### 9.2 Eigenanalysis II

## Discrete Dynamical Systems

The matrix equation

$$
\overrightarrow{\mathbf{y}}=\frac{1}{10}\left(\begin{array}{lll}
5 & 4 & 0  \tag{1}\\
3 & 5 & 3 \\
2 & 1 & 7
\end{array}\right) \overrightarrow{\mathbf{x}}
$$

predicts the state $\overrightarrow{\mathbf{y}}$ of a system initially in state $\overrightarrow{\mathbf{x}}$ after some fixed elapsed time. The $3 \times 3$ matrix $A$ in (1) represents the dynamics which changes the state $\overrightarrow{\mathbf{x}}$ into state $\overrightarrow{\mathbf{y}}$. An equation $\overrightarrow{\mathbf{y}}=A \overrightarrow{\mathbf{x}}$ like equation (1) is called a discrete dynamical system and $A$ is called a transition matrix, provided $A$ has nonnegative entries and column sums equal to one (see Stochastic Matrices below).
The eigenpairs of $A$ in (1) are shown in details page 658 to be ( $1, \overrightarrow{\mathbf{v}}_{1}$ ), $\left(1 / 2, \overrightarrow{\mathbf{v}}_{2}\right),\left(1 / 5, \overrightarrow{\mathbf{v}}_{3}\right)$ where the eigenvectors are given by

$$
\overrightarrow{\mathbf{v}}_{1}=\left(\begin{array}{c}
1  \tag{2}\\
5 / 4 \\
13 / 12
\end{array}\right), \quad \overrightarrow{\mathbf{v}}_{2}=\left(\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right), \quad \overrightarrow{\mathbf{v}}_{3}=\left(\begin{array}{r}
-4 \\
3 \\
1
\end{array}\right)
$$

## Market Shares

A typical application of discrete dynamical systems is telephone long distance company market shares $x_{1}, x_{2}, x_{3}$, which are fractions of the total market for long distance service. If three companies provide all the services, then their market fractions add to one: $x_{1}+x_{2}+x_{3}=1$. The equation $\overrightarrow{\mathbf{y}}=A \overrightarrow{\mathbf{x}}$ gives the market shares of the three companies after a fixed time period, say one year. Then market shares after one, two and three years are given by the iterates

$$
\begin{aligned}
\overrightarrow{\mathbf{y}}_{1} & =A \overrightarrow{\mathbf{x}} \\
\overrightarrow{\mathbf{y}}_{2} & =A^{2} \overrightarrow{\mathbf{x}} \\
\overrightarrow{\mathbf{y}}_{3} & =A^{3} \overrightarrow{\mathbf{x}}
\end{aligned}
$$

Fourier's replacement model gives succinct and useful formulas for the iterates: if $\overrightarrow{\mathbf{x}}=a_{1} \overrightarrow{\mathbf{v}}_{1}+a_{2} \overrightarrow{\mathbf{v}}_{2}+a_{3} \overrightarrow{\mathbf{v}}_{3}$, then

$$
\begin{aligned}
& \overrightarrow{\mathbf{y}}_{1}=A \overrightarrow{\mathbf{x}}=a_{1} \lambda_{1} \overrightarrow{\mathbf{v}}_{1}+a_{2} \lambda_{2} \overrightarrow{\mathbf{v}}_{2}+a_{3} \lambda_{3} \overrightarrow{\mathbf{v}}_{3}, \\
& \overrightarrow{\mathbf{y}}_{2}=A^{2} \overrightarrow{\mathbf{x}}=a_{1} \lambda_{1}^{2} \overrightarrow{\mathbf{v}}_{1}+a_{2} \lambda_{2}^{2} \overrightarrow{\mathbf{v}}_{2}+a_{3} \lambda_{3}^{2} \overrightarrow{\mathbf{v}}_{3}, \\
& \overrightarrow{\mathbf{y}}_{3}=A^{3} \overrightarrow{\mathbf{x}}_{=a_{1} \lambda_{1}^{3} \overrightarrow{\mathbf{v}}_{1}+a_{2} \lambda_{2}^{3} \overrightarrow{\mathbf{v}}_{2}+a_{3} \lambda_{3}^{3} \overrightarrow{\mathbf{v}}_{3} .} .
\end{aligned}
$$

The advantage of Fourier's model is that an iterate $A^{n}$ is computed directly, without computing the powers before it. Because $\lambda_{1}=1$ and
$\lim _{n \rightarrow \infty}\left|\lambda_{2}\right|^{n}=\lim _{n \rightarrow \infty}\left|\lambda_{3}\right|^{n}=0$, then for large $n$

$$
\overrightarrow{\mathbf{y}}_{n} \approx a_{1}(1) \overrightarrow{\mathbf{v}}_{1}+a_{2}(0) \overrightarrow{\mathbf{v}}_{2}+a_{3}(0) \overrightarrow{\mathbf{v}}_{3}=\left(\begin{array}{c}
a_{1} \\
5 a_{1} / 4 \\
13 a_{1} / 12
\end{array}\right) .
$$

The numbers $a_{1}, a_{2}, a_{3}$ are related to $x_{1}, x_{2}, x_{3}$ by the equations $a_{1}-$ $a_{2}-4 a_{3}=x_{1}, 5 a_{1} / 4+3 a_{3}=x_{2}, 13 a_{1} / 12+a_{2}+a_{3}=x_{3}$. Due to $x_{1}+x_{2}+x_{3}=1$, the value of $a_{1}$ is known, $a_{1}=3 / 10$. The three market shares after a long time period are therefore predicted to be $3 / 10,3 / 8$, $39 / 120$. The reader should verify the identity $\frac{3}{10}+\frac{3}{8}+\frac{39}{120}=1$.

## Stochastic Matrices

The special matrix $A$ in (1) is a stochastic matrix, defined by the properties

$$
\sum_{i=1}^{n} a_{i j}=1, \quad a_{k j} \geq 0, \quad k, j=1, \ldots, n
$$

The definition is memorized by the phrase each column sum is one. Stochastic matrices appear in Leontief input-output models, popularized by 1973 Nobel Prize economist Wassily Leontief.

## Theorem 9 (Stochastic Matrix Properties)

Let $A$ be a stochastic matrix. Then
(a) If $\overrightarrow{\mathrm{x}}$ is a vector with $x_{1}+\cdots+x_{n}=1$, then $\overrightarrow{\mathbf{y}}=A \overrightarrow{\mathrm{x}}$ satisfies $y_{1}+\cdots+y_{n}=1$.
(b) If $\overrightarrow{\mathbf{v}}$ is the sum of the columns of $I$, then $A^{T} \overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{v}}$. Therefore, $(1, \overrightarrow{\mathbf{v}})$ is an eigenpair of $A^{T}$.
(c) The characteristic equation $\operatorname{det}(A-\lambda I)=0$ has a root $\lambda=1$. All other roots satisfy $|\lambda|<1$.

## Proof of Stochastic Matrix Properties:

(a) $\sum_{i=1}^{n} y_{i}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{j}=\sum_{j=1}^{n}\left(\sum_{i=1}^{n} a_{i j}\right) x_{j}=\sum_{j=1}^{n}(1) x_{j}=1$.
(b) Entry $j$ of $A^{T} \overrightarrow{\mathbf{v}}$ is given by the sum $\sum_{i=1}^{n} a_{i j}=1$.
(c) Apply (b) and the determinant rule $\operatorname{det}\left(B^{T}\right)=\operatorname{det}(B)$ with $B=A-\lambda I$ to obtain eigenvalue 1. Any other root $\lambda$ of the characteristic equation has a corresponding eigenvector $\overrightarrow{\mathbf{x}}$ satisfying $(A-\lambda I) \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$. Let index $j$ be selected such that $M=\left|x_{j}\right|>0$ has largest magnitude. Then $\sum_{i \neq j} a_{i j} x_{j}+\left(a_{j j}-\lambda\right) x_{j}=$ 0 implies $\lambda=\sum_{i=1}^{n} a_{i j} \frac{x_{j}}{M}$. Because $\sum_{i=1}^{n} a_{i j}=1, \lambda$ is a convex combination of $n$ complex numbers $\left\{x_{j} / M\right\}_{j=1}^{n}$. These complex numbers are located in the unit disk, a convex set, therefore $\lambda$ is located in the unit disk. By induction on $n$, motivated by the geometry for $n=2$, it is argued that $|\lambda|=1$ cannot happen for $\lambda$ an eigenvalue different from 1 (details left to the reader). Therefore, $|\lambda|<1$.

Details for the eigenpairs of (1): To be computed are the eigenvalues and eigenvectors for the $3 \times 3$ matrix

$$
A=\frac{1}{10}\left(\begin{array}{lll}
5 & 4 & 0 \\
3 & 5 & 3 \\
2 & 1 & 7
\end{array}\right)
$$

Eigenvalues. The roots $\lambda=1,1 / 2,1 / 5$ of the characteristic equation $\operatorname{det}(A-$ $\lambda I)=0$ are found by these details:

$$
\begin{array}{rlr}
0 & =\operatorname{det}(A-\lambda I) & \\
& =\left|\begin{array}{ccc}
.5-\lambda & .4 & 0 \\
.3 & .5-\lambda & .3 \\
.2 & .1 & .7-\lambda
\end{array}\right| & \\
& =\frac{1}{10}-\frac{8}{10} \lambda+\frac{17}{10} \lambda^{2}-\lambda^{3} & \\
& =-\frac{1}{10}(\lambda-1)(2 \lambda-1)(5 \lambda-1) & \\
\text { Expand by cofactors. } & \\
& \text { Factor the cubic. }
\end{array}
$$

The factorization was found by long division of the cubic by $\lambda-1$, the idea born from the fact that 1 is a root and therefore $\lambda-1$ is a factor (the Factor Theorem of college algebra). An answer check in maple:

$$
\begin{aligned}
& A:=(1 / 10) * \operatorname{Matrix}([[5,4,0],[3,5,3],[2,1,7]]) ; \\
& B:=A-l \operatorname{lambda*Matrix}([[1,0,0],[0,1,0],[0,0,1]]) ; \\
& \operatorname{linalg}[\operatorname{eigenvals}](A) ; \operatorname{factor}(\operatorname{linalg}[\operatorname{det}](B)) ;
\end{aligned}
$$

Eigenpairs. To each eigenvalue $\lambda=1,1 / 2,1 / 5$ corresponds one ref calculation, to find the eigenvectors paired to $\lambda$. The three eigenvectors are given by (2). The details:

Eigenvalue $\lambda=1$.

$$
\begin{array}{rlrl}
A-(1) I & =\left(\begin{array}{ccc}
.5-1 & .4 & 0 \\
.3 & .5-1 & .3 \\
.2 & .1 & .7-1
\end{array}\right) & \\
& \approx\left(\begin{array}{rrr}
-5 & 4 & 0 \\
3 & -5 & 3 \\
2 & 1 & -3
\end{array}\right) & & \text { Multiply rule, multiplier=10. } \\
& \approx\left(\begin{array}{rrr}
0 & 0 & 0 \\
3 & -5 & 3 \\
2 & 1 & -3
\end{array}\right) & & \text { Combination rule twice. } \\
& \approx\left(\begin{array}{rrr}
0 & 0 & 0 \\
1 & -6 & 6 \\
2 & 1 & -3
\end{array}\right) \\
& \approx\left(\begin{array}{rrr}
0 & 0 & 0 \\
1 & -6 & 6 \\
0 & 13 & -15
\end{array}\right) & & \text { Combination rule. } \\
& \approx\left(\begin{array}{rrr}
0 & 0 & 0 \\
1 & 0 & -\frac{12}{13} \\
0 & 1 & -\frac{15}{13}
\end{array}\right) & & \begin{array}{l}
\text { Multiply rule and combination rule. } \\
\text { rule. }
\end{array}
\end{array}
$$

$$
\begin{aligned}
& \approx\left(\begin{array}{rrr}
1 & 0 & -\frac{12}{13} \\
0 & 1 & -\frac{15}{13} \\
0 & 0 & 0
\end{array}\right) \quad \text { Swap rule. } \\
& =\operatorname{rref}(A-(1) I)
\end{aligned}
$$

An equivalent reduced echelon system is $x-12 z / 13=0, y-15 z / 13=0$. The free variable assignment is $z=t_{1}$ and then $x=12 t_{1} / 13, y=15 t_{1} / 13$. Let $x=1$; then $t_{1}=13 / 12$. An eigenvector is given by $x=1, y=4 / 5, z=13 / 12$.
Eigenvalue $\lambda=1 / 2$.

$$
\begin{array}{rlrl}
A-(1 / 2) I & =\left(\begin{array}{ccc}
.5-.5 & .4 & 0 \\
.3 & .5-.5 & .3 \\
.2 & .1 & .7-.5
\end{array}\right) \\
& =\left(\begin{array}{lll}
0 & 4 & 0 \\
3 & 0 & 3 \\
2 & 1 & 2
\end{array}\right) & & \\
& \approx\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) & & \text { Multiply rule, factor }=10 \\
& =\operatorname{rref}(A-.5 I) & & \text { rules. }
\end{array}
$$

An eigenvector is found from the equivalent reduced echelon system $y=0$, $x+z=0$ to be $x=-1, y=0, z=1$.
Eigenvalue $\lambda=1 / 5$.

$$
\begin{array}{rlr}
A-(1 / 5) I & =\left(\begin{array}{ccc}
.5-.2 & .4 & 0 \\
.3 & .5-.2 & .3 \\
.2 & .1 & .7-.2
\end{array}\right) \\
& \approx\left(\begin{array}{lll}
3 & 4 & 0 \\
1 & 1 & 1 \\
2 & 1 & 5
\end{array}\right) & \text { Multiply rule. } \\
& \approx\left(\begin{array}{rrr}
1 & 0 & 4 \\
0 & 1 & -3 \\
0 & 0 & 0
\end{array}\right) & \\
& =\operatorname{rref}(A-(1 / 5) I) &
\end{array}
$$

An eigenvector is found from the equivalent reduced echelon system $x+4 z=0$, $y-3 z=0$ to be $x=-4, y=3, z=1$.
An answer check in maple:

```
A:=(1/10)*Matrix([[5,4,0], [3, 5, 3], [2, 1, 7]]);
linalg[eigenvects](A);
```


## Coupled and Uncoupled Systems

The linear system of differential equations

$$
\begin{align*}
& x_{1}^{\prime}=-x_{1}-x_{3}, \\
& x_{2}^{\prime}=4 x_{1}-x_{2}-3 x_{3},  \tag{3}\\
& x_{3}^{\prime}=2 x_{1}-4 x_{3},
\end{align*}
$$

is called coupled, whereas the linear system of growth-decay equations

$$
\begin{align*}
& y_{1}^{\prime}=-3 y_{1}, \\
& y_{2}^{\prime}=-y_{2},  \tag{4}\\
& y_{3}^{\prime}=-2 y_{3},
\end{align*}
$$

is called uncoupled. The terminology uncoupled means that each differential equation in system (4) depends on exactly one variable, e.g., $y_{1}^{\prime}=-3 y_{1}$ depends only on variable $y_{1}$. In a coupled system, one of the differential equations must involve two or more variables.

## Matrix characterization

Coupled system (3) and uncoupled system (4) can be written in matrix form, $\overrightarrow{\mathbf{x}}^{\prime}=A \overrightarrow{\mathbf{x}}$ and $\overrightarrow{\mathbf{y}}^{\prime}=D \overrightarrow{\mathbf{y}}$, with coefficient matrices

$$
A=\left(\begin{array}{rrr}
-1 & 0 & -1 \\
4 & -1 & -3 \\
2 & 0 & -4
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{rrr}
-3 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -2
\end{array}\right) .
$$

If the coefficient matrix is diagonal, then the system is uncoupled. If the coefficient matrix is not diagonal, then one of the corresponding differential equations involves two or more variables and the system is called coupled or cross-coupled.

## Solving Uncoupled Systems

An uncoupled system consists of independent growth-decay equations of the form $u^{\prime}=a u$. The solution formula $u=c e^{a t}$ then leads to the general solution of the system of equations. For instance, system (4) has general solution

$$
\begin{align*}
& y_{1}=c_{1} e^{-3 t}, \\
& y_{2}=c_{2} e^{-t},  \tag{5}\\
& y_{3}=c_{3} e^{-2 t},
\end{align*}
$$

where $c_{1}, c_{2}, c_{3}$ are arbitrary constants. The number of constants equals the dimension of the diagonal matrix $D$.

## Coordinates and Coordinate Systems

If $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}$ are three independent vectors in $\mathcal{R}^{3}$, then the matrix

$$
P=\left\langle\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}\right\rangle
$$

is invertible. The columns $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}$ of $P$ are called a coordinate system. The matrix $P$ is called a change of coordinates.
Every vector $\overrightarrow{\mathbf{v}}$ in $\mathcal{R}^{3}$ can be uniquely expressed as

$$
\overrightarrow{\mathbf{v}}=t_{1} \overrightarrow{\mathbf{v}}_{1}+t_{2} \overrightarrow{\mathbf{v}}_{2}+t_{3} \overrightarrow{\mathbf{v}}_{3} .
$$

The values $t_{1}, t_{2}, t_{3}$ are called the coordinates of $\overrightarrow{\mathbf{v}}$ relative to the basis $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}$, or more succinctly, the coordinates of $\overrightarrow{\mathbf{v}}$ relative to $P$.

## Viewpoint of a Driver

The physical meaning of a coordinate system $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}$ can be understood by considering an auto going up a mountain road. Choose orthogonal $\overrightarrow{\mathbf{v}}_{1}$ and $\overrightarrow{\mathbf{v}}_{2}$ to give positions in the driver's seat and define $\overrightarrow{\mathbf{v}}_{3}$ be the seat-back direction. These are local coordinates as viewed from the driver's seat. The road map coordinates $x, y$ and the altitude $z$ define the global coordinates for the auto's position $\overrightarrow{\mathbf{p}}=x \vec{\imath}+y \vec{\jmath}+z \vec{k}$.


Figure 2. An auto seat.
The vectors $\overrightarrow{\mathbf{v}}_{1}(t), \overrightarrow{\mathbf{v}}_{2}(t), \overrightarrow{\mathbf{v}}_{3}(t)$ form an orthogonal triad which is a local coordinate system from the driver's viewpoint. The orthogonal triad changes continuously in $t$.

## Change of Coordinates

A coordinate change from $\overrightarrow{\mathbf{y}}$ to $\overrightarrow{\mathbf{x}}$ is a linear algebraic equation $\overrightarrow{\mathbf{x}}=P \overrightarrow{\mathbf{y}}$ where the $n \times n$ matrix $P$ is required to be invertible $(\operatorname{det}(P) \neq 0)$. To illustrate, an instance of a change of coordinates from $\overrightarrow{\mathbf{y}}$ to $\overrightarrow{\mathbf{x}}$ is given by the linear equations

$$
\overrightarrow{\mathbf{x}}=\left(\begin{array}{rrr}
1 & 0 & 1  \tag{6}\\
1 & 1 & -1 \\
2 & 0 & 1
\end{array}\right) \overrightarrow{\mathbf{y}} \quad \text { or } \quad\left\{\begin{array}{l}
x_{1}=y_{1}+y_{3}, \\
x_{2}=y_{1}+y_{2}-y_{3} \\
x_{3}=2 y_{1}+y_{3}
\end{array}\right.
$$

## Constructing Coupled Systems

A general method exists to construct rich examples of coupled systems. The idea is to substitute a change of variables into a given uncoupled
system. Consider a diagonal system $\overrightarrow{\mathbf{y}}^{\prime}=D \overrightarrow{\mathbf{y}}$, like (4), and a change of variables $\overrightarrow{\mathbf{x}}=P \overrightarrow{\mathbf{y}}$, like (6). Differential calculus applies to give

$$
\begin{align*}
\overrightarrow{\mathbf{x}}^{\prime} & =(P \overrightarrow{\mathbf{y}})^{\prime} \\
& =P \overrightarrow{\mathbf{y}}^{\prime} \\
& =P D \overrightarrow{\mathbf{y}}  \tag{7}\\
& =P D P^{-1} \overrightarrow{\mathbf{x}} .
\end{align*}
$$

The matrix $A=P D P^{-1}$ is not triangular in general, and therefore the change of variables produces a cross-coupled system.
An illustration. To give an example, substitute into uncoupled system (4) the change of variable equations (6). Use equation (7) to obtain

$$
\overrightarrow{\mathbf{x}}^{\prime}=\left(\begin{array}{rrr}
-1 & 0 & -1  \tag{8}\\
4 & -1 & -3 \\
2 & 0 & -4
\end{array}\right) \overrightarrow{\mathbf{x}} \quad \text { or } \quad\left\{\begin{array}{l}
x_{1}^{\prime}=-x_{1}-x_{3} \\
x_{2}^{\prime}=4 x_{1}-x_{2}-3 x_{3} \\
x_{3}^{\prime}=2 x_{1}-4 x_{3}
\end{array}\right.
$$

This cross-coupled system (8) can be solved using relations (6), (5) and $\overrightarrow{\mathbf{x}}=P \overrightarrow{\mathbf{y}}$ to give the general solution

$$
\left(\begin{array}{l}
x_{1}  \tag{9}\\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & 1 \\
1 & 1 & -1 \\
2 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
c_{1} e^{-3 t} \\
c_{2} e^{-t} \\
c_{3} e^{-2 t}
\end{array}\right) .
$$

## Changing Coupled Systems to Uncoupled

We ask this question, motivated by the above calculations:
Can every coupled system $\overrightarrow{\mathbf{x}}^{\prime}(t)=A \overrightarrow{\mathbf{x}}(t)$ be subjected to a change of variables $\overrightarrow{\mathbf{x}}=P \overrightarrow{\mathbf{y}}$ which converts the system into a completely uncoupled system for variable $\overrightarrow{\mathbf{y}}(t)$ ?

Under certain circumstances, this is true, and it leads to an elegant and especially simple expression for the general solution of the differential system, as in (9):

$$
\overrightarrow{\mathbf{x}}(t)=P \overrightarrow{\mathbf{y}}(t) .
$$

The task of eigenanalysis is to simultaneously calculate from a crosscoupled system $\overrightarrow{\mathbf{x}}^{\prime}=A \overrightarrow{\mathbf{x}}$ the change of variables $\overrightarrow{\mathbf{x}}=P \overrightarrow{\mathbf{y}}$ and the diagonal matrix $D$ in the uncoupled system $\overrightarrow{\mathbf{y}}^{\prime}=D \overrightarrow{\mathbf{y}}$
The eigenanalysis coordinate system is the set of $n$ independent vectors extracted from the columns of $P$. In this coordinate system, the cross-coupled differential system (3) simplifies into a system of uncoupled growth-decay equations (4). Hence the terminology, the method of simplifying coordinates.

## Eigenanalysis and Footballs

An ellipsoid or football is a geometric object described by its semi-axes (see Figure 3). In the vector representation, the semi-axis directions are unit vectors $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}$ and the semiaxis lengths are the constants $a, b, c$. The vectors $a \overrightarrow{\mathbf{v}}_{1}, b \overrightarrow{\mathbf{v}}_{2}, c \overrightarrow{\mathbf{v}}_{3}$ form an orthogonal triad.


Figure 3. An American football.
An ellipsoid is built from
$a \overrightarrow{\mathbf{v}}_{1}$ orthonormal semi-axis directions $\overrightarrow{\mathbf{v}}_{1}$, $\overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}$ and the semi-axis lengths $a$, $b, c$. The semi-axis vectors are $a \overrightarrow{\mathbf{v}}_{1}$, $b \overrightarrow{\mathbf{v}}_{2}, c \overrightarrow{\mathbf{v}}_{3}$.

Two vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ are orthogonal if both are nonzero and their dot product $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}$ is zero. Vectors are orthonormal if each has unit length and they are pairwise orthogonal. The orthogonal triad is an invariant of the ellipsoid's algebraic representations. Algebra does not change the triad: the invariants $a \overrightarrow{\mathbf{v}}_{1}, b \overrightarrow{\mathbf{v}}_{2}, c \overrightarrow{\mathbf{v}}_{3}$ must somehow be hidden in the equations that represent the football.
Algebraic eigenanalysis finds the hidden invariant triad $a \overrightarrow{\mathbf{v}}_{1}, b \overrightarrow{\mathbf{v}}_{2}$, $c \overrightarrow{\mathbf{v}}_{3}$ from the ellipsoid's algebraic equations. Suppose, for instance, that the equation of the ellipsoid is supplied as

$$
x^{2}+4 y^{2}+x y+4 z^{2}=16 .
$$

A symmetric matrix $A$ is constructed in order to write the equation in the form $\overrightarrow{\mathbf{X}}^{T} A \overrightarrow{\mathbf{X}}=16$, where $\overrightarrow{\mathbf{X}}$ has components $x, y, z$. The replacement equation is ${ }^{7}$

$$
\left(\begin{array}{lll}
x & y & z
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 / 2 & 0  \tag{10}\\
1 / 2 & 4 & 0 \\
0 & 0 & 4
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=16 .
$$

It is the $3 \times 3$ symmetric matrix $A$ in (10) that is subjected to algebraic eigenanalysis. The matrix calculation will compute the unit semi-axis directions $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}$, called the hidden vectors or eigenvectors. The semi-axis lengths $a, b, c$ are computed at the same time, by finding the hidden values ${ }^{8}$ or eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$, known to satisfy the

[^0]relations
$$
\lambda_{1}=\frac{16}{a^{2}}, \quad \lambda_{2}=\frac{16}{b^{2}}, \quad \lambda_{3}=\frac{16}{c^{2}} .
$$

For the illustration, the football dimensions are $a=2, b=1.98, c=4.17$. Details of the computation are delayed until page 666 .

## The Ellipse and Eigenanalysis

An ellipse equation in standard form is $\lambda_{1} x^{2}+\lambda_{2} y^{2}=1$, where $\lambda_{1}=$ $1 / a^{2}, \lambda_{2}=1 / b^{2}$ are expressed in terms of the semi-axis lengths $a, b$. The expression $\lambda_{1} x^{2}+\lambda_{2} y^{2}$ is called a quadratic form. The study of the ellipse $\lambda_{1} x^{2}+\lambda_{2} y^{2}=1$ is equivalent to the study of the quadratic form equation

$$
\overrightarrow{\mathbf{r}}^{T} D \overrightarrow{\mathbf{r}}=1, \quad \text { where } \quad \overrightarrow{\mathbf{r}}=\binom{x}{y}, \quad D=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)
$$

Cross-terms. An ellipse may be represented by an equation in a $u v$ coordinate system having a cross-term $u v$, e.g., $4 u^{2}+8 u v+10 v^{2}=5$. The expression $4 u^{2}+8 u v+10 v^{2}$ is again called a quadratic form. Calculus courses provide methods to eliminate the cross-term and represent the equation in standard form, by a rotation

$$
\binom{u}{v}=R\binom{x}{y}, \quad R=\left(\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) .
$$

The angle $\theta$ in the rotation matrix $R$ represents the rotation of $u v$ coordinates into standard $x y$-coordinates.
Eigenanalysis computes angle $\theta$ through the columns of $R$, which are the unit semi-axis directions $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}$ for the ellipse $4 u^{2}+8 u v+10 v^{2}=5$. If the quadratic form $4 u^{2}+8 u v+10 v^{2}$ is represented as $\overrightarrow{\mathbf{r}}^{T} A \overrightarrow{\mathbf{r}}$, then

$$
\begin{gathered}
\overrightarrow{\mathbf{r}}=\binom{u}{v}, \quad A=\left(\begin{array}{cc}
4 & 4 \\
4 & 10
\end{array}\right), \quad R=\frac{1}{\sqrt{5}}\left(\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right), \\
\lambda_{1}=12, \quad \overrightarrow{\mathbf{v}}_{1}=\frac{1}{\sqrt{5}}\binom{1}{2}, \quad \lambda_{2}=2, \quad \overrightarrow{\mathbf{v}}_{2}=\frac{1}{\sqrt{5}}\binom{-2}{1} .
\end{gathered}
$$

Rotation matrix angle $\theta$. The components of eigenvector $\overrightarrow{\mathbf{v}}_{1}$ can be used to determine $\theta=-63.4^{\circ}$ :

$$
\binom{\cos \theta}{-\sin \theta}=\frac{1}{\sqrt{5}}\binom{1}{2} \quad \text { or } \quad\left\{\begin{aligned}
\cos \theta & =\frac{1}{\sqrt{5}} \\
-\sin \theta & =\frac{2}{\sqrt{5}}
\end{aligned}\right.
$$

The interpretation of angle $\theta$ : rotate the orthonormal basis $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}$ by angle $\theta=-63.4^{\circ}$ in order to obtain the standard unit basis vectors $\overrightarrow{\mathbf{i}}$,
$\overrightarrow{\mathbf{j}}$. Most calculus texts discuss only the inverse rotation, where $x, y$ are given in terms of $u, v$. In these references, $\theta$ is the negative of the value given here, due to a different geometric viewpoint. ${ }^{9}$

Semi-axis lengths. The lengths $a \approx 1.55, b \approx 0.63$ for the ellipse $4 u^{2}+8 u v+10 v^{2}=5$ are computed from the eigenvalues $\lambda_{1}=12, \lambda_{2}=2$ of matrix $A$ by the equations

$$
\frac{\lambda_{1}}{5}=\frac{1}{a^{2}}, \quad \frac{\lambda_{2}}{5}=\frac{1}{b^{2}} .
$$

Geometry. The ellipse $4 u^{2}+8 u v+10 v^{2}=5$ is completely determined by the orthogonal semi-axis vectors $a \overrightarrow{\mathbf{v}}_{1}, b \overrightarrow{\mathbf{v}}_{2}$. The rotation $R$ is a rigid motion which maps these vectors into $a \vec{\imath}, b \vec{\jmath}$, where $\vec{\imath}$ and $\vec{\jmath}$ are the standard unit vectors in the plane.
The $\theta$-rotation $R$ maps $4 u^{2}+8 u v+10 v^{2}=5$ into the $x y$-equation $\lambda_{1} x^{2}+$ $\lambda_{2} y^{2}=5$, where $\lambda_{1}, \lambda_{2}$ are the eigenvalues of $A$. To see why, let $\overrightarrow{\mathbf{r}}=R \overrightarrow{\mathbf{s}}$ where $\overrightarrow{\mathbf{s}}=\left(\begin{array}{ll}x & y\end{array}\right)^{T}$. Then $\overrightarrow{\mathbf{r}}^{T} A \overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{s}}^{T}\left(R^{T} A R\right) \overrightarrow{\mathbf{s}}$. Using $R^{T} R=I$ gives $R^{-1}=R^{T}$ and $R^{T} A R=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)$. Finally, $\overrightarrow{\mathbf{r}}^{T} A \overrightarrow{\mathbf{r}}=\lambda_{1} x^{2}+\lambda_{2} y^{2}$.

## Orthogonal Triad Computation

Let's compute the semiaxis directions $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}$ for the ellipsoid $x^{2}+$ $4 y^{2}+x y+4 z^{2}=16$. To be applied is Theorem 4. As explained on page 664, the starting point is to represent the ellipsoid equation as a quadratic form $X^{T} A X=16$, where the symmetric matrix $A$ is defined by

$$
A=\left(\begin{array}{ccc}
1 & 1 / 2 & 0 \\
1 / 2 & 4 & 0 \\
0 & 0 & 4
\end{array}\right)
$$

College algebra. The characteristic polynomial $\operatorname{det}(A-\lambda I)=0$ determines the eigenvalues or hidden values of the matrix $A$. By cofactor expansion, this polynomial equation is

$$
(4-\lambda)((1-\lambda)(4-\lambda)-1 / 4)=0
$$

with roots $4,5 / 2+\sqrt{10} / 2,5 / 2-\sqrt{10} / 2$.

[^1]Eigenpairs. It will be shown that three eigenpairs are

$$
\begin{aligned}
& \lambda_{1}=4, \quad \overrightarrow{\mathrm{x}}_{1}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \\
& \lambda_{2}=\frac{5+\sqrt{10}}{2}, \quad \overrightarrow{\mathrm{x}}_{2}=\left(\begin{array}{c}
\sqrt{10}-3 \\
1 \\
0
\end{array}\right), \\
& \lambda_{3}=\frac{5-\sqrt{10}}{2}, \quad \overrightarrow{\mathrm{x}}_{3}=\left(\begin{array}{c}
\sqrt{10}+3 \\
-1 \\
0
\end{array}\right) .
\end{aligned}
$$

The vector norms of the eigenvectors are given by $\left\|\overrightarrow{\mathrm{x}}_{1}\right\|=1,\left\|\overrightarrow{\mathrm{x}}_{2}\right\|=$ $\sqrt{20+6 \sqrt{10}},\left\|\overrightarrow{\mathbf{x}}_{3}\right\|=\sqrt{20-6 \sqrt{10}}$. The orthonormal semi-axis directions $\overrightarrow{\mathbf{v}}_{k}=\overrightarrow{\mathbf{x}}_{k} /\left\|\overrightarrow{\mathbf{x}}_{k}\right\|, k=1,2,3$, are then given by the formulas

$$
\overrightarrow{\mathbf{v}}_{1}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \quad \overrightarrow{\mathbf{v}}_{2}=\left(\begin{array}{c}
\frac{\sqrt{10}-3}{\sqrt{20-6 \sqrt{10}}} \\
\frac{1}{\sqrt{20-6 \sqrt{10}}} \\
0
\end{array}\right), \quad \overrightarrow{\mathbf{v}}_{3}=\left(\begin{array}{c}
\frac{\sqrt{10}+3}{\sqrt{20+6 \sqrt{10}}} \\
\frac{-1}{\sqrt{20+6 \sqrt{10}}} \\
0
\end{array}\right) .
$$

Toolkit sequence details.

$$
\begin{aligned}
& \left\langle A-\lambda_{1} I, \overrightarrow{\mathbf{0}}\right\rangle=\left(\begin{array}{ccc|c}
1-4 & 1 / 2 & 0 & 0 \\
1 / 2 & 4-4 & 0 & 0 \\
0 & 0 & 4-4 & 0
\end{array}\right) \\
& \approx\left(\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \begin{array}{l}
\text { Used combination, multiply and } \\
\text { swap rules. Found ref. }
\end{array} \\
& \left\langle A-\lambda_{2} I, \overrightarrow{\mathbf{0}}\right\rangle=\left(\begin{array}{ccc|c}
\frac{-3-\sqrt{10}}{2} & \frac{1}{2} & 0 & 0 \\
\frac{1}{2} & \frac{3-\sqrt{10}}{2} & 0 & 0 \\
0 & 0 & \frac{3-\sqrt{10}}{2} & 0
\end{array}\right) \\
& \approx\left(\begin{array}{ccc|c}
1 & 3-\sqrt{10} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \text { All three rules. } \\
& \left\langle A-\lambda_{3} I, \overrightarrow{\boldsymbol{0}}\right\rangle=\left(\begin{array}{ccc|c}
\frac{-3+\sqrt{10}}{2} & \frac{1}{2} & 0 & 0 \\
\frac{1}{2} & \frac{3+\sqrt{10}}{2} & 0 & 0 \\
0 & 0 & \frac{3+\sqrt{10}}{2} & 0
\end{array}\right) \\
& \approx\left(\begin{array}{ccc|c}
1 & 3+\sqrt{10} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \text { All three rules. }
\end{aligned}
$$

Solving the corresponding reduced echelon systems gives the preceding formulas for the eigenvectors $\overrightarrow{\mathbf{x}}_{1}, \overrightarrow{\mathbf{x}}_{2}, \overrightarrow{\mathbf{x}}_{3}$. The equation for the ellipsoid is $\lambda_{1} X^{2}+\lambda_{2} Y^{2}+\lambda_{3} Z^{2}=16$, where the multipliers of the square terms are the eigenvalues of $A$ and $X, Y, Z$ define the new coordinate system determined by the eigenvectors of $A$. This equation can be re-written in the form $X^{2} / a^{2}+Y^{2} / b^{2}+Z^{2} / c^{2}=1$, provided the semi-axis lengths $a, b, c$ are defined by the relations $a^{2}=16 / \lambda_{1}, b^{2}=16 / \lambda_{2}, c^{2}=16 / \lambda_{3}$. After computation, $a=2, b=1.98, c=4.17$.


[^0]:    ${ }^{7}$ The reader should pause here and multiply matrices in order to verify this statement. Halving of the entries corresponding to cross-terms generalizes to any ellipsoid.
    ${ }^{8}$ The terminology hidden arises because neither the semi-axis lengths nor the semiaxis directions are revealed directly by the ellipsoid equation.

[^1]:    ${ }^{9}$ Rod Serling, author and playwright for The Twilight Zone, enjoyed the view from the other side of the mirror.

