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8.1 Eigenanalysis Applications

Discrete Dynamical Systems

The matrix equation

~y =
1

10

 5 4 0
3 5 3
2 1 7

 ~x(1)

predicts the state ~y of a system initially in state ~x after some fixed
elapsed time. The 3×3 matrix A in (1) represents the dynamics which
changes state ~x into state ~y . An equation ~y = A~x like equation (1)
is called a discrete dynamical system. The fixed elapsed time for
changing ~x to ~y is called the period of the discrete dynamical system.
Matrix A is called a transition matrix, provided A has nonnegative
entries and column sums equal to one (see Stochastic Matrices below).

The eigenpairs of A in (1) are shown in details page 5 to be (1, ~v 1),
(1/2, ~v 2), (1/5, ~v 3) where the eigenvectors are given by

~v 1 =

 12
15
13

 , ~v 2 =

 −1
0
1

 , ~v 3 =

 −4
3
1

 .(2)

Market Shares

A typical application of discrete dynamical systems is telephone long
distance company market shares x1, x2, x3, which are fractions of the
total market for long distance service. If three companies provide all the
services, then their market fractions add to one: x1 + x2 + x3 = 1. The
equation ~y = A~x gives the market shares of the three companies after a
fixed time period, say one year. Then market shares after one, two and
three years are given by the iterates

~y 1 = A~x ,
~y 2 = A2~x ,
~y 3 = A3~x .

Fourier’s replacement model gives succinct and useful formulas for the
iterates: if ~x = a1~v 1 + a2~v 2 + a3~v 3, then

~y 1 = A~x = a1λ1~v 1 + a2λ2~v 2 + a3λ3~v 3,
~y 2 = A2~x = a1λ

2
1~v 1 + a2λ

2
2~v 2 + a3λ

2
3~v 3,

~y 3 = A3~x = a1λ
3
1~v 1 + a2λ

3
2~v 2 + a3λ

3
3~v 3.

The advantage of Fourier’s model is that an iterate An is computed
directly, without computing the powers before it. Because λ1 = 1 and
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limn→∞ |λ2|n = limn→∞ |λ3|n = 0, then for large n

~yn ≈ a1(1)~v 1 + a2(0)~v 2 + a3(0)~v 3 =

 12a1
15a1
13a1

 .
The numbers a1, a2, a3 are related to x1, x2, x3 in the expansion ~x =
a1~v 1+a2~v 2+a3~v 3 by the equations 12a1−a2−4a3 = x1, 15a1+3a3 = x2,
13a1 + a2 + a3 = x3. Due to x1 + x2 + x3 = 1, the value of a1 is given
by a1 = 1/40. The three market shares after a long time period are
therefore predicted to be 3/10, 3/8, 13/40. The reader should verify the
market share identity 3

10 + 3
8 + 13

40 = 1.

Stochastic Matrices

The special matrix A in (1) is a stochastic matrix1, defined by the
properties

n∑
i=1

aij = 1, akj ≥ 0, k, j = 1, . . . , n.

The definition is memorized by the phrase each column sum is one.

Leontief input-output models, popularized by 1973 Nobel Prize economist
Wassily Leontief, are stochastic models. A typical model is A = RT

where

R =

 1 0 0
.2 .3 .5
.4 .4 .2

 .
The rows of R add to one, therefore the columns of A add to one. Row
1 is the bank, Row 2 is Factory 1, Row 3 is Factory 2. Matrix R tracks
the money as it is being passed back and forth between the factories and
the bank.

Leslie Models in population biology are similar to stochastic models.
They predict the next age group population size based upon the previous
previous population size. A Leslie matrix for n = 4 looks like

A =


f1 f2 f3 f4
s1 0 0 0
0 s2 0 0
0 0 s3 0

 .
Neither the row sums nor the column sums are one. However, some
stochastic matrix results have analogs for Leslie matrices.

1Technically, a right stochastic matrix, which means columns add to one. A left
stochastic matrix has rows adding to one.
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Theorem 1 (Stochastic Matrix Properties)
Let A be a stochastic matrix. Then

(a) If ~x is a vector with x1 + · · ·+ xn = 1, then ~y = A~x satisfies
y1 + · · ·+ yn = 1.

(b) If the components of ~v are all 1, then AT~v = ~v . Therefore,
(1, ~v ) is an eigenpair of AT .

(c) One root of the characteristic equation det(A − λI) = 0 is
λ = 1. All other roots satisfy |λ| ≤ 1.

Proof of Stochastic Matrix Properties:
(a)

∑n
i=1 yi =

∑n
i=1

∑n
j=1 aijxj =

∑n
j=1 (

∑n
i=1 aij)xj =

∑n
j=1(1)xj = 1.

(b) Entry j of AT~v is given by
∑n
i=1(aij)(1) = column sum = 1.

(c) The determinant rule det(BT ) = det(B) applied to B = A− λI implies A
and AT have the same eigenvalues. Apply (b) to verify that A has eigenvalue
1. Any other root λ of |A − λI| = 0 is also a root of |AT − λI| = 0 with
corresponding eigenvector ~x satisfying AT~x = λ~x . Because ~x 6= ~0 , then ~x
has a component xj with largest magnitude |xj | > 0. Isolate index j across
equation λ~x = AT~x , then divide by |xj |, to obtain λ =

∑n
i=1 aij

xi

xj
. Because

aji ≥ 0 and 0 ≤
∣∣∣ xi

xj

∣∣∣ ≤ 1, then |λ| ≤ 1, because

|λ| ≤
n∑
i=1

aij

∣∣∣∣xixj
∣∣∣∣ ≤ n∑

i=1

(aij)(1) = column sum = 1.

Definition 1
Notation A > 0 means all aij > 0. Notation A ≤ B means aij ≤ bij , also
written B ≥ A.

Definition 2
Matrix maxr(A) (resp. minr(A)) is obtained from A by replacing each
entry aij by the maximum (resp. minimum) element of row i. Symbol
δ = mini,j aij . Matrix O is the n× n matrix of all ones.

Theorem 2 (Perron-Frobenius: Positive Stochastic Matrix)
Let A be a stochastic matrix all of whose entries are strictly positive. Then

(a) There exists an eigenpair (1, ~w ) of A such that ~w has nonneg-
ative components and limn→∞A

n = 〈~w |~w | · · · |~w 〉.
(b) If (1, ~v ) is an eigenpair of A, then ~v = c~w for c =

∑n
i=1 vi.

Briefly, the eigenspace for λ = 1 has dimension one.

(c) If λ 6= 1 is a real or complex eigenvalue of A, then |λ| < 1.

(d) If (λ, ~v ) is an eigenpair of A and ~v has nonnegative components,
then all components of ~v are strictly positive, λ = 1 and ~v =
c~w for some constant c.
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Proof of the Perron-Frobenius Theorem:2

Proof of (a)
The proof is organized as five lemmas. Assume throughout that A > 0 is
stochastic with least element δ, B ≥ 0 and O is the matrix of all ones.

Lemma 1a. If A,B are stochastic, then BA is stochastic.

Lemma 2a. minr(B) ≤minr(BA) ≤ BA ≤maxr(BA) ≤maxr(B).

Proof: The maximum along row i of C = BA is some cij =
∑n
k=1 bikakj . Let

M denote the maximum along row i of B. Because columns of A sum to 1, then
cij =

∑n
k=1 bikakj ≤

∑n
k=1Makj = M . Then BA ≤ maxr(BA) ≤ maxr(B).

Details for inequality minr(B) ≤minr(BA) ≤ BA are similar.

Lemma 3a. maxr(BA)−minr(BA) ≤ (1− δ) (maxr(B)−minr(B)).

Proof: Let C = BA have row i maximum at cij and row minimum at cik.
Then all elements in row i of matrix maxr(BA) −minr(BA) have value S =
cij− cik. Let M (resp. m) be the common entry along row i of maxr(B) (resp.
minr(B)). We’ll verify S ≤ (1− δ) (M −m), which proves the lemma.

Re-write S = cij− cik =
∑n
p=1 bipapj−

∑n
p=1 bipapk =

∑n
p=1 bip(apj−apk). Let

p1, . . . , pr be the set of indices p such that apj − apk > 0 and let q1, . . . , qs be
the set of indices q such that aqj − aqk < 0. Indices p that satisfy apj − apk = 0
contribute zero to S. In cases r = 0 and/or s = 0 we have S ≤ 0, so the
conclusion follows. Henceforth, assume r ≥ 1 and s ≥ 1. The column sums of
A are 1, which implies for instance

∑r
`=1 ap`j +

∑s
`=1 aq`j = 1. We estimate:

S =
∑n
p=1 bip(apj − apk)

=
∑r
`=1 bip(ap`j − ap`k) +

∑s
`=1 bip(aq`j − aq`k)

≤ M
∑r
`=1(ap`j − ap`k) +m

∑s
`=1(aq`j − aq`k)

= M (1−
∑s
`=1 aq`j − 1 +

∑s
`=1 aq`k) +m

∑s
`=1(aq`j − aq`k)

= (M −m) (−
∑s
`=1 aq`j +

∑s
`=1 aq`k)

≤ (M −m) (−sδ + 1)
≤ (M −m) (−δ + 1) .

Lemma 4a. maxr(A
k+1)−minr(A

k+1) ≤ (1− δ)kO.

Proof: Let B = Ak and apply Lemmas 1a and 3a. Then maxr(A
k+1) −

minr(A
k+1) ≤ (1 − δ)

(
maxr(A

k)−minr(A
k)
)
. Induction on k implies the

result, because maxr(A)−minr(A) ≤ O.

Lemma 5a. There exists a vector ~w with all positive components such that
limk→∞Ak = 〈~w |~w | · · · |~w 〉. Then A~w = ~w and (1, ~w ) is an eigenpair.3

Proof: The preceding lemmas and the calculus squeeze theorem for limits imply
that maxr(A

k) and minr(A
k) converge as k →∞ to some matrix P . Because

maxr(A
k) has identical elements in each row, then so does P . Therefore, the

columns of P are the same vector ~w . Take limits across inequality minr(A
k) ≥

δO to prove ~w > ~0 . Vector ~w equals P~u , where ~u = column 1 of the identity
matrix. Then ~w = P~u = limk→∞Ak+1~u = A

(
limk→∞Ak~u

)
= A~w , which is

the eigenpair equation ~w = A~w .

Proof of (b)
Eigenpair equation ~v = A~v is multiplied repeatedly by A to give ~v = Ak+1~v .

2Perron-Frobenius theory is a basis for the Google Search PageRank algorithm.
3The numerical power method can be used to approximate eigenvector ~w .
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Take the limit using part (a): ~v = P~v , where P = 〈~w |~w | · · · |~w 〉. Then
~v = P~v = (

∑n
i=1 vi) ~w .

Proof of (c)
Consider an eigenpair (λ, ~v ). Apply A across λ~v = A~v to obtain λk~v = Ak~v .
Use part (a) to take the limit as k →∞. Then, as in part (b), limk→∞ λk~v =
(
∑n
i=1 vi) ~w . This limit exists only in case |λ| ≤ 1. If |λ| = 1, then λ = eiθ for

some angle θ. The limit fails to exist unless θ = 0 modulo 2π. Therefore, λ = 1
and ~v = (

∑n
i=1 vi) ~w .

Proof of (d)
Let’s suppose some vj = 0, in order to reach a contradiction. Component j of

the identity A~v = λ~v says that
∑n
k=1 ajkvk = 0. Because ~v 6= ~0 , then at least

one vk 6= 0. Because ajk > 0, then
∑n
k=1 ajkvk > 0, a contradiction.

The proof of the Perron-Frobenius theorem is complete.

Details for the eigenpairs of (1): To be computed are the eigenvalues λ
and eigenvectors ~v for the 3× 3 matrix

A =
1

10

 5 4 0
3 5 3
2 1 7

 .

The eigenpairs are (1, ~v 1) ,
(
1
2 , ~v 2

)
,
(
1
5 , ~v 3

)
where

~v 1 =

 12
15
13

 , ~v 2 =

 −1
0
1

 , ~v 3 =

 −4
3
1

 .(3)

Eigenvalues. The roots λ = 1, 1/2, 1/5 of the characteristic equation det(A−
λI) = 0 are found by these details:

0 = det(A− λI)

=

∣∣∣∣∣∣
.5− λ .4 0
.3 .5− λ .3
.2 .1 .7− λ

∣∣∣∣∣∣
=

1

10
− 8

10
λ+

17

10
λ2 − λ3 Expand by cofactors.

= − 1

10
(λ− 1)(2λ− 1)(5λ− 1) Factor the cubic.

The factorization was found by long division of the cubic by λ − 1, the idea
born from the fact that 1 is a root and therefore λ− 1 is a factor, by the Factor
Theorem of college algebra. The root λ = 1 was discovered from the Rational
Root theorem of college algebra.4

Eigenpairs. To each eigenvalue λ = 1, 1/2, 1/5 corresponds one rref calcula-
tion, to find the eigenvectors paired to λ. The three eigenvectors are given by
(2). The details:

Eigenvalue λ = 1.

4A rational root x of anx
n + · · ·+ a0 = 0 is a rational factor of a0/an.
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A− (1)I =

 .5− 1 .4 0
.3 .5− 1 .3
.2 .1 .7− 1


≈

 −5 4 0
3 −5 3
2 1 −3

 Multiply rule, multiplier=10.

≈

 0 0 0
3 −5 3
2 1 −3

 Combination rule twice.

≈

 0 0 0
1 −6 6
2 1 −3

 Combination rule.

≈

 0 0 0
1 −6 6
0 13 −15

 Combination rule.

≈

 0 0 0
1 0 − 12

13
0 1 − 15

13

 Multiply rule and combination
rule.

≈

 1 0 − 12
13

0 1 − 15
13

0 0 0

 Swap rule.

= rref(A− (1)I)

An equivalent reduced echelon system is x− 12z/13 = 0, y − 15z/13 = 0. The
free variable assignment is z = t1 and then x = 12t1/13, y = 15t1/13.

An eigenvector can be selected as the partial derivative on variable t1 across the
general solution x = 12t1/13, y = 15t1/13, z = t1 (equivalent here to setting
t1 = 1). This computation gives eigenvector x = 12/13, y = 15/13, z = 1.

An eigenvector can be multiplied by a constant c 6= 0 to obtain another eigen-
vector. To eliminate fractions in the answer, the practice is to multiply by an
integer c to eliminate all fractions. Choose constant c = 13 to obtain eigenvector
x = 12, y = 15, z = 13.

Eigenvalue λ = 1/2.

A− (1/2)I =

 .5− .5 .4 0
.3 .5− .5 .3
.2 .1 .7− .5


≈

 0 4 0
3 0 3
2 1 2

 Multiply rule, factor=10.

≈

 0 1 0
1 0 1
0 0 0

 Combination and multiply
rules.

= rref(A− .5I)

An eigenvector is found from the equivalent reduced echelon system y = 0,
x+ z = 0 to be x = −1, y = 0, z = 1.

Eigenvalue λ = 1/5.
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A− (1/5)I =

 .5− .2 .4 0
.3 .5− .2 .3
.2 .1 .7− .2


≈

 3 4 0
1 1 1
2 1 5

 Multiply rule.

≈

 1 0 4
0 1 −3
0 0 0

 Combination rule.

= rref(A− (1/5)I)

An eigenvector is found from the equivalent reduced echelon system x+4z = 0,
y − 3z = 0 to be x = −4, y = 3, z = 1.

An answer check in maple:

with(LinearAlgebra):

A:=(1/10)*Matrix([[5,4,0],[3,5,3],[2,1,7]]);

B:=A-lambda*IdentityMatrix(3);

DD,P:=Eigenvectors(A);

factor(Determinant(B));

Coupled and Uncoupled Systems

The linear system of differential equations

x′1 = −x1 − x3,
x′2 = 4x1 − x2 − 3x3,
x′3 = 2x1 − 4x3,

(4)

is called coupled, whereas the linear system of growth-decay equations

y′1 = −3y1,
y′2 = −y2,
y′3 = −2y3,

(5)

is called uncoupled. The terminology uncoupled means that each dif-
ferential equation in system (5) depends on exactly one variable, e.g.,
y′1 = −3y1 depends only on variable y1. In a coupled system, one of the
differential equations must involve two or more variables.

Matrix Formulaton

Coupled system (4) and uncoupled system (5) can be written in matrix
form, ~x ′ = A~x and ~y ′ = D~y , with coefficient matrices

A =

−1 0 −1
4 −1 −3
2 0 −4

 and D =

−3 0 0
0 −1 0
0 0 −2

 .
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If the coefficient matrix is diagonal, then the system is uncoupled. If
the coefficient matrix is not diagonal, then one of the corresponding
differential equations involves two or more variables and the system is
called coupled or cross-coupled.

Solving Uncoupled Systems

An uncoupled system consists of independent growth-decay equations
of the form u′ = au. The solution formula u = ceat then leads to the
general solution of the system of equations. For instance, system (5) has
general solution

y1 = c1e
−3t,

y2 = c2e
−t,

y3 = c3e
−2t,

(6)

where c1, c2, c3 are arbitrary constants. The number of constants
equals the dimension of the diagonal matrix D.

Coordinates and Coordinate Systems

If vectors ~v 1, ~v 2, ~v 3 are independent in R3, then augmented matrix

P = 〈~v 1|~v 2|~v 3〉

is invertible. The columns ~v 1, ~v 2, ~v 3 of P are called a coordinate
system. The matrix P is called a change of coordinates.

Every vector ~v in R3 can be uniquely expressed as

~v = t1~v 1 + t2~v 2 + t3~v 3.

The values t1, t2, t3 are called the coordinates of ~v relative to the basis
~v 1, ~v 2, ~v 3, or more succinctly, the coordinates of ~v relative to P .

Viewpoint of a Driver

The physical meaning of a coordinate system ~v 1, ~v 2, ~v 3 can be un-
derstood by considering an auto going up a mountain road. Choose
orthogonal ~v 1 and ~v 2 to give positions in the driver’s seat and define
~v 3 be the seat-back direction. These are local coordinates as viewed
from the driver’s seat. The road map coordinates x, y and the altitude z
define the global coordinates for the auto’s position ~p = x~ı+ y~+ z~k.
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~v 1

~v 3

~v 2

Figure 1. An auto seat.
The vectors ~v 1(t), ~v 2(t), ~v 3(t) form
an orthogonal triad which is a local
coordinate system from the driver’s
viewpoint. The orthogonal triad
changes continuously in t.

Change of Coordinates

A coordinate change from ~y to ~x is a linear algebraic equation ~x = P~y
where the n× n matrix P is required to be invertible (det(P ) 6= 0). To
illustrate, an instance of a change of coordinates from ~y to ~x is given by
the linear equations

~x =

1 0 1
1 1 −1
2 0 1

 ~y or


x1 = y1 + y3,
x2 = y1 + y2 − y3,
x3 = 2y1 + y3.

(7)

Constructing Coupled Systems

A general method exists to construct rich examples of coupled systems.
The idea is to substitute a change of variables into a given uncoupled
system. Consider a diagonal system ~y ′ = D~y , like (5), and a change of
variables ~x = P~y , like (7). Differential calculus applies to give

~x ′ = (P~y )′

= P~y ′

= PD~y
= PDP−1 ~x .

(8)

The matrix A = PDP−1 is not triangular in general, and therefore the
change of variables produces a cross-coupled system.

An illustration. To give an example, substitute into uncoupled system
(5) the change of variable equations (7). Use equation (8) to obtain

~x ′ =

 −1 0 −1
4 −1 −3
2 0 −4

~x or


x′1 = −x1 − x3,
x′2 = 4x1 − x2 − 3x3,
x′3 = 2x1 − 4x3.

(9)

This cross-coupled system (9) can be solved using relations (7), (6)
and ~x = P~y to give the general solution x1

x2
x3

 =

 1 0 1
1 1 −1
2 0 1


 c1e

−3t

c2e
−t

c3e
−2t

 .(10)
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Changing Coupled Systems to Uncoupled

We ask this question, motivated by the above calculations:

Can every coupled system ~x ′(t) = A~x (t) be subjected to
a change of variables ~x = P~y which converts the system
into a completely uncoupled system for variable ~y (t)?

Under certain circumstances, this is true, and it leads to an elegant and
especially simple expression for the general solution of the differential
system, as in (10):

~x(t) = P~y (t).

The task of eigenanalysis is to simultaneously calculate from a cross-
coupled system ~x ′ = A~x the change of variables ~x = P~y and the diag-
onal matrix D in the uncoupled system ~y ′ = D~y

The eigenanalysis coordinate system is the set of n independent
vectors extracted from the columns of P . In this coordinate system, the
cross-coupled differential system (4) simplifies into a system of uncou-
pled growth-decay equations (5). Hence the terminology, the method of
simplifying coordinates.

Eigenanalysis and Footballs

An ellipsoid or football is a geometric object de-
scribed by its semi-axes (see Figure 2). In
the vector representation, the semi-axis direc-
tions are unit vectors ~v 1, ~v 2, ~v 3 and the semi-
axis lengths are the constants a, b, c. The vec-
tors a~v 1, b~v 2, c~v 3 form an orthogonal triad.

a~v 1

b~v 2

c~v 3

Figure 2. USA football.
An ellipsoid is built from
orthonormal semi-axis directions ~v 1,
~v 2, ~v 3 and the semi-axis lengths a,
b, c. The semi-axis vectors are a~v 1,
b~v 2, c~v 3.

Two vectors ~a , ~b are orthogonal if both are nonzero and their dot product
~a · ~b is zero. Vectors are orthonormal if each has unit length and they
are pairwise orthogonal. The orthogonal triad ~v 1, ~v 2, ~v 3 is an invariant
of the ellipsoid’s algebraic representations. Algebra does not change the
triad: the invariants a~v 1, b~v 2, c~v 3 must somehow be hidden in the
equations that represent the football.
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Algebraic eigenanalysis finds the hidden invariant triad a~v 1, b~v 2,
c~v 3 from the ellipsoid’s algebraic equations. Suppose, for instance, that
the equation of the ellipsoid is supplied as

x2 + 4y2 + xy + 4z2 = 16.

A symmetric matrix A is constructed in order to write the equation in the
form ~XT A ~X = 16, where ~X has components x, y, z. The replacement
equation is5

(
x y z

)  1 1/2 0
1/2 4 0
0 0 4


 x
y
z

 = 16.(11)

It is the 3× 3 symmetric matrix A in (11) that is subjected to algebraic
eigenanalysis. The matrix calculation will compute the unit semi-axis
directions ~v 1, ~v 2, ~v 3, called the hidden vectors or eigenvectors.
The semi-axis lengths a, b, c are computed at the same time, by finding
the hidden values6 or eigenvalues λ1, λ2, λ3, known to satisfy the
relations

λ1 =
16

a2
, λ2 =

16

b2
, λ3 =

16

c2
.

For the illustration, the football dimensions are a = 2, b = 1.98, c = 4.17.
Details of the computation are delayed until page 13.

The Ellipse and Eigenanalysis

An ellipse equation in standard form is λ1u
2 + λ2v

2 = 1, where λ1 =
1/a2, λ2 = 1/b2 are expressed in terms of the semi-axis lengths a, b. The
expression λ1u

2 + λ2v
2 is called a quadratic form. The study of the

ellipse λ1u
2 + λ2v

2 = 1 is equivalent to the study of the quadratic form
equation

~rTD~r = 1, where ~r =

(
u
v

)
, D =

(
λ1 0
0 λ2

)
.

Cross-terms. An ellipse may be represented by an equation in a xy-
coordinate system having a cross-term xy, e.g., 4x2+8xy+10y2 = 5. The
expression 4x2 + 8xy + 10y2 is again called a quadratic form. Calculus
courses provide methods to eliminate the cross-term and represent the
equation in standard form, by a rotation by angle θ of the xy-system
into the uv-system:(

u
v

)
= R

(
x
y

)
, R =

(
cos θ sin θ
− sin θ cos θ

)
.

5The reader should pause here and multiply matrices in order to verify this state-
ment. Halving of the entries corresponding to cross-terms generalizes to any ellipsoid.

6The terminology hidden arises because neither the semi-axis lengths nor the semi-
axis directions are revealed directly by the ellipsoid equation.
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Eigenanalysis computes angle θ through the columns of R, which are the
unit semi-axis directions ~v 1, ~v 2 for the ellipse 4x2 + 8xy + 10y2 = 5. If
the quadratic form 4x2 + 8xy + 10y2 is represented as ~rT A~r , then

~r =

(
x
y

)
, A =

(
4 4
4 10

)
, R =

1√
5

(
1 −2
2 1

)
,

λ1 = 12, ~v 1 =
1√
5

(
1
2

)
, λ2 = 2, ~v 2 =

1√
5

(
−2

1

)
.

Ellipse equations. There are two coordinate systems, the xy-system
and the rotated uv-system. The equations in each system, each divided
by 5:

4
5x

2 + 8
5xy + 2y2 = 1,

2
5u

2 + 12
5 v

2 = 1.
(12)

The rotation relation

(
u
v

)
= R

(
x
y

)
is the set of equations

 u = = 1√
5
x− 2√

5
y,

v = = 2√
5
x+ 1√

5
y,

(13)

which upon substitution into the uv-equation in (12) gives

2

5

(
1√
5
x− 2√

5
y

)2

+
12

5

(
2√
5
x+

1√
5
y

)2

= 1.

The reader can verify that this is the first equation in (12).

Rotation matrix angle θ. The components of unit eigenvector ~v 1 can
be used to determine θ = −63.4◦:(

cos θ
− sin θ

)
=

1√
5

(
1
2

)
or

 cos θ = 1√
5
,

− sin θ = 2√
5
.

The interpretation of angle θ: rotate the orthonormal basis ~v 1, ~v 2 by
angle θ = −63.4◦ in order to obtain the standard unit basis vectors ~ı ,
~ . Most calculus texts discuss only the inverse rotation, where x, y are
given in terms of u, v. In these references, θ is the negative of the value
given here, due to a different geometric viewpoint.7

Semi-axis lengths. The lengths a ≈ 1.55, b ≈ 0.63 for the ellipse
4x2 +8xy+10y2 = 5 are computed from the eigenvalues λ1 = 12, λ2 = 2
of matrix A by the equations

λ1
5

=
1

a2
,

λ2
5

=
1

b2
.

7Rod Serling, author and playwright for The Twilight Zone, enjoyed the view from
the other side.
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Geometry. The ellipse 4x2 + 8xy + 10y2 = 5 is completely determined
by the orthogonal semi-axis vectors a~v 1, b~v 2. The rotation R is a rigid
motion mapping xy-plane vectors a~v 1, b~v 2 into uv-plane vectors a~ı, b~.

The θ-rotation R maps 4x2+8xy+10y2 = 5 into the uv-equation λ1u
2+

λ2v
2 = 5, where λ1, λ2 are the eigenvalues of A. To see why, let ~r =(

u
v

)
, ~s =

(
x
y

)
in the equation ~r = R~s . Then ~rTA~r = ~sT (RTAR)~s .

Using RTR = I gives R−1 = RT and RTAR = diag(λ1, λ2). Finally,
~rTA~r = λ1u

2 + λ2v
2.

Orthogonal Triad Computation

Let’s compute the semiaxis directions ~v 1, ~v 2, ~v 3 for the ellipsoid x2 +
4y2 +xy+4z2 = 16. To be applied is Theorem ??. As explained on page
11, the starting point is to represent the ellipsoid equation as a quadratic
form ~WTA ~W = 16, where the symmetric matrix A and vector ~W are
defined by

A =

 1 1
2 0

1
2 4 0
0 0 4

 , ~W =

 x
y
z

 .
College algebra. The characteristic polynomial det(A − λI) = 0
determines the eigenvalues or hidden values of the matrix A. By cofactor
expansion, this polynomial equation is

(4− λ)((1− λ)(4− λ)− 1/4) = 0

with roots 4, 5/2 +
√

10/2, 5/2−
√

10/2.

Eigenpairs. It will be shown that three eigenpairs are

λ1 = 4, ~x 1 =

 0
0
1

 ,
λ2 =

5 +
√

10

2
, ~x 2 =


√

10− 3
1
0

 ,

λ3 =
5−
√

10

2
, ~x 3 =


√

10 + 3
−1
0

 .
The vector norms of the eigenvectors are given by ‖~x 1‖ = 1, ‖~x 2‖ =√

20 + 6
√

10, ‖~x 3‖ =
√

20− 6
√

10. The orthonormal semi-axis direc-
tions ~v k = ~xk/‖~xk‖, k = 1, 2, 3, are then given by the formulas

~v 1 =

 0
0
1

 , ~v 2 =


√
10−3√

20−6
√
10

1√
20−6

√
10

0

 , ~v 3 =


√
10+3√

20+6
√
10

−1√
20+6

√
10

0

 .
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Eigenpair Details.

〈A− λ1I,~0〉 =

 1− 4 1/2 0 0
1/2 4− 4 0 0
0 0 4− 4 0



≈

 1 0 0 0
0 1 0 0
0 0 0 0

 Used Toolkit rules combination,
multiply and swap. Found rref.

〈A− λ2I,~0〉 =


−3−

√
10

2
1
2 0 0

1
2

3−
√
10

2 0 0

0 0 3−
√
10

2 0



≈

 1 3−
√

10 0 0
0 0 1 0
0 0 0 0

 Toolkit rules applied.
Found rref.

〈A− λ3I,~0〉 =


−3+

√
10

2
1
2 0 0

1
2

3+
√
10

2 0 0

0 0 3+
√
10

2 0



≈

 1 3 +
√

10 0 0
0 0 1 0
0 0 0 0

 Toolkit rules applied.
Found rref.

Solving the corresponding reduced echelon systems gives the preceding
formulas for the eigenvectors ~x 1, ~x 2, ~x 3. The equation for the ellipsoid
is λ1X

2 + λ2Y
2 + λ3Z

2 = 16, where the multipliers of the square terms
are the eigenvalues of A and X, Y , Z define the new coordinate system
determined by the eigenvectors of A. This equation can be re-written
in the form X2

a2
+ Y 2

b2
+ Z2

c2
= 1, provided the semi-axis lengths a, b, c

are defined by the relations a2 = 16/λ1, b
2 = 16/λ2, c

2 = 16/λ3. After
computation, a = 2, b = 1.98, c = 4.17.
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Exercises 8.1

Discrete Dynamical Systems
Define matrix A via equation

~y =
1

10

 5 1 0
3 4 3
2 5 7

 ~x(14)

1. Find eigenpair packages of A.
Answers:

D=

(
.5 0 0
0 .1 0
0 0 1

)
, P=

(
−1 1 1

0 −4 5
1 3 9

)
2. Explain: A is a transition ma-

trix.8

3. Assume ~y = A~x has period one
year. Find the system state after
two years.

4. Explain: An~x is the system state
after n periods.

Market Shares
Define matrix A via equation

~y =
1

10

(
5 4 0
3 5 3
2 1 7

)
~x(15)

5. Verify the eigenpairs of A using
software.

6. Compute A2, A3, A4 using soft-
ware. Predict the limit of An as
n approaches infinity.

7. Compute with software (rounded)

A10=

(
.30 .30 .30
.37 .38 .37
.32 .32 .33

)
.(16)

8. Let ~x= 1
3

(
1
1
1

)
. Compute

A10~x =

(
0.30
0.37
0.33

)
(rounded)

in two ways by calculator:
(1) Fourier Replacement.
(2) Matrix multiply using (16).

Stochastic Matrices

9. Establish the identity |A − λI| =
|AT − λI.

10. Explain why A and AT have the
same eigenvalues but not necessar-
ily the same eigenvectors.

11. Verify maxr(A) = 〈~w |~w | · · · |~w 〉,
where ~w has components wi =
max{aij , 1 ≤ j ≤ n}.

12. Verify maxr(A) = DO, where D
is the diagonal matrix of row max-
ima and O is the matrix of all ones.

Perron-Frobenius Theorem
Let A > 0 be n × n stochastic with
unique eigenpair (1, ~w ), all wi > 0
and

∑n
i=1 wi = 1. Assume ~v ≥ ~0 ,∑n

i=1 vi = 1 and δ = mini,j aij .

13. Apply inequality minr(A
n)~v ≤

An~v ≤ maxr(A
n)~v to prove

limn→∞ An~v =
(∑n

i=1
vi
)
~w .

14. Verify Euclidean norm inequality
‖Ak+1~v − ~w‖ ≤

√
n (1− δ)k

Weierstrass Proof
These exercises establish existence of
an eigenpair (1, ~v ) for stochastic A
having only nonnegative entries.

Weierstrass Compactness Theorem

A sequence of vectors {~v i}∞i=1 contained in

a closed, bounded set K in Rn has a sub-

sequence converging in the vector norm of

Rn to some vector ~v in K.

Define set K to be all vectors ~v with
nonnegative components adding to 1.
Let ~v 0 be any element of K. Assume
stochastic A with aij ≥ 0 and define

~vN = 1
N

∑N−1
j=0 Aj~v 0.

15. Verify K is closed and bounded in
Rn. Then prove λ~x + (1 − λ)~y is
in K for 0 ≤ λ ≤ 1 and ~x , ~y in K.

8Perron-Frobenius theory extensions in the literature apply to transition matrices.
See the Weierstrass Proof exercises.
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16. Prove identity
~vN+1 = λ~vN + (1− λ)AN~v 0

where λ = N
N+1 and then prove by

induction that ~vN is in K.

17. Verify all hypotheses in the
Weierstrass theorem applied to
{~vN}∞N=0. Applying the theorem
produces a subsequence {~vNp

}∞p=1

limiting to some ~v in K.

18. Verify identity
~vN −A~vN = 1

N (~v 0 −AN~v 0).

19. Explain why A~v = limp→∞ A~vNp .
Then prove ~v = A~v .

20. The claimed eigenpair (1, ~v ) has
been found, provided ~v 6= ~0 . Ex-
plain why ~v 6= ~0 .

Coupled Systems
Find the coefficient matrix A. Identify
as coupled or uncoupled and explain
why.

21. x′ = 2x+ 3y, y′ = x+ y

22. x′ = 3y, y′ = x

23. x′ = 3x, y′ = 2y

24. x′ = 3x, y′ = 2y, z′ = z

Solving Uncoupled Systems
Solve for the general solution.

25. x′ = 3x, y′ = 2y

26. x′ = 3x, y′ = 2y, z′ = z

Change of Coordinates
Given the change of coordinates ~y =
A~x , find the matrix B for the inverse
change ~x = B~y .

27. ~y =

(
1 0 0
1 0 1
0 1 0

)
~x

28. ~y =

(
−1 1 0

1 1 0
0 0 1

)
~x

Constructing Coupled Systems
Given the uncoupled system and
change of coordinates ~y = P~x , find
the coupled system.

29. x′1 = 2x1, x′2 = 3x2, P =

(
1 1
2 −1

)
30. x′1 = x1, x′2 = −x2, P =

(
1 −1
2 1

)
Uncoupling a System
Change the given coupled system into
an uncoupled system using the eigen-
analysis change of variables ~y = P~x .

31. x′1 = 2x1, x′2 = x1 + x2, x′3 = x3

Ans: P =

(
1 0 0
1 0 1
0 1 0

)
, y′1 = 2y1,

y′2 = y2, y′3 = y3

32. x′1 = x1+x2, x′2 = x1+x2, x′3 = x3

Ans: P =

(
−1 1 0

1 1 0
0 0 1

)
, y′1 = 0,

y′2 = 2y2, y′3 = y3

Solving Coupled Systems
Report the answers for x(t), y(t).

33. x′ = −x− 2y, y′ = −4x+ y

34. x′ = 8x− y, y′ = −2x+ 7y

Eigenanalysis and Footballs
The exercises study the ellipsoid
17x2 + 8y2 − 12xy + 80z2 = 80.

35. Let A =

(
17 −6 0
−6 8 0

0 0 80

)
. Expand

equation ~WTA ~W = 80, where ~W
has components x, y, z.

36. Find the eigenpairs of

A =

(
17 −6 0
−6 8 0

0 0 80

)
.

37. Verify the semi-axis lengths 1, 4, 2.

38. Verify that the ellipsoid has semi-
axis unit directions0

0
1

 , 1√
5

1
2
0

 , 1√
5

−2
1
0


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The Ellipse and Eigenanalysis
The exercises study the ellipse
2x2 + 4xy + 5y2 = 24.

39. Let A =

(
2 2
2 5

)
. Expand equation

~WTA ~W = 24, where ~W =

(
x
y

)
.

40. Find the eigenpairs of A =

(
2 2
2 5

)
.

41. Verify the semi-axis lengths
2, 2
√

6.

42. Verify that the ellipse has semi-
axis unit directions
1√
5

(
1
2

)
, 1√

5

(
−2

1

)
.

Orthogonal Triad Computation
The exercises fill in details from page
13, x2+4y2+xy+4z2=16. Below,

A =

 1 1
2 0

1
2 4 0
0 0 4


43. Find the characteristic equation of

A. Then verify the roots are 4,
5/2 +

√
10/2, 5/2−

√
10/2.

44. Show the steps from rref to sec-
ond eigenvector ~x2:

rref =

 1 3−
√

10 0
0 0 1
0 0 0

,

~x2 =

√10−3
1
0




