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Diagonalization and Jordan’s Theorem

A system of differential equations ~x ′ = A~x can be transformed to an
uncoupled system ~y ′ = diag(λ1, . . . , λn)~y by a change of variables ~x =
P~y , provided P is invertible and A satisfies the relation

AP = P diag(λ1, . . . , λn).(1)

A matrix A is said to be diagonalizable provided (1) holds. This equa-
tion is equivalent to the system of equations A~v k = λk~v k, k = 1, . . . , n,
where ~v 1, . . . , ~vn are the columns of matrix P . Since P is assumed
invertible, each of its columns are nonzero, and therefore (λk, ~v k) is an
eigenpair of A, 1 ≤ k ≤ n. The values λk need not be distinct (e.g., all
λk = 1 if A is the identity). This proves:

Theorem 12 (Diagonalization)
An n×n matrix A is diagonalizable if and only if A has n eigenpairs (λk, ~v k),
1 ≤ k ≤ n, with ~v 1, . . . , ~vn independent. In this case,

A = PDP−1

where D = diag(λ1, . . . , λn) and the matrix P has columns ~v 1, . . . , ~vn.

Theorem 13 (Jordan’s theorem)
Any n× n matrix A can be represented in the form

A = PTP−1

where P is invertible and T is upper triangular. The diagonal entries of T
are eigenvalues of A.

Proof: We proceed by induction on the dimension n of A. For n = 1 there
is nothing to prove. Assume the result for dimension n, and let’s prove it
when A is (n + 1) × (n + 1). Choose an eigenpair (λ1, ~v 1) of A with ~v 1 6= ~0 .
Complete a basis ~v 1, . . . , ~vn+1 for Rn+1 and define V = 〈~v 1| · · · |~vn+1〉. Then

V −1AV =

(
λ1 B
~0 A1

)
for some matrices B and A1. The induction hypothesis

implies there is an invertible n × n matrix P1 and an upper triangular matrix

T1 such that A1 = P1T1P
−1
1 . Let R =

(
1 0
0 P1

)
and ~T =

(
λ1 BT1
0 T1

)
.

Then T is upper triangular and (V −1AV )R = RT , which implies A = PTP−1

for P = V R. The induction is complete.
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Cayley-Hamilton Identity

A celebrated and deep result for powers of matrices was discovered by
Cayley and Hamilton (see [?]), which says that an n×n matrix A satisfies
its own characteristic equation. More precisely:

Theorem 14 (Cayley-Hamilton)
Let det(A− λI) be expanded as the nth degree polynomial

p(λ) =
n∑

j=0

cjλ
j ,

for some coefficients c0, . . . , cn−1 and cn = (−1)n. Then A satisfies the
equation p(λ) = 0, that is,

p(A) ≡
n∑

j=0

cjA
j = 0.

In factored form in terms of the eigenvalues {λj}nj=1 (duplicates possible),
the matrix equation p(A) = 0 can be written as

(−1)n(A− λ1I)(A− λ2I) · · · (A− λnI) = 0.

Proof: If A is diagonalizable, AP = P diag(λ1, . . . , λn), then the proof is
obtained from the simple expansion

Aj = P diag(λj1, . . . , λ
j
n)P−1,

because summing across this identity leads to

p(A) =
∑n
j=0 cjA

j

= P
(∑n

j=0 cj diag(λj1, . . . , λ
j
n)
)
P−1

= P diag(p(λ1), . . . , p(λn))P−1

= P diag(0, . . . , 0)P−1

= 0.

If A is not diagonalizable, then this proof fails. To handle the general case,
we apply Jordan’s theorem, which says that A = PTP−1 where T is upper
triangular (instead of diagonal) and the not necessarily distinct eigenvalues λ1,
. . . , λn of A appear on the diagonal of T . Using Jordan’s theorem, define

Aε = P (T + εdiag(1, 2, . . . , n))P−1.

For small ε > 0, the matrix Aε has distinct eigenvalues λj+εj, 1 ≤ j ≤ n. Then
the diagonalizable case implies that Aε satisfies its characteristic equation. Let
pε(λ) = det(Aε − λI). Use 0 = limε→0 pε(Aε) = p(A) to complete the proof.
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An Extension of Jordan’s Theorem

Theorem 15 (Jordan’s Extension)
Any n× n matrix A can be represented in the block triangular form

A = PTP−1, T = diag(T1, . . . , Tk),

where P is invertible and each matrix Ti is upper triangular with diagonal
entries equal to a single eigenvalue of A.

The proof of the theorem is based upon Jordan’s theorem, and proceeds
by induction. The reader is invited to try to find a proof, or read further
in the text, where this theorem is presented as a special case of the
Jordan decomposition A = PJP−1.

Solving Block Triangular Differential Systems

A matrix differential system ~y ′(t) = T~y (t) with T block upper triangular
splits into scalar equations which can be solved by elementary methods
for first order scalar differential equations. To illustrate, consider the
system

y′1 = 3y1 + x2 + y3,
y′2 = 3y2 + y3,
y′3 = 2y3.

The techniques that apply are the growth-decay formula for u′ = ku and
the integrating factor method for u′ = ku + p(t). Working backwards
from the last equation with back-substitution gives

y3 = c3e
2t,

y2 = c2e
3t − c3e

2t,
y1 = (c1 + c2t)e

3t.

What has been said here applies to any triangular system ~y ′(t) = T~y (t),
in order to write an exact formula for the solution ~y (t).

If A is an n×n matrix, then Jordan’s theorem gives A = PTP−1 with T
block upper triangular and P invertible. The change of variable ~x (t) =
P~y (t) changes ~x ′(t) = A~x(t) into the block triangular system ~y ′(t) =
T~y (t).

There is no special condition on A, to effect the change of variable ~x (t) =
P~y (t). The solution ~x (t) of ~x ′(t) = A~x (t) is a product of the invertible
matrix P and a column vector ~y (t); the latter is the solution of the
block triangular system ~y ′(t) = T~y (t), obtained by growth-decay and
integrating factor methods.

The importance of this idea is to provide a theoretical method for solving
any system ~x ′(t) = A~x(t). We show in the Jordan Form section, infra,
how to find matrices P and T in Jordan’s extension A = PTP−1, using
computer algebra systems.
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Symmetric Matrices and Orthogonality

Described here is a process due to Gram-Schmidt for replacing a given
set of independent eigenvectors by another set of eigenvectors which are
of unit length and orthogonal (dot product zero or 90 degrees apart).
The process, which applies to any independent set of vectors, is especially
useful in the case of eigenanalysis of a symmetric matrix: AT = A. In
applications like least squares the matrix A = BTB for some non-square
matrix B, and this is how the symmetric matrix A arises.

Unit eigenvectors. An eigenpair (λ, ~x ) of A can always be selected
so that ‖~x‖ = 1. If ‖~x‖ 6= 1, then replace eigenvector ~x by the scalar
multiple c~x , where c = 1/‖~x‖. By this small change, it can be assumed
that the eigenvector has unit length. If in addition the eigenvectors are
orthogonal, then the eigenvectors are said to be orthonormal.

Theorem 16 (Orthogonality of Eigenvectors)
Assume that n× n matrix A is symmetric, AT = A. If (α,~x ) and (β, ~y )
are eigenpairs of A with α 6= β, then ~x and ~y are orthogonal: ~x · ~y = 0.

Proof: To prove this result, compute α~x · ~y = (A~x )T~y = ~xTAT~y = ~xTA~y .
Analagously, β~x ·~y = ~xTA~y . Subtracting the relations implies (α−β)~x ·~y = 0,
giving ~x · ~y = 0 due to α 6= β. The proof is complete.

Theorem 17 (Real Eigenvalues)
If AT = A, then all eigenvalues of A are real. Consequently, matrix A has
n real eigenvalues counted according to multiplicity.

Proof: The second statement is due to the fundamental theorem of algebra.
To prove the eigenvalues are real, it suffices to prove λ = λ when A~v = λ~v
with ~v 6= ~0 . We admit that ~v may have complex entries. We will use A = A
(A is real). Take the complex conjugate across A~v = λ~v to obtain A~v = λ~v .
Transpose A~v = λ~v to obtain ~vTAT = λ~vT and then conclude ~vTA = λ~vT

from AT = A. Multiply this equation by ~v on the right to obtain ~vTA~v =
λ~vT~v . Then multiply A~v = λ~v by ~vT on the left to obtain ~vTA~v = λ~vT~v .
Then we have

λ~vT~v = λ~vT~v .

Because ~vT~v =
∑n
j=1 |vj |2 > 0, then λ = λ and λ is real. The proof is

complete.

Theorem 18 (Independence of Orthogonal Sets)
Let ~v 1, . . . , ~v k be a set of nonzero orthogonal vectors. Then this set is
independent.

Proof: Form the equation c1~v 1 + · · · + ck~v k = ~0 , the plan being to solve for
c1, . . . , ck. Take the dot product of the equation with ~v 1. Then

c1~v 1 · ~v 1 + · · ·+ ck~v 1 · ~v k = ~v 1 · ~0 .
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All terms on the left side except one are zero, and the right side is zero also,
leaving the relation

c1~v 1 · ~v 1 = 0.

Because ~v 1 is not zero, then c1 = 0. The process can be applied to the remaining
coefficients, resulting in

c1 = c2 = · · · = ck = 0,

which proves independence of the vectors.

The Gram-Schmidt process

The eigenvectors of a symmetric matrix A may be constructed to be
orthogonal. First of all, observe that eigenvectors corresponding to dis-
tinct eigenvalues are orthogonal by Theorem 16. It remains to construct
from k independent eigenvectors ~x 1, . . . , ~xk, corresponding to a single
eigenvalue λ, another set of independent eigenvectors ~y 1, . . . , ~y k for λ
which are pairwise orthogonal. The idea, due to Gram-Schmidt, applies
to any set of k independent vectors.

Application of the Gram-Schmidt process can be illustrated by example:
let (−1, ~v 1), (2, ~v 2), (2, ~v 3), (2, ~v 4) be eigenpairs of a 4 × 4 symmetric
matrix A. Then ~v 1 is orthogonal to ~v 2, ~v 3, ~v 4. The eigenvectors ~v 2, ~v 3,
~v 4 belong to eigenvalue λ = 2, but they are not necessarily orthogonal.
The Gram-Schmidt process replaces eigenvectors ~v 2, ~v 3, ~v 4 by ~y 2, ~y 3,
~y 4 which are pairwise orthogonal. The result is that eigenvectors ~v 1,
~y 2, ~y 3, ~y 4 are pairwise orthogonal and the eigenpairs of A are replaced
by (−1, ~v 1), (2, ~y 2), (2, ~y 3), (2, ~y 4).

Theorem 19 (Gram-Schmidt)
Let ~x 1, . . . , ~xk be independent n-vectors. The set of vectors ~y 1, . . . ,
~y k constructed below as linear combinations of ~x 1, . . . , ~xk are pairwise
orthogonal and independent.

~y 1 = ~x 1

~y 2 = ~x 2 −
~x 2 · ~y 1

~y 1 · ~y 1
~y 1

~y 3 = ~x 3 −
~x 3 · ~y 1

~y 1 · ~y 1
~y 1 −

~x 3 · ~y 2

~y 2 · ~y 2
~y 2

...

~y k = ~xk −
~xk · ~y 1

~y 1 · ~y 1
~y 1 − · · · −

~xk · ~y k−1

~y k−1 · ~y k−1
~y k−1

Proof: Induction will be applied on k to show that ~y 1, . . . , ~y k are nonzero
and orthogonal. If k = 1, then there is just one nonzero vector constructed
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~y 1 = ~x1. Orthogonality for k = 1 is not discussed because there are no pairs
to test. Assume the result holds for k− 1 vectors. Let’s verify that it holds for
k vectors, k > 1. Assume orthogonality ~y i · ~y j = 0 for i 6= j and ~y i 6= ~0 for

1 ≤ i, j ≤ k − 1. It remains to test ~y i · ~y k = 0 for 1 ≤ i ≤ k − 1 and ~y k 6= ~0 .
The test depends upon the identity

~y i · ~y k = ~y i · ~xk −
k−1∑
j=1

~xk · ~y j
~y j · ~y j

~y i · ~y j ,

which is obtained from the formula for ~y k by taking the dot product with ~y i.
In the identity, ~y i · ~y j = 0 by the induction hypothesis for 1 ≤ j ≤ k − 1
and j 6= i. Therefore, the summation in the identity contains just the term
for index j = i, and the contribution is ~y i · ~xk. This contribution cancels the
leading term on the right in the identity, resulting in the orthogonality relation
~y i · ~y k = 0. If ~y k = ~0 , then ~xk is a linear combination of ~y 1, . . . , ~y k−1.
But each ~y j is a linear combination of {~x i}ji=1, therefore ~y k = ~0 implies ~xk is
a linear combination of ~x1, . . . , ~xk−1, a contradiction to the independence of
{~x i}ki=1. The proof is complete.

Orthogonal Projection

Reproduced here is the basic material on shadow projection, for the
convenience of the reader. The ideas are then extended to obtain the
orthogonal projection onto a subspace V of Rn. Finally, the orthogonal
projection formula is related to the Gram-Schmidt equations.

The shadow projection of vector ~X onto the direction of vector ~Y is
the number d defined by

d =
~X · ~Y
|~Y |

.

The triangle determined by ~X and d
~Y

|~Y |
is a right triangle.

d

~X

~Y Figure 4. Shadow projection d of
vector ~X onto the direction of
vector ~Y.

The vector shadow projection of ~X onto the line L through the origin
in the direction of ~Y is is the vector representing the shadow, direction
~Y and length d, defined by

proj~Y ( ~X) = d
~Y

|~Y |
=

~X · ~Y
~Y · ~Y

~Y .
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Orthogonal Projection for Dimension 1. The extension of the
shadow projection formula to a subspace V of Rn begins with unitiz-
ing ~Y to isolate the vector direction ~u = ~Y /‖~Y ‖ of line L. Define the
subspace V = span{~u}. Then V is identical to L. We define the or-
thogonal projection by the formula

ProjV (~x ) = (~u · ~x )~u , V = span{~u}.

The reader is asked to verify that

proj~Y (~x ) = d~u = ProjV (~x ).

These equalities imply that the orthogonal projection is identical to the
vector shadow projection when V is one dimensional.

Orthogonal Projection for Dimension k. Consider a subspace V
of Rn given as the span of orthonormal vectors ~u 1, . . . , ~uk. Define the
orthogonal projection by the formula

ProjV (~x) =
∑k

j=1(~u j · ~x )~u j ,

=
∑k

j=1 vector shadow projection ~x onto ~u j ,
(2)

Important: The basis used in V = span{~u 1, . . . , ~uk} has to be or-
thonormal for validity of the first equality. For the second, the basis
need only be orthogonal, because the vector shadow projection is com-

puted by the expression
~X·~Y
~Y ·~Y

~Y .

Justification of Formula (2). The definition of ProjV (~x ) seems to depend
on the choice of the orthonormal vectors. Suppose that {~w j}kj=1 is another

orthonormal basis of V . Define ~u =
∑k
i=1(~u i ·~x )~u j and ~w =

∑k
j=1(~w j ·~x )~w j .

It will be established that ~u = ~w , which justifies that the projection formula
is independent of basis. First, two lemmas.

Lemma 1 (Orthonormal Basis Expansion) Let {~v j}kj=1 be an orthonor-
mal basis of a subspace V in Rn. Then each vector ~v in V is represented
as

~v =

k∑
j=1

(~v j · ~v )~v j .

Proof: First, ~v has a basis expansion ~v =
∑k
j=1 cj~v j for some

constants c1, . . . , ck. Take the inner product of this equation with
vector ~v i to prove that ci = ~v i · ~v , hence the claimed expansion is
proved.

Lemma 2 (Orthogonality) Let {~u i}ki=1 be an orthonormal basis of a sub-

space V in Rn. Let ~x be any vector in Rn and define ~u =
∑k

i=1
(~u i ·~x )~u i.

Then ~y · (~x − ~u) = 0 for all vectors ~y in V .

Proof: The first lemma implies ~u can be written a second way as
a linear combination of ~u1, . . . . ~uk. Independence implies equal
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basis coefficients, which gives ~u j ·~u = ~u j ·~x . Then ~u j ·(~x−~u) = 0.

Because ~y is in V , then ~y =
∑k
j=1 cj~u j , which implies ~y ·(~x−~u) =∑k

j=1 cj ~u j · (~x − ~u) = 0. The proof is complete.

Justification of ~w = ~u

The justification of Formula (2) is concluded here, showing that ~w = ~u .

~w =
∑k
j=1(~w j · ~x )~w j

=
∑k
j=1(~w j · ~u)~w j Because ~w j · (~x − ~u ) = 0 by

the second lemma.

=
∑k
j=1

(
~w j ·

∑k
i=1(~u i · ~x )~u i

)
~w j Definition of ~u .

=
∑k
j=1

∑k
i=1(~w j · ~u i)(~u i · ~x )~w j Dot product properties.

=
∑k
i=1

(∑k
j=1(~w j · ~u i)~w j

)
(~u i · ~x ) Switch summations.

=
∑k
i=1 ~u i(~u i · ~x ) First lemma with ~v = ~u i.

= ~u Definition of ~u .

Orthogonal Projection and Gram-Schmidt. Define ~y 1, . . . , ~y k by
the Gram-Schmidt relations on page 701. Define

~u j = ~y j/‖~y j‖

for j = 1, . . . , k. Then Vj−1 = span{~u 1, . . . , ~u j−1} is a subspace of Rn

of dimension j − 1 with orthonormal basis ~u 1, . . . , ~u j−1 and

~y j = ~x j −
(
~x j · ~y 1

~y 1 · ~y 1
~y 1 + · · ·+

~xk · ~y j−1

~y j−1 · ~y j−1
~y j−1

)
= ~x j −ProjVj−1

(~x j)

= ~x j −
j−1∑
k=1

(vector shadow projection of ~x j onto ~y k)

The Near Point Theorem

Developed here is the characterization of the orthogonal projection of a
vector ~x onto a subspace V as the unique point ~v in V which minimizes
‖~x − ~v‖, that is, the point in V which is nearest to ~x .

In remembering the Gram-Schmidt formulas, and in the use of the or-
thogonal projection in proofs and constructions, the following key theo-
rem is useful.

Theorem 20 (Orthogonal Projection Properties)
Let V be the span of orthonormal vectors ~u 1, . . . , ~uk.

(a) Every vector in V has an orthogonal expansion ~v =
∑k

j=1(~u j · ~v )~u j .
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(b) The vector ProjV (~x ) is a vector in the subspace V .

(c) The vector ~w = ~x −ProjV (~x ) is orthogonal to every vector in V .

(d) Among all vectors ~v in V , the minimum value of ‖~x − ~v‖ is uniquely
obtained by the orthogonal projection ~v = ProjV (~x ).

Proof: Properties (a), (b) and (c) were proved in preceding lemmas. Details
are outlined here, in case the lemmas were skipped.

(a): Write a basis expansion ~v =
∑k
j=1 cj~v j for some constants c1, . . . , ck.

Take the inner product of this equation with vector ~v i to prove that ci = ~v i ·~v .

(b): Vector ProjV (~x ) is a linear combination of basis elements of V .

(c): Let’s compute the dot product of ~w and ~v . We will use the orthogonal
expansion from (a).

~w · ~v = (~x −ProjV (~x )) · ~v

= ~x · ~v −

 k∑
j=1

(~x · ~u j)~u j

 · ~v
=

k∑
j=1

(~v · ~u j)(~u j · ~x )−
k∑
j=1

(~x · ~u j)(~u j · ~v )

= 0.

(d): Begin with the Pythagorean identity

‖~a‖2 + ‖~b‖2 = ‖~a + ~b‖2

valid exactly when ~a · ~b = 0 (a right triangle, θ = 90◦). Using an arbitrary ~v

in V , define ~a = ProjV (~x )− ~v and ~b = ~x −ProjV (~x ). By (b), vector ~a is in

V . Because of (c), then ~a · ~b = 0. This gives the identity

‖ProjV (~x )− ~v‖2 + ‖~x −ProjV (~x )‖2 = ‖~x − ~v‖2,

which establishes ‖~x − ProjV (~x )‖ < ‖~x − ~v‖ except for the unique ~v such
that ‖ProjV (~x )− ~v‖ = 0.

The proof is complete.

Theorem 21 (Near Point to a Subspace)
Let V be a subspace of Rn and ~x a vector not in V . The near point to ~x
in V is the orthogonal projection of ~x onto V . This point is characterized
as the minimum of ‖~x − ~v‖ over all vectors ~v in the subspace V .

Proof: Apply (d) of the preceding theorem.

Theorem 22 (Cross Product and Projections)
The cross product direction ~a × ~b can be computed as ~c −ProjV (~c), by

selecting a direction ~c not in V = span{~a , ~b}.
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Proof: The cross product makes sense only in R3. Subspace V is two di-
mensional when ~a , ~b are independent, and Gram-Schmidt applies to find an
orthonormal basis ~u1, ~u2. By (c) of Theorem 20, the vector ~c −ProjV (~c) has
the same or opposite direction to the cross product.

The QR Decomposition

The Gram-Schmidt formulas can be organized as matrix multiplication
A = QR, where ~x 1, . . . , ~xn are the independent columns of A, and Q
has columns equal to the Gram-Schmidt orthonormal vectors ~u 1, . . . ,
~un, which are the unitized Gram-Schmidt vectors.

Theorem 23 (The QR-Decomposition)
Let the m × n matrix A have independent columns ~x 1, . . . , ~xn. Then
there is an upper triangular matrix R with positive diagonal entries and an
orthonormal matrix Q such that

A = QR.

Proof: Let ~y 1, . . . , ~yn be the Gram-Schmidt orthogonal vectors given by
relations on page 701. Define ~uk = ~y k/‖~y k‖ and rkk = ‖~y k‖ for k = 1, . . . , n,
and otherwise rij = ~u i · ~x j . Let Q = 〈~u1| · · · |~un〉. Then

~x1 = r11~u1,
~x2 = r22~u2 + r21~u1,
~x3 = r33~u3 + r31~u1 + r32~u2,

...
~xn = rnn~un + rn1~u1 + · · ·+ rnn−1~un−1.

(3)

It follows from (3) and matrix multiplication that A = QR. The proof is
complete.

Theorem 24 (Matrices Q and R in A = QR)
Let the m×n matrix A have independent columns ~x 1, . . . , ~xn. Let ~y 1, . . . ,
~yn be the Gram-Schmidt orthogonal vectors given by relations on page 701.
Define ~uk = ~y k/‖~y k‖. Then AQ = QR is satisfied by Q = 〈~u 1| · · · |~un〉
and

R =


‖y1‖ ~u 1 · ~x 2 ~u 1 · ~x 3 · · · ~u 1 · ~xn

0 ‖y2‖ ~u 2 · ~x 3 · · · ~u 2 · ~xn
...

...
... · · ·

...
0 0 0 · · · ‖yn‖

 .

Proof: The result is contained in the proof of the previous theorem.
Some references cite the diagonal entries as ‖~x1‖, ‖~x⊥2 ‖, . . . , ‖~x⊥n ‖, where
~x⊥j = ~x j −ProjVj−1

(~x j), Vj−1 = span{~v 1, . . . , ~v j−1}. Because ~y 1 = ~x1 and
~y j = ~x j −ProjVj−1

(~x j), the formulas for the entries of R are identical.
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Theorem 25 (Uniqueness of Q and R)
Let m×n matrix A have independent columns and satisfy the decomposition
A = QR. If Q is m × n orthogonal and R is n × n upper triangular with
positive diagonal elements, then Q and R are uniquely determined.

Proof: The problem is to show that A = Q1R1 = Q2R2 implies R2R
−1
1 = I and

Q1 = Q2. We start withQ1 = Q2R2R
−1
1 . Define P = R2R

−1
1 . ThenQ1 = Q2P .

Because I = QT1Q1 = PTQT2Q2P = PTP , then P is orthogonal. Matrix
P is the product of square upper triangular matrices with positive diagonal
elements, which implies P itself is square upper triangular with positive diagonal
elements. The only matrix with these properties is the identity matrix I. Then
R2R

−1
1 = P = I, which implies R1 = R2 and Q1 = Q2. The proof is complete.

Theorem 26 (The QR Decomposition and Least Squares)
Let m×n matrix A have independent columns and satisfy the decomposition
A = QR. Then the normal equation

ATA~x = AT~b

in the theory of least squares can be represented as

R~x = QT~b .

Proof: The theory of orthogonal matrices implies QTQ = I. Then the identity
(CD)T = DTCT , the equation A = QR, and RT invertible imply

ATA~x = AT ~b Normal equation

RTQTQR~x = RTQT~x Substitute A = QR.

R~x = QT~x Multiply by the inverse of RT .

The proof is complete.

The formula R~x = QT~b can be solved by back-substitution, which ac-
counts for its popularity in the numerical solution of least squares prob-
lems.

Theorem 27 (Spectral Theorem)
Let A be a given n× n real matrix. Then A = QDQ−1 with Q orthogonal
and D diagonal if and only if AT = A.

Proof: The reader is reminded that Q orthogonal means that the columns of
Q are orthonormal. The equation A = AT means A is symmetric.

Assume first that A = QDQ−1 with Q = QT orthogonal (QTQ = I) and
D diagonal. Then QT = Q = Q−1. This implies AT = (QDQ−1)T =
(Q−1)TDTQT = QDQ−1 = A.

Conversely, assumeAT = A. Then the eigenvalues ofA are real and eigenvectors
corresponding to distinct eigenvalues are orthogonal. The proof proceeds by
induction on the dimension n of the n× n matrix A.
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For n = 1, let Q be the 1 × 1 identity matrix. Then Q is orthogonal and
AQ = QD where D is 1× 1 diagonal.

Assume the decomposition AQ = QD for dimension n. Let’s prove it for A
of dimension n + 1. Choose a real eigenvalue λ of A and eigenvector ~v 1 with
‖~v 1‖ = 1. Complete a basis ~v 1, . . . , ~vn+1 of Rn+1. By Gram-Schmidt, we
assume as well that this basis is orthonormal. Define P = 〈~v 1| · · · |~vn+1〉.
Then P is orthogonal and satisfies PT = P−1. Define B = P−1AP . Then B is
symmetric (BT = B) and col(B, 1) = λ col(I, 1). These facts imply that B is
a block matrix

B =

(
λ 0
0 C

)
where C is symmetric (CT = C). The induction hypothesis applies to C to
obtain the existence of an orthogonal matrix Q1 such that CQ1 = Q1D1 for
some diagonal matrix D1. Define a diagonal matrix D and matrices W and Q
as follows:

D =

(
λ 0
0 D1

)
,

W =

(
1 0
0 Q1

)
,

Q = PW.

Then Q is the product of two orthogonal matrices, which makes Q orthogonal.
Compute

W−1BW =

(
1 0

0 Q−11

)(
λ 0
0 C

)(
1 0
0 Q1

)
=

(
λ 0
0 D1

)
.

Then Q−1AQ = W−1P−1APW = W−1BW = D. This completes the induc-
tion, ending the proof of the theorem.

Spectral Theorem Consequence: The eigenpair equation
AP = PD with A 6= AT (A not symmetric) cannot be con-
verted to AQ = QD with Q orthogonal.

Theorem 28 (Schur’s Theorem)
Given any real n × n matrix A, possibly non-symmetric, there is an upper
triangular matrix T , whose diagonal entries are the eigenvalues of A, and a

complex matrix Q satisfying Q
T

= Q−1 (Q is unitary), such that

AQ = QT.

If A = AT , then Q is real orthogonal (QT = Q).

Schur’s theorem can be proved by induction, following the induction
proof of Jordan’s theorem, or the induction proof of the Spectral Theo-
rem. The result can be used to prove the Spectral Theorem in two steps.
Indeed, Schur’s Theorem implies Q is real, T equals its transpose, and
T is triangular. Then T must equal a diagonal matrix D.



9.3 Advanced Topics in Linear Algebra 709

Theorem 29 (Eigenpairs of a Symmetric A)
Let A be a symmetric n×n real matrix. Then A has n eigenpairs (λ1, ~v 1),
. . . , (λn, ~vn), with independent eigenvectors ~v 1, . . . , ~vn.

Proof: The preceding theorem applies to prove the existence of an orthogonal
matrix Q and a diagonal matrix D such that AQ = QD. The diagonal entries
of D are the eigenvalues of A, in some order. For a diagonal entry λ of D
appearing in row j, the relation A col(Q, j) = λ col(Q, j) holds, which implies
that A has n eigenpairs. The eigenvectors are the columns of Q, which are
orthogonal and hence independent. The proof is complete.

Theorem 30 (Diagonalization of Symmetric A)
Let A be a symmetric n×n real matrix. Then A has n eigenpairs. For each
distinct eigenvalue λ, replace the eigenvectors by orthonormal eigenvectors,
using the Gram-Schmidt process. Let ~u 1, . . . , ~un be the orthonormal
vectors so obtained and define

Q = 〈~u 1| · · · |~un〉 D = diag(λ1, . . . , λn).

Then Q is orthogonal and AQ = QD.

Proof: The preceding theorem justifies the eigenanalysis result. Already, eigen-
pairs corresponding to distinct eigenvalues are orthogonal. Within the set of
eigenpairs with the same eigenvalue λ, the Gram-Schmidt process produces
a replacement basis of orthonormal eigenvectors. Then the union of all the
eigenvectors is orthonormal. The process described here does not disturb the
ordering of eigenpairs, because it only replaces an eigenvector. The proof is
complete.

The Singular Value Decomposition

The decomposition has been used as a data compression algorithm. A
geometric interpretation will be given in the next subsection.

Theorem 31 (Positive Eigenvalues of ATA)
Given an m× n real matrix A, then ATA is a real symmetric matrix whose
eigenpairs (λ, ~v ) satisfy16

λ =
‖A~v‖2

‖~v‖2
≥ 0.(4)

Proof: Symmetry follows from (ATA)T = AT (AT )T = ATA. An eigenpair

(λ, ~v ) satisfies λ~vT~v = ~vTATA~v = (A~v )T (A~v ) = ‖A~v‖2, hence (4).

16Can a symmetric matrix have negative or complex eigenvalues?
The answer is NO.
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Definition 6 (Singular Values of A)
Let the real symmetric matrix ATA have real eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λr > 0 = λr+1 = · · · = λn. The numbers

σk =
√
λk, 1 ≤ k ≤ n,

are called the singular values of the matrix A. The ordering of the
singular values is always with decreasing magnitude.

Theorem 32 (Orthonormal Set ~u 1, . . . , ~um)
Let the real symmetric matrix ATA have real eigenvalues λ1 ≥ λ2 ≥ · · · ≥
λr > 0 = λr+1 = · · · = λn and corresponding orthonormal eigenvectors
~v 1,. . . ,~vn, obtained by the Gram-Schmidt process. Define the vectors

~u 1 =
1

σ1
A~v 1, . . . , ~u r =

1

σr
A~v r.

Because ‖A~v k‖ = σk, then {~u 1, . . . , ~u r} is orthonormal. Gram-Schmidt
can extend this set to an orthonormal basis {~u 1, . . . , ~um} of Rm.

Proof of Theorem 32: Because ATA~v k = λk~v k 6= ~0 for 1 ≤ k ≤ r, the
vectors ~uk are nonzero. Given i 6= j, then σiσj~u i · ~u j = (A~v i)

T (A~v j) =
λj~v

T
i ~v j = 0, showing that the vectors ~uk are orthogonal. Further, ‖~uk‖2 =

~v k · (ATA~v k)/λk = ‖~v k‖2 = 1 because {~v k}nk=1 is an orthonormal set.

The extension of the ~uk to an orthonormal basis of Rm is not unique, because
it depends upon a choice of independent spanning vectors ~y r+1, . . . , ~ym for
the set {~x : ~x ·~uk = 0, 1 ≤ k ≤ r}. Once selected, Gram-Schmidt is applied
to ~u1, . . . , ~u r, ~y r+1, . . . , ~ym to obtain the desired orthonormal basis.

Theorem 33 (The Singular Value Decomposition (svd))
Let A be a given real m × n matrix. Let (λ1, ~v 1),. . . ,(λn, ~vn) be a set
of orthonormal eigenpairs for ATA such that σk =

√
λk (1 ≤ k ≤ r)

defines the positive singular values of A and λk = 0 for r < k ≤ n.
Complete ~u 1 = (1/σ1)A~v 1, . . . , ~u r = (1/σr)A~v r to an orthonormal basis
{~uk}mk=1for Rm. Define

U = 〈~u 1| · · · |~um〉, Σ =

(
diag(σ1, . . . , σr) 0

0 0

)
,

V = 〈~v 1| · · · |~vn〉.

Then the columns of U and V are orthonormal and

A = UΣV T

= σ1~u 1~v
T
1 + · · ·+ σr~u r~v

T
r

= A(~v 1)~vT
1 + · · ·+A(~v r)~v

T
r

Proof of Theorem 33: The product of U and Σ is the m× n matrix

UΣ = 〈σ1~u1| · · · |σr~u r|~0 | · · · |~0〉
= 〈A(~v 1)| · · · |A(~v r)|~0 | · · · |~0〉.
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Let ~v be any vector in Rn. It will be shown that UΣV T~v ,
∑r
k=1A(~v k)(~vTk ~v )

and A~v are the same column vector. We have the equalities

UΣV T~v = UΣ

 ~vT1 ~v
...

~vTn~v


= 〈A(~v 1)| · · · |A(~v r)|~0 | · · · |~0〉

 ~vT1 ~v
...

~vTn~v


=

r∑
k=1

(~vTk ~v )A(~v k).

Because ~v 1, . . . , ~vn is an orthonormal basis of Rn, then ~v =
∑n
k=1(~vTk ~v )~v k.

Additionally, A(~v k) = ~0 for r < k ≤ n implies

A~v = A

(
n∑
k=1

(~vTk ~v )~v k

)
=

r∑
k=1

(~vTk ~v )A(~v k)

Then A~v = UΣV T~v =
∑r
k=1A(~v k)(~vTk ~v ), which proves the theorem.

Singular Values and Geometry

Discussed here is how to interpret singular values geometrically, espe-
cially in low dimensions 2 and 3. First, we review conics, adopting the
viewpoint of eigenanalysis.

Standard Equation of an Ellipse. Calculus courses consider el-
lipse equations like

85x2 − 60xy + 40y2 = 2500

and discuss removal of the cross term −60xy. The objective is to obtain
a standard ellipse equation

X2

a2
+
Y 2

b2
= 1.

We re-visit this old problem from a different point of view, and in the
derivation establish a connection between the ellipse equation, the sym-
metric matrix ATA, and the singular values of A.

11 Example (Image of the Unit Circle) Let A =

(
−2 6

6 7

)
.

Verify that the invertible matrix A maps the unit circle into the ellipse

85x2 − 60xy + 40y2 = 2500.
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Solution: The unit circle has parameterization θ → (cos θ, sin θ), 0 ≤ θ ≤ 2π.

Mapping of unit circle by the matrix A is formally the set of dual relations(
x
y

)
= A

(
cos θ
sin θ

)
,

(
cos θ
sin θ

)
= A−1

(
x
y

)
.

The Pythagorean identity cos2 θ+sin2 θ = 1 used on the second relation implies

85x2 − 60xy + 40y2 = 2500.

12 Example (Removing the xy-Term in an Ellipse Equation) After a rota-
tion (x, y)→ (X,Y ) to remove the xy-term in

85x2 − 60xy + 40y2 = 2500,

verify that the ellipse equation in the new XY -coordinates is

X2

25
+
Y 2

100
= 1.

Solution: The xy-term removal is accomplished by a change of variables
(x, y)→ (X,Y ) which transforms the ellipse equation 85x2−60xy+40y2 = 2500
into the ellipse equation 100X2 + 25Y 2 = 2500, details below. It’s standard
form is obtained by dividing by 2500, to give

X2

25
+
Y 2

100
= 1.

Analytic geometry says that the semi-axis lengths are
√

25 = 5 and
√

100 = 10.

In previous discussions of the ellipse, the equation 85x2 − 60xy + 40y2 = 2500
was represented by the vector-matrix identity

(
x y

)( 85 −30
−30 40

)(
x
y

)
= 2500.

The program used earlier to remove the xy-term was to diagonalize the coeffi-

cient matrix B =

(
85 −30
−30 40

)
by calculating the eigenpairs of B:

(
100,

(
−2

1

))
,

(
25,

(
1
2

))
.

Because B is symmetric, then the eigenvectors are orthogonal. The eigenpairs
above are replaced by unitized pairs:(

100,
1√
5

(
−2

1

))
,

(
25,

1√
5

(
1
2

))
.

Then the diagonalization theory for B can be written as

BQ = QD, Q =
1√
5

(
−2 1

1 2

)
, D =

(
100 0
0 25

)
.
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The single change of variables(
x
y

)
= Q

(
X
Y

)
then transforms the ellipse equation 85x2 − 60xy + 40y2 = 2500 into 100X2 +
25Y 2 = 2500 as follows:

85x2 − 60xy + 40y2 = 2500 Ellipse equation.

~uTB~u = 2500 Where B =

(
85 −30
−30 40

)
and ~u =

(
x
y

)
.

(Q~w )TB(Q~w ) = 2500 Change ~u = Q~w , where ~w =

(
X
Y

)
.

~wT (QTBQ)~w ) = 2500 Expand, ready to use BQ = QD.

~wT (D~w ) = 2500 Because D = Q−1BQ and Q−1 = QT .

100X2 + 25Y 2 = 2500 Expand ~wTD~w .

Rotations and Scaling. The 2 × 2 singular value decomposition
A = UΣV T can be used to decompose the change of variables (x, y) →
(X,Y ) into three distinct changes of variables, each with a geometrical
meaning:

(x, y) −→ (x1, y1) −→ (x2, y2) −→ (X,Y ).

Table 7. Three Changes of Variable

Domain Equation Image Meaning

Circle 1

(
x1

y1

)
= V T

(
cos θ
sin θ

)
Circle 2 Rotation

Circle 2

(
x2

y2

)
= Σ

(
x1

y1

)
Ellipse 1 Scale axes

Ellipse 1

(
X
Y

)
= U

(
x2

y2

)
Ellipse 2 Rotation

Geometry. We give in Figure 5 a geometrical interpretation for the
singular value decomposition

A = UΣV T .

For illustration, the matrix A is assumed 2× 2 and invertible.
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Circle 1 Circle 2 Ellipse 1 Ellipse 2

Rotate Scale Rotate

(x, y) (x1, y1) (X,Y )−→ −→(x2, y2)

~v 2

~v 1

−→

ΣV T U
σ1~u 1

σ2~u 2

Figure 5. Mapping the unit circle.

• Invertible matrix A maps Circle 1 into Ellipse 2.

• Orthonormal vectors ~v 1, ~v 2 are mapped by matrix A = UΣV T

into orthogonal vectors A~v 1 = σ1~u 1, A~v 2 = σ2~u 2, which are
exactly the semi-axes vectors of Ellipse 2.

• The semi-axis lengths of Ellipse 2 equal the singular values σ1, σ2

of matrix A.

• The semi-axis directions of Ellipse 2 equal the basis vectors ~u 1,
~u 2.

• The process is a rotation (x, y) → (x1, y1), followed by an axis-
scaling (x1, y1)→ (x2, y2), followed by a rotation (x2, y2)→ (X,Y ).

13 Example (Mapping and the SVD) The singular value decompositionA =

UΣV T for A =

(
−2 6

6 7

)
is given by

U =
1√
5

(
1 2
2 −1

)
, Σ =

(
10 0
0 5

)
, V =

1√
5

(
1 −2
2 1

)
.

• Invertible matrix A =

(
−2 6

6 7

)
maps the unit circle into an ellipse.

• The columns of V are orthonormal vectors ~v 1, ~v 2, computed as
eigenpairs (λ1, ~v 1), (λ2, ~v 2) of ATA, ordered by λ1 ≥ λ2.(

100,
1√
5

(
1
2

))
,

(
25,

1√
5

(
−2

1

))
.

• The singular values are σ1 =
√
λ1 = 10, σ2 =

√
λ2 = 5.

• The image of ~v 1 is A~v 1 = UΣV T~v 1 = U

(
σ1
0

)
= σ1~u 1.
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• The image of ~v 2 is A~v 2 = UΣV T~v 2 = U

(
0
σ2

)
= σ2~u 2.

~v 2

~v 1

Unit Circle Ellipse
σ2~u2

σ1~u1

A Figure 6.
Mapping the unit
circle into an ellipse.

The Four Fundamental Subspaces. The subspaces appearing
in the Fundamental Theorem of Linear Algebra are called the Four
Fundamental Subspaces. They are:

Subspace Notation

Row Space of A Image
(
AT
)

Nullspace of A kernel(A)

Column Space of A Image(A)

Nullspace of AT kernel
(
AT
)

The singular value decomposition A = UΣV T computes orthonormal
bases for the row and column spaces of of A. In the table below, symbol
r = rank(A). Matrix A is assumed m × n, which implies A maps Rn

into Rm.

Table 8. Four Fundamental Subspaces and the SVD

Orthonormal Basis Subspace Name

First r columns of U (m× n) Image(A) Column Space of A

Last n− r columns of U kernel
(
AT
)

Nullspace of AT

First r columns of V (n×m) Image
(
AT
)

Row Space of A

Last m− r columns of V kernel(A) Nullspace of A
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Table 9. Fundamental Subspaces by Columns of U and V

m× n A = U ΣV T Singular Value Decomposition

m×m U =
colspace(A) nullspace(AT )

r columns m− r columns

m× n Σ =

 σ1 · · · 0
...

0 · · · σr

 0

0 0

n× n V =
rowspace(A) nullspace(A)

r columns n− r columns

A Change of Basis Interpretation of the SVD. The singular
value decomposition can be described as follows:

For every m× n matrix A of rank r, orthonormal bases

{~v i}ni=1 and {~u j}mj=1

can be constructed such that

• MatrixAmaps basis vectors ~v 1, . . . , ~v r to non-negative
multiples of basis vectors ~u 1, . . . , ~u r, respectively.

• The n− r left-over basis vectors ~v r+1, . . . ~v n map by
A into the zero vector.

• With respect to these bases, matrix A is represented
by a real diagonal matrix Σ with non-negative entries.

Exercises 9.3

Diagonalization
Find the eigenpair packages P and D
in the relation AP = PD.

1. A =

(
−4 2

0 −1

)
2. A =

(
7 5

10 −7

)

3. A =

(
1 2
2 4

)
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4. A =

(
1 0
2 −1

)

5. A =

 −1 0 3
3 4 −9
−1 0 3



6. A =

 1 1 0
1 1 0
0 0 −3



7. A =


1 1 0 1
1 1 0 1
0 0 −3 0
0 0 0 −1



8. A =


4 0 0 1

12 −2 0 0
0 0 −3 0

21 −6 1 0


Jordan’s Theorem
Given matrices P and T , verify Jor-
dan’s relation AP = PT .

9. A =

(
−4 2

0 −1

)
, P = I, T = A.

10. A =

(
0 1
−2 3

)
, P =

(
1 0
1 1

)
,

T =

(
1 1
0 2

)

Cayley-Hamilton Theorem.

11. Verify that A =

(
a b
c d

)
satisfies

A2=−(a+d)A−(ad− bc)
(

1 0
0 1

)
.

12. Verify

(
1 0
2 1

)20

=

(
1 0

40 1

)
by in-

duction using Cayley-Hamilton.

Gram-Schmidt Process
Find the Gram–Schmidt orthonormal
basis from the given independent set.

13.

1
0
0

,

0
1
0

,

−1
0
1

.

14.

 1
2
−1

,

2
0
3

,

0
4
1

.

15.


1
0
0
1

,


−1

0
2
1

,


0
1
2
0

,


0
0
−1

1

.

16.


1
0
0
0

,


1
1
0
0

,


1
1
1
0

,


1
1
1
1

.

Gram-Schmidt on Polynomials
Define V = span(1, x, x2) with in-

ner product
∫ 1

0
f(x)g(x)dx. Find the

Gram–Schmidt orthonormal basis.

17. 1, 1 + x, x2

18. 1− x, 1 + x, 1 + x2

Gram-Schmidt: Coordinate Map
Define V = span(1, x, x2) with inner

product
∫ 1

0
f(x)g(x)dx. The coordi-

nate map is

T : c1 + c2x+ c3x
2 →

c1c2
c3

 .

19. Find the images of 1 − x, 1 + x,
1 + x2 under T .

20. Assume column vectors ~x1, ~x2,
~x3 in R3 orthonormalize under
Gram-Schmidt to ~u1, ~u2, ~u3. Are
the pre-images T−1(~u1), T−1(~u2),
T−1(~u3) orthonormal in V ?

Shadow Projection
Compute shadow vector (~x · ~u )~u for
direction ~u = ~v

|~v | . Illustrate with a

hand–drawn figure.

21. ~x =

(
1
−1

)
, ~v =

(
1
2

)
Ans: − 1√

5

(
1
2

)

22. ~x =

(
1
1

)
, ~v =

(
1
3

)
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23. ~x =

1
1
2

, ~v =

1
0
2


Ans:

√
5

1
0
2



24. ~x =


1
1
2
1

, ~v =


1
0
2
1


Orthogonal Projection
Find an orthonormal basis {~uk}nk=1

for V = span(1 + x, x, x + x2), inner

product
∫ 1

0
f(x)g(x)dx. Then com-

pute the orthogonal projection ~p =∑n
k=1(~x · ~uk)~uk.

25. ~x = 1 + x+ x2

26. ~x = 1 + 2x+ x2

Orthogonal Projection: Theory

27. Prove that the orthogonal projec-
tion on V = {~Y} is the vector
shadow projection:
proj~Y (~x ) = d~u = ProjV (~x ).

28. Gram-Schmidt Construction

Prove these properties, where we
define ~x⊥j = ~x j − ProjWj−1

(~x j)
and Wj−1 = span(~x1, . . . , ~x j−1).

(a) Subspace Wj−1 is equal to
the Gram-Schmidt Vj−1 =
span(~u1, . . . , ~u j).

(b) Vector ~x⊥j is orthogonal to all
vectors in Wj−1.

(c) The vector ~x⊥j is not zero.

(d) The Gram-Schmidt vector is

~u j =
~x⊥j
‖~x⊥j ‖

.

Near Point Theorem
Find the near point to the subspace V .

29. ~x =

(
1
1

)
, V = span

((
1
2

))

30. ~x =

(
1
1

)
, V = span

((
0
1

))

31. ~x=

1
1
0

,V= span

1
2
0

 ,

1
0
1



32. ~x=

1
0
1

,V= span

1
1
0

 ,

1
1
1


QR-Decomposition
Give A, find an orthonormal matrix Q
and an upper triangular matrix R such
that A = QR.

33. A=


5 9
1 7
1 5
3 5

, Ans: R =

(
6 12
0 6

)

34. A=


2 1
2 0
2 0
2 1

, Ans: R =

(
4 1
0 1

)

35. A=


1 0 0
1 1 0
1 1 0
1 0 0

, Ans: R=

(
2 1 0
0 1 0

)

36. A=


1 0 0
1 1 1
1 1 1
1 0 0

, Ans: R=

(
2 1 1
0 1 1

)

Least Squares: 3× 2

Let A=

2 0
0 2
1 1

, ~b=

1
0
5

.

37. Find the normal equations for
A~x = ~b .

38. Solve A~x = ~b by least squares.

Least Squares: 4× 3

Let A=


4 0 1
1 0 1
0 1 0
1 1 1

, ~b=


3
0
0
0

.

39. Find the normal equations for
A~x = ~b .
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40. Solve A~x = ~b by least squares.

Orthonormal Diagonal Form
Assume A = AT . The spectral the-
orem implies AQ = QD where D
is diagonal and Q has orthonormal
columns. Find Q and D.

41. A=

(
7 2
2 4

)
42. A=

(
1 5
5 1

)

43. A=

(
1 5 0
5 1 0
0 0 2

)

44. A=

(
1 5 0
5 1 1
0 1 1

)

Eigenpairs of Symmetric Matrices.

45. Let A=

(
3 −1 1
−1 3 −1

1 −1 3

)
. Show that

2, 2, 5 are eigenvalues and find
three eigenpairs.

46. Let A=

(
5 −1 1
−1 5 −1

1 −1 5

)
. Then

|A−λI|=(4−λ)2(7−λ). Find three
eigenpairs.

47. Let A=

(
6 −1 1
−1 6 −1

1 −1 6

)
. Eigenvec-

tors

 1
0
−1

,

1
1
0

,

 1
−1

1

 corre-

spond to λ = 5, 5, 8. Find a diag-
onal matrix D and an orthogonal
matrix Q with AQ = QD.

48. Matrix A for λ = 1, 1, 4 has

eigenvectors

1
1
0

,

 1
0
−1

,

 1
−1

1

.

Find A and verify A = AT .

Singular Value Decomposition
Find the SVD A = UΣV T .

49. A=

−1 1
−2 2

2 −2

.

Ans: U=3× 3, V=2× 2. Matrix

Σ=

3
√

2 0
0 0
0 0

=3× 2, the size of A.

50. A=

−1 1
−2 2

1 1

.

Ans: σ1 =
√

10, σ2 =
√

2.

51. A=

−3 3
0 0
1 1

.

52. A=

1 1
0 1
1 −1

.

Ellipse and the SVD
Repeat Example 12, page 712 for the
given ellipse equation.

53. 85x230xy + 10y2 = 2500

54. 340x260xy + 10y2 = 2500

Mapping and the SVD
Reference: Example 13, page 714. Let

A=

(
−2 6

6 7

)
. Then A=UΣV T where

U= 1√
5

(
1 2
2 −1

)
, Σ=

(
10 0
0 5

)
, V = 1√

5

(
1 −2
2 1

)
.

Let ~w=

(
x
y

)
=c1~v 1+c2~v 2.

55. Verify ‖~w‖2 = ~w · ~w = c21 + c22.

56. Verify V T ~w=

(
c1
c2

)
from the gen-

eral identity V TV = I. Then show

that ΣV T ~w=

(
10c1
5c2

)
.

Therefore, coordinate map ~w →
(
c1
c2

)
undergoes re-scaling by 10 in direction ~v 1

and 5 in direction ~v 2.

57. Find the angle θ of rotation for U
and the angle φ of rotation for V T .

58. Assume |~w | = 1, a point on the
unit circle. Is A~w on an ellipse
with semi-axes 10 and 5? Jus-
tify your answer geometrically, no
proof expected. Check your answer
with a computer plot.


