

1 0 1
1 1 −1
2 0 1

 ~y or


x1 = y1 + y3,
x2 = y1 + y2 − y3,
x3 = 2y1 + y3.

(6)

Constructing Coupled Systems

A general method exists to construct rich examples of coupled systems.
The idea is to substitute a change of variables into a given uncoupled
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system. Consider a diagonal system ~y ′ = D~y , like (4), and a change of
variables ~x = P~y , like (6). Differential calculus applies to give

~x ′ = (P~y )′

= P~y ′

= PD~y
= PDP−1 ~x .

(7)

The matrix A = PDP−1 is not triangular in general, and therefore the
change of variables produces a cross-coupled system.

An illustration. To give an example, substitute into uncoupled system
(4) the change of variable equations (6). Use equation (7) to obtain

~x ′ =

 −1 0 −1
4 −1 −3
2 0 −4

~x or


x′1 = −x1 − x3,
x′2 = 4x1 − x2 − 3x3,
x′3 = 2x1 − 4x3.

(8)

This cross-coupled system (8) can be solved using relations (6), (5)
and ~x = P~y to give the general solution x1

x2
x3

 =

 1 0 1
1 1 −1
2 0 1


 c1e

−3t

c2e
−t

c3e
−2t

 .(9)

Changing Coupled Systems to Uncoupled

We ask this question, motivated by the above calculations:

Can every coupled system ~x ′(t) = A~x (t) be subjected to
a change of variables ~x = P~y which converts the system
into a completely uncoupled system for variable ~y (t)?

Under certain circumstances, this is true, and it leads to an elegant and
especially simple expression for the general solution of the differential
system, as in (9):

~x (t) = P~y (t).

The task of eigenanalysis is to simultaneously calculate from a cross-
coupled system ~x ′ = A~x the change of variables ~x = P~y and the diag-
onal matrix D in the uncoupled system ~y ′ = D~y

The eigenanalysis coordinate system is the set of n independent
vectors extracted from the columns of P . In this coordinate system, the
cross-coupled differential system (3) simplifies into a system of uncou-
pled growth-decay equations (4). Hence the terminology, the method of
simplifying coordinates.
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Eigenanalysis and Footballs

An ellipsoid or football is a geometric object de-
scribed by its semi-axes (see Figure 3). In
the vector representation, the semi-axis direc-
tions are unit vectors ~v 1, ~v 2, ~v 3 and the semi-
axis lengths are the constants a, b, c. The vec-
tors a~v 1, b~v 2, c~v 3 form an orthogonal triad.

a~v 1

b~v 2

c~v 3

Figure 3. An American
football.
An ellipsoid is built from
orthonormal semi-axis directions ~v 1,
~v 2, ~v 3 and the semi-axis lengths a,
b, c. The semi-axis vectors are a~v 1,
b~v 2, c~v 3.

Two vectors ~a , ~b are orthogonal if both are nonzero and their dot product
~a · ~b is zero. Vectors are orthonormal if each has unit length and they
are pairwise orthogonal. The orthogonal triad is an invariant of the
ellipsoid’s algebraic representations. Algebra does not change the triad:
the invariants a~v 1, b~v 2, c~v 3 must somehow be hidden in the equations
that represent the football.

Algebraic eigenanalysis finds the hidden invariant triad a~v 1, b~v 2,
c~v 3 from the ellipsoid’s algebraic equations. Suppose, for instance, that
the equation of the ellipsoid is supplied as

x2 + 4y2 + xy + 4z2 = 16.

A symmetric matrix A is constructed in order to write the equation in the
form ~XT A ~X = 16, where ~X has components x, y, z. The replacement
equation is7

(
x y z

)  1 1/2 0
1/2 4 0
0 0 4


 x
y
z

 = 16.(10)

It is the 3× 3 symmetric matrix A in (10) that is subjected to algebraic
eigenanalysis. The matrix calculation will compute the unit semi-axis
directions ~v 1, ~v 2, ~v 3, called the hidden vectors or eigenvectors.
The semi-axis lengths a, b, c are computed at the same time, by finding
the hidden values8 or eigenvalues λ1, λ2, λ3, known to satisfy the

7The reader should pause here and multiply matrices in order to verify this state-
ment. Halving of the entries corresponding to cross-terms generalizes to any ellipsoid.

8The terminology hidden arises because neither the semi-axis lengths nor the semi-
axis directions are revealed directly by the ellipsoid equation.
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relations

λ1 =
16

a2
, λ2 =

16

b2
, λ3 =

16

c2
.

For the illustration, the football dimensions are a = 2, b = 1.98, c = 4.17.
Details of the computation are delayed until page 666.

The Ellipse and Eigenanalysis

An ellipse equation in standard form is λ1x
2 + λ2y

2 = 1, where λ1 =
1/a2, λ2 = 1/b2 are expressed in terms of the semi-axis lengths a, b. The
expression λ1x

2 + λ2y
2 is called a quadratic form. The study of the

ellipse λ1x
2 + λ2y

2 = 1 is equivalent to the study of the quadratic form
equation

~rTD~r = 1, where ~r =

(
x
y

)
, D =

(
λ1 0
0 λ2

)
.

Cross-terms. An ellipse may be represented by an equation in a uv-
coordinate system having a cross-term uv, e.g., 4u2+8uv+10v2 = 5. The
expression 4u2 + 8uv + 10v2 is again called a quadratic form. Calculus
courses provide methods to eliminate the cross-term and represent the
equation in standard form, by a rotation(

u
v

)
= R

(
x
y

)
, R =

(
cos θ sin θ
− sin θ cos θ

)
.

The angle θ in the rotation matrix R represents the rotation of uv-
coordinates into standard xy-coordinates.

Eigenanalysis computes angle θ through the columns of R, which are the
unit semi-axis directions ~v 1, ~v 2 for the ellipse 4u2 + 8uv + 10v2 = 5. If
the quadratic form 4u2 + 8uv + 10v2 is represented as ~rT A~r , then

~r =

(
u
v

)
, A =

(
4 4
4 10

)
, R =

1√
5

(
1 −2
2 1

)
,

λ1 = 12, ~v 1 =
1√
5

(
1
2

)
, λ2 = 2, ~v 2 =

1√
5

(
−2

1

)
.

Rotation matrix angle θ. The components of eigenvector ~v 1 can be
used to determine θ = −63.4◦:(

cos θ
− sin θ

)
=

1√
5

(
1
2

)
or

 cos θ = 1√
5
,

− sin θ = 2√
5
.

The interpretation of angle θ: rotate the orthonormal basis ~v 1, ~v 2 by
angle θ = −63.4◦ in order to obtain the standard unit basis vectors ~i ,



666

~j . Most calculus texts discuss only the inverse rotation, where x, y are
given in terms of u, v. In these references, θ is the negative of the value
given here, due to a different geometric viewpoint.9

Semi-axis lengths. The lengths a ≈ 1.55, b ≈ 0.63 for the ellipse
4u2 +8uv+10v2 = 5 are computed from the eigenvalues λ1 = 12, λ2 = 2
of matrix A by the equations

λ1
5

=
1

a2
,

λ2
5

=
1

b2
.

Geometry. The ellipse 4u2 + 8uv + 10v2 = 5 is completely determined
by the orthogonal semi-axis vectors a~v 1, b~v 2. The rotation R is a rigid
motion which maps these vectors into a~ı, b~, where ~ı and ~ are the stan-
dard unit vectors in the plane.

The θ-rotation R maps 4u2+8uv+10v2 = 5 into the xy-equation λ1x
2+

λ2y
2 = 5, where λ1, λ2 are the eigenvalues of A. To see why, let ~r = R~s

where ~s =
(
x y

)T
. Then ~rTA~r = ~sT (RTAR)~s . Using RTR = I gives

R−1 = RT and RTAR = diag(λ1, λ2). Finally, ~rTA~r = λ1x
2 + λ2y

2.

Orthogonal Triad Computation

Let’s compute the semiaxis directions ~v 1, ~v 2, ~v 3 for the ellipsoid x2 +
4y2 + xy + 4z2 = 16. To be applied is Theorem 4. As explained on
page 664, the starting point is to represent the ellipsoid equation as a
quadratic form XTAX = 16, where the symmetric matrix A is defined
by

A =

 1 1/2 0
1/2 4 0
0 0 4

 .

College algebra. The characteristic polynomial det(A − λI) = 0
determines the eigenvalues or hidden values of the matrix A. By cofactor
expansion, this polynomial equation is

(4− λ)((1− λ)(4− λ)− 1/4) = 0

with roots 4, 5/2 +
√

10/2, 5/2−
√

10/2.

9Rod Serling, author and playwright for The Twilight Zone, enjoyed the view from
the other side of the mirror.
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Eigenpairs. It will be shown that three eigenpairs are

λ1 = 4, ~x 1 =

 0
0
1

 ,
λ2 =

5 +
√

10

2
, ~x 2 =


√

10− 3
1
0

 ,

λ3 =
5−
√

10

2
, ~x 3 =


√

10 + 3
−1
0

 .
The vector norms of the eigenvectors are given by ‖~x 1‖ = 1, ‖~x 2‖ =√

20 + 6
√

10, ‖~x 3‖ =
√

20− 6
√

10. The orthonormal semi-axis direc-
tions ~v k = ~xk/‖~xk‖, k = 1, 2, 3, are then given by the formulas

~v 1 =

 0
0
1

 , ~v 2 =


√
10−3√

20−6
√
10

1√
20−6

√
10

0

 , ~v 3 =


√
10+3√

20+6
√
10

−1√
20+6

√
10

0

 .
Toolkit sequence details.

〈〈〈A− λ1I,~0〉〉〉 =

 1− 4 1/2 0 0
1/2 4− 4 0 0
0 0 4− 4 0



≈

 1 0 0 0
0 1 0 0
0 0 0 0

 Used combination, multiply and
swap rules. Found rref.

〈〈〈A− λ2I,~0〉〉〉 =


−3−

√
10

2
1
2 0 0

1
2

3−
√
10

2 0 0

0 0 3−
√
10

2 0



≈

 1 3−
√

10 0 0
0 0 1 0
0 0 0 0

 All three rules.

〈〈〈A− λ3I,~0〉〉〉 =


−3+

√
10

2
1
2 0 0

1
2

3+
√
10

2 0 0

0 0 3+
√
10

2 0



≈

 1 3 +
√

10 0 0
0 0 1 0
0 0 0 0

 All three rules.
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Solving the corresponding reduced echelon systems gives the preceding
formulas for the eigenvectors ~x 1, ~x 2, ~x 3. The equation for the ellipsoid
is λ1X

2 + λ2Y
2 + λ3Z

2 = 16, where the multipliers of the square terms
are the eigenvalues of A and X, Y , Z define the new coordinate system
determined by the eigenvectors of A. This equation can be re-written
in the form X2/a2 + Y 2/b2 + Z2/c2 = 1, provided the semi-axis lengths
a, b, c are defined by the relations a2 = 16/λ1, b

2 = 16/λ2, c
2 = 16/λ3.

After computation, a = 2, b = 1.98, c = 4.17.


