Coordinates and Change of Basis

- Basis
- Coordinate Map
- Example: Coordinate Map
- Independence-Dependence Test using a Coordinate Map
- Change of Basis
- Change of Basis Matrix
- Example: Change of Basis Matrix A
- How to quickly recover the formula for A, the change of basis matrix

Basis

Definition. A **basis** of an abstract vector space V is a finite list of vectors $\vec{b}_1, \ldots, \vec{b}_p$ which is (1) *independent* and (2) *spans* V. Briefly, *independent and span*.

The keyword *span* means that $V = \text{span}(\vec{b}_1, \dots, \vec{b}_p)$, more precisely every \vec{v} in V can be expressed as $\vec{v} = x_1 \vec{b}_1 + \dots + x_p \vec{b}_p$ for some constants x_1, \dots, x_p .

Coordinate Map

Let $\vec{\mathbf{b}}_1, \ldots, \vec{\mathbf{b}}_p$ denote a **basis** of an abstract vector space V. The list of vectors is (1) *independent* and (2) *spans* V.

Example: Vectors $\vec{b}_1, \vec{b}_2, \vec{b}_3$ defined by functions $y = 1, y = x, y = x^2$ on domain $(-\infty, \infty)$ generate a vector space $V = \text{span}(\vec{b}_1, \vec{b}_2, \vec{b}_3)$ as a subspace of the vector space W of all functions defined on domain $(-\infty, \infty)$. The functions are independent by the Wronskian Test, therefore they form a **basis** of V.

Definition. The coordinate map of basis $\vec{b}_1, \vec{b}_2, \vec{b}_3$ is the linear map

$$T:V
ightarrow R^3$$
 defined by $T(x_1ec{ extbf{b}}_1+x_2ec{ extbf{b}}_2+x_3ec{ extbf{b}}_3)=egin{pmatrix} x_1\ x_2\ x_3\end{pmatrix}.$

Theorem. The coordinate map is one-to-one and onto. Briefly, the coordinate map is an **isomorphism**.

Example: Coordinate Map Define vectors $\vec{b}_1, \vec{b}_2, \vec{b}_3$ by

$$egin{array}{ll} ec{\mathrm{b}}_1: \ y=1 & ext{domain} \ (-\infty,\infty) \ ec{\mathrm{b}}_2: \ y=x & ext{domain} \ (-\infty,\infty) \ ec{\mathrm{b}}_3: \ y=x^2 & ext{domain} \ (-\infty,\infty) \end{array}$$

Define vector space $V = \operatorname{span}(\vec{b}_1, \vec{b}_2, \vec{b}_3)$ as a subspace of the vector space W of all functions defined on domain $(-\infty, \infty)$.

Independence. The Wronskian Test det $\begin{pmatrix} 1 & x & x^2 \\ 0 & 1 & 2x \\ 0 & 0 & 2 \end{pmatrix} \neq 0$ implies the three functions

are independent, therefore they form a basis of V.

Example: Coordinate Map, continued Definition. The coordinate map of basis $\vec{b}_1, \vec{b}_2, \vec{b}_3$ is the linear map

$$T:V
ightarrow R^3$$
 defined by $T(x_1ec{ extbf{b}}_1+x_2ec{ extbf{b}}_2+x_3ec{ extbf{b}}_3)=egin{pmatrix} x_1\ x_2\ x_3\end{pmatrix}.$

The coordinate map for basis $\vec{b}_1, \vec{b}_2, \vec{b}_3$ can be written succinctly as

$$T(c_1+c_2x+c_3x^2)=egin{pmatrix} c_1\ c_2\ c_3 \end{pmatrix}$$

EXAMPLE. Find $T \left(2 - 3x + (1 + x)^2\right)$

Solution. First, $2 - 3x + (1 + x)^2 = 2 - 3x + 1 + 2x + x^2 = 3 - x + x^2$, therefore

$$T\left(2-3x+(1+x)^2
ight)=egin{pmatrix}3\-1\1\end{pmatrix}.$$

Independence-Dependence Test using a Coordinate Map

Theorem. Let $T: V_1 \rightarrow V_2$ be a linear one-to-one and onto map between vector spaces V_1 and V_2 . Then T maps independent sets into independent sets and dependent sets into dependent sets.

Proof: Let $\vec{v}_1, \ldots, \vec{v}_p$ be an independent set in V_1 and define $\vec{w}_1 = T(\vec{v}_1), \ldots, \vec{w}_p = T(\vec{v}_p)$. We show $\vec{w}_1, \ldots, \vec{w}_p$ is an independent set.

Solve the equation $c_1 \vec{w}_1 + \cdots + c_p \vec{w}_p = \vec{0}$ for constants c_1, \ldots, c_p as follows.

$$c_1 ec{\mathbf{w}_1} + \dots + c_p ec{\mathbf{w}_p} = ec{\mathbf{0}}$$

 $c_1 T(ec{\mathbf{v}_1}) + \dots + c_p T(ec{\mathbf{v}_p}) = ec{\mathbf{0}}$ Insert definitions
 $T(c_1 ec{\mathbf{v}_1} + \dots + c_p ec{\mathbf{v}_p}) = ec{\mathbf{0}}$ linearity of T

Because T is one-to-one, then any relation $T(\vec{u}) = \vec{0}$ implies $\vec{u} = \vec{0}$, giving

$$c_1ec{\mathrm{v}}_1+\dots+c_pec{\mathrm{v}}_p=ec{\mathrm{o}}.$$

Because $\vec{v}_1, \ldots, \vec{v}_p$ is an independent set, then $c_1 = \cdots = c_p = 0$. This proves $\vec{w}_1, \ldots, \vec{w}_p$ is an independent set. The rest of the claims in the theorem are proved similarly, using that fact that T has an inverse T^{-1} wich is also one-to-one and onto.

Change of Basis

Let $\vec{b}_1, \ldots, \vec{b}_p$ denote a **basis** of an abstract vector space V. The list of vectors is (1) *independent* and (2) *spans* V. The index p is the **dimension** of vector space V.

Let $\vec{c}_1, \ldots, \vec{c}_p$ denote a second basis of the abstract vector space V.

Definition. The coordinate maps for each basis are

$$T:V o R^p, \ \ S:V o R^p$$

defined by the relations

The **plan** is to develop a computer method to find the weights y_1, \ldots, y_p given the original weights x_1, \ldots, x_p . The solution is the construction of a matrix A of numbers which computes the change of basis weights by the matrix multiply equation

$$egin{pmatrix} oldsymbol{y}_1\ dots\ oldsymbol{y}_p \end{pmatrix} = oldsymbol{A} egin{pmatrix} oldsymbol{x}_1\ dots\ oldsymbol{x}_p \end{pmatrix}.$$

Change of Basis Matrix

Let $\vec{b}_1, \ldots, \vec{b}_p$ denote a **basis** of an abstract vector space V. The list of vectors is (1) *independent* and (2) *spans* V. The index p is the **dimension** of vector space V. Let $\vec{c}_1, \ldots, \vec{c}_p$ denote a **second basis** of the abstract vector space V. **Definition**. The **coordinate map** for the second basis is a linear map

$$S:V o R^p$$

defined by the relation

$$S(y_1ec{ extbf{c}}_1+\dots+y_pec{ extbf{c}}_p)=egin{pmatrix}y_1\ec{ extbf{s}}\ec{ extbf{y}}_p\end{pmatrix}.$$

Definition. The **Change of Basis Matrix** for first basis to the second basis is the $p \times p$ augmented matrix of column vectors

$$A = \langle S(ec{\mathrm{b}}_1) | S(ec{\mathrm{b}}_2) | \cdots | S(ec{\mathrm{b}}_p)
angle.$$

Change of Basis Matrix: Details

Let $\vec{\mathbf{v}}$ be any vector in V. Then $\vec{\mathbf{v}} = x_1 \vec{\mathbf{b}}_1 + \dots + x_p \vec{\mathbf{b}}_p$ for unique weights x_1, \dots, x_p and $T(\vec{\mathbf{v}}) = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$. Compute the matrix product as follows

$$Aegin{pmatrix} x_1\dots\ x_p\end{pmatrix} = x_1S(ec{\mathrm{b}}_1)+\dots+x_pS(ec{\mathrm{b}}_p) = S(x_1b_1+\dots+x_pec{\mathrm{b}}_p) = S(ec{\mathrm{v}}).$$

The computation means that $AT(\vec{v}) = S(\vec{v})$ or that AT = S where we think of A as a linear transformation. Because $\vec{v} = y_1 \vec{c}_1 + \cdots + y_p \vec{c}_p$ for some unique weights y_1, \ldots, y_p , then the computation means

$$egin{aligned} A egin{pmatrix} x_1 \ dots \ x_p \end{pmatrix} &= egin{pmatrix} y_1 \ dots \ y_p \end{pmatrix} . \end{aligned}$$

Example: Change of Basis Matrix

Define vectors $\vec{b}_1, \vec{b}_2, \vec{b}_3$ by

$$egin{array}{ll} ec{\mathrm{b}}_1: \ y=1 & ext{domain} \ (-\infty,\infty) \ ec{\mathrm{b}}_2: \ y=x & ext{domain} \ (-\infty,\infty) \ ec{\mathrm{b}}_3: \ y=x^2 & ext{domain} \ (-\infty,\infty) \end{array}$$

Let $V = \operatorname{span}(\vec{b}_1, \vec{b}_2, \vec{b}_3)$, a subspace of the vector space W of all functions on $(-\infty, \infty)$. We know that these vectors are a **basis** for V with coordinate map

$$ec{ extsf{c}}_2: \; y=2+x \;\; extsf{domain} \; (-\infty,\infty) \ ec{ extsf{c}}_3: \; y=3+x^2 \;\; extsf{domain} \; (-\infty,\infty)$$

The isomorphism theorem applies to show that $\vec{c}_1, \vec{c}_2, \vec{c}_3$ are independent, therefore they also span V and are a second basis for V. Details:

$$T(ec{ ext{c}}_1) = egin{pmatrix} 1 \ 1 \ 0 \end{pmatrix}, T(ec{ ext{c}}_2) = egin{pmatrix} 2 \ 1 \ 0 \end{pmatrix}, T(ec{ ext{c}}_3) = egin{pmatrix} 3 \ 0 \ 1 \end{pmatrix}, \quad ext{det} egin{pmatrix} 1 & 2 & 3 \ 1 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}
eq 0.$$

Example: Change of Basis Matrix: continued _____

We compute the change of basis matrix for basis $\vec{b}_1, \vec{b}_2, \vec{b}_3$ to basis $\vec{c}_1, \vec{c}_2, \vec{c}_3$ using the coordinate map

$$S(y_1ec{\mathrm{c}}_1+y_2ec{\mathrm{c}}_2+y_3ec{\mathrm{c}}_3)=egin{pmatrix}y_1\y_2\y_3\end{pmatrix},$$

as follows:

$$egin{aligned} S(ec{\mathrm{b}}_1) &= S(1) = S(ec{\mathrm{c}}_2 - ec{\mathrm{c}}_1) = egin{pmatrix} -1 \ 1 \ 0 \end{pmatrix}, \ S(ec{\mathrm{b}}_2) &= S(x) = S(2ec{\mathrm{c}}_1 - ec{\mathrm{c}}_2) = egin{pmatrix} 2 \ -1 \ 0 \end{pmatrix}, \ S(ec{\mathrm{b}}_3) &= S(x^2) = S(-3(ec{\mathrm{c}}_2 - ec{\mathrm{c}}_1) + ec{\mathrm{c}}_3) = egin{pmatrix} 3 \ -3 \ 1 \end{pmatrix}. \end{aligned}$$

Then

$$A =$$
augmented matrix of answers $= \begin{pmatrix} -1 & 2 & 3 \\ 1 & -1 & -3 \\ 0 & 0 & 1 \end{pmatrix}$.

How to quickly recover the formula for A, the change of basis matrix

Let p = 3. Recovery for any p is similar. Recovery time is less than 1 minute. Given one-to-one mappings $T: V \to R^3$ and $S: V \to R^3$, which are the coordinate maps for bases $\vec{b}_1, \vec{b}_2, \vec{b}_3$ and $\vec{c}_1, \vec{c}_2, \vec{c}_3$ respectively, then the mapping ST^{-1} is defined as a mapping from R^3 to R^3 . This mapping is linear, one-to-one and onto. The theory of linear transformations from R^n into R^m provides for some 3×3 matrix A a matrix multiply identity

$$ST^{-1}(ec{\mathrm{x}}) = Aec{\mathrm{x}}$$

Let $\vec{\mathbf{x}} = T(\vec{\mathbf{v}})$, possible because T is onto. The identity becomes

$$S(ec{\mathrm{v}}) = AT(ec{\mathrm{v}}).$$

To find the columns of the matrix A, first replace $T(\vec{v})$ by $\begin{pmatrix} 1\\0\\0 \end{pmatrix}$, which simply means

 $\vec{v} = \vec{b}_1$. Then column 1 of A is $S(\vec{b}_1)$. Repeat by replacing $T(\vec{v})$ successively by the remaining columns of the identity matrix to determine the remaining columns of A as $S(\vec{b}_2), S(\vec{b}_3)$. Then

$$A=\langle S(ec{\mathrm{b}}_1)|S(ec{\mathrm{b}}_2)|S(ec{\mathrm{b}}_3)
angle.$$