Coordinates and Change of Basis

- Basis
- Coordinate Map
- Example: Coordinate Map
- Independence-Dependence Test using a Coordinate Map
- Change of Basis
- Change of Basis Matrix
- Example: Change of Basis Matrix \boldsymbol{A}
- How to quickly recover the formula for A, the change of basis matrix

Basis

Definition. A basis of an abstract vector space V is a finite list of vectors $\overrightarrow{\mathrm{b}}_{1}, \ldots, \overrightarrow{\mathrm{~b}}_{p}$ which is (1) independent and (2) spans \boldsymbol{V}. Briefly, independent and span.
The keyword span means that $\boldsymbol{V}=\operatorname{span}\left(\overrightarrow{\mathrm{b}}_{1}, \ldots, \overrightarrow{\mathrm{~b}}_{p}\right)$, more precisely every $\overrightarrow{\mathrm{v}}$ in \boldsymbol{V} can be expressed as $\overrightarrow{\mathrm{v}}=x_{1} \overrightarrow{\mathrm{~b}}_{1}+\cdots+x_{p} \overrightarrow{\mathrm{~b}}_{p}$ for some constants $\boldsymbol{x}_{1}, \ldots, x_{p}$.

Coordinate Map

Let $\overrightarrow{\mathrm{b}}_{1}, \ldots, \overrightarrow{\mathrm{~b}}_{p}$ denote a basis of an abstract vector space \boldsymbol{V}. The list of vectors is (1) independent and (2) spans \boldsymbol{V}.
Example: Vectors $\overrightarrow{\mathrm{b}}_{1}, \overrightarrow{\mathrm{~b}}_{2}, \overrightarrow{\mathrm{~b}}_{3}$ defined by functions $\boldsymbol{y}=\boldsymbol{1}, \boldsymbol{y}=\boldsymbol{x}, \boldsymbol{y}=\boldsymbol{x}^{2}$ on domain $(-\infty, \infty)$ generate a vector space $V=\operatorname{span}\left(\overrightarrow{\mathrm{b}}_{1}, \overrightarrow{\mathrm{~b}}_{2}, \overrightarrow{\mathrm{~b}}_{3}\right)$ as a subspace of the vector space \boldsymbol{W} of all functions defined on domain $(-\infty, \infty)$. The functions are independent by the Wronskian Test, therefore they form a basis of \boldsymbol{V}.

Definition. The coordinate map of basis $\overrightarrow{\mathrm{b}}_{1}, \overrightarrow{\mathrm{~b}}_{2}, \overrightarrow{\mathrm{~b}}_{3}$ is the linear map

$$
T: V \rightarrow R^{3} \quad \text { defined by } \quad T\left(x_{1} \overrightarrow{\mathrm{~b}}_{1}+x_{2} \overrightarrow{\mathrm{~b}}_{2}+x_{3} \overrightarrow{\mathrm{~b}}_{3}\right)=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

Theorem. The coordinate map is one-to-one and onto. Briefly, the coordinate map is an isomorphism.

Example: Coordinate Map

Define vectors $\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}$ by

$$
\begin{aligned}
& \overrightarrow{\mathrm{b}}_{1}: y=1 \quad \text { domain }(-\infty, \infty) \\
& \overrightarrow{\mathrm{b}}_{2}: y=x \quad \text { domain }(-\infty, \infty) \\
& \overrightarrow{\mathrm{b}}_{3}: y=x^{2} \quad \text { domain }(-\infty, \infty)
\end{aligned}
$$

Define vector space $\boldsymbol{V}=\operatorname{span}\left(\overrightarrow{\mathrm{b}}_{1}, \overrightarrow{\mathrm{~b}}_{2}, \overrightarrow{\mathrm{~b}}_{3}\right)$ as a subspace of the vector space \boldsymbol{W} of all functions defined on domain $(-\infty, \infty)$.
Independence. The Wronskian Test $\operatorname{det}\left(\begin{array}{ccc}1 & x & x^{2} \\ 0 & 1 & 2 x \\ 0 & 0 & 2\end{array}\right) \neq 0$ implies the three functions are independent, therefore they form a basis of \boldsymbol{V}.

Example: Coordinate Map, continued
Definition. The coordinate map of basis $\overrightarrow{\mathrm{b}}_{1}, \overrightarrow{\mathrm{~b}}_{2}, \overrightarrow{\mathrm{~b}}_{3}$ is the linear map

$$
T: V \rightarrow R^{3} \quad \text { defined by } \quad T\left(x_{1} \overrightarrow{\mathrm{~b}}_{1}+x_{2} \overrightarrow{\mathrm{~b}}_{2}+x_{3} \overrightarrow{\mathrm{~b}}_{3}\right)=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

The coordinate map for basis $\overrightarrow{\mathrm{b}}_{1}, \overrightarrow{\mathrm{~b}}_{2}, \overrightarrow{\mathrm{~b}}_{3}$ can be written succinctly as

$$
T\left(c_{1}+c_{2} x+c_{3} x^{2}\right)=\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)
$$

EXAMPLE. Find $T\left(2-3 x+(1+x)^{2}\right)$
Solution. First, $2-3 x+(1+x)^{2}=2-3 x+1+2 x+x^{2}=3-x+x^{2}$, therefore

$$
T\left(2-3 x+(1+x)^{2}\right)=\left(\begin{array}{r}
3 \\
-1 \\
1
\end{array}\right)
$$

Independence-Dependence Test using a Coordinate Map

Theorem. Let $\boldsymbol{T}: \boldsymbol{V}_{\mathbf{1}} \rightarrow \boldsymbol{V}_{\mathbf{2}}$ be a linear one-to-one and onto map between vector spaces $\boldsymbol{V}_{\mathbf{1}}$ and $\boldsymbol{V}_{\mathbf{2}}$. Then \boldsymbol{T} maps independent sets into independent sets and dependent sets into dependent sets.
Proof: Let $\overrightarrow{\mathrm{v}}_{1}, \ldots, \overrightarrow{\mathrm{v}}_{p}$ be an independent set in V_{1} and define $\overrightarrow{\mathrm{w}}_{1}=\boldsymbol{T}\left(\overrightarrow{\mathrm{v}}_{1}\right), \ldots, \overrightarrow{\mathrm{w}}_{p}=$ $\boldsymbol{T}\left(\overrightarrow{\mathrm{v}}_{p}\right)$. We show $\overrightarrow{\mathrm{w}}_{1}, \ldots, \overrightarrow{\mathrm{w}}_{p}$ is an independent set.
Solve the equation $\boldsymbol{c}_{1} \overrightarrow{\mathrm{w}}_{1}+\cdots+\boldsymbol{c}_{p} \overrightarrow{\mathrm{w}}_{p}=\overrightarrow{0}$ for constants $\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{p}$ as follows.

$$
\begin{array}{ll}
c_{1} \overrightarrow{\mathrm{w}}_{1}+\cdots+c_{p} \overrightarrow{\mathrm{w}}_{p}=\overrightarrow{0} & \\
c_{1} T\left(\overrightarrow{\mathrm{v}}_{1}\right)+\cdots+c_{p} T\left(\overrightarrow{\mathrm{v}}_{p}\right)=\overrightarrow{0} & \text { Insert definitions } \\
T\left(c_{1} \overrightarrow{\mathrm{v}}_{1}+\cdots+c_{p} \overrightarrow{\mathrm{v}}_{p}\right)=\overrightarrow{0} & \text { linearity of } T
\end{array}
$$

Because \boldsymbol{T} is one-to-one, then any relation $\boldsymbol{T}(\overrightarrow{\mathbf{u}})=\overrightarrow{0}$ implies $\overrightarrow{\mathbf{u}}=\overrightarrow{0}$, giving

$$
c_{1} \overrightarrow{\mathbf{v}}_{1}+\cdots+c_{p} \overrightarrow{\mathbf{v}}_{p}=\overrightarrow{0}
$$

Because $\overrightarrow{\mathbf{v}}_{1}, \ldots, \overrightarrow{\mathrm{v}}_{p}$ is an independent set, then $\boldsymbol{c}_{1}=\cdots=\boldsymbol{c}_{\boldsymbol{p}}=\mathbf{0}$. This proves $\overrightarrow{\mathrm{w}}_{1}, \ldots, \overrightarrow{\mathrm{w}}_{p}$ is an independent set. The rest of the claims in the thoerem are proved similarly, using that fact that \boldsymbol{T} has an inverse $\boldsymbol{T}^{-\mathbf{1}}$ wich is also one-to-one and onto.

Change of Basis

Let $\overrightarrow{\mathrm{b}}_{1}, \ldots, \overrightarrow{\mathrm{~b}}_{p}$ denote a basis of an abstract vector space \boldsymbol{V}. The list of vectors is (1) independent and (2) spans \boldsymbol{V}. The index \boldsymbol{p} is the dimension of vector space \boldsymbol{V}.
Let $\overrightarrow{\mathbf{c}}_{1}, \ldots, \overrightarrow{\mathbf{c}}_{p}$ denote a second basis of the abstract vector space \boldsymbol{V}.
Definition. The coordinate maps for each basis are

$$
\boldsymbol{T}: \boldsymbol{V} \rightarrow \boldsymbol{R}^{p}, \quad \boldsymbol{S}: \boldsymbol{V} \rightarrow \boldsymbol{R}^{p}
$$

defined by the relations

$$
T\left(x_{1} \overrightarrow{\mathrm{~b}}_{1}+\cdots+x_{p} \overrightarrow{\mathrm{~b}}_{p}\right)=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{p}
\end{array}\right), \quad S\left(y_{1} \overrightarrow{\mathrm{c}}_{1}+\cdots+y_{p} \overrightarrow{\mathrm{c}}_{p}\right)=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{p}
\end{array}\right) .
$$

The plan is to develop a computer method to find the weights $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{p}$ given the original weights $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}$. The solution is the construction of a matrix \boldsymbol{A} of numbers which computes the change of basis weights by the matrix multiply equation

$$
\left(\begin{array}{r}
y_{1} \\
\vdots \\
y_{p}
\end{array}\right)=A\left(\begin{array}{r}
x_{1} \\
\vdots \\
x_{p}
\end{array}\right)
$$

Change of Basis Matrix

Let $\overrightarrow{\mathrm{b}}_{1}, \ldots, \overrightarrow{\mathrm{~b}}_{p}$ denote a basis of an abstract vector space \boldsymbol{V}. The list of vectors is (1) independent and (2) spans \boldsymbol{V}. The index \boldsymbol{p} is the dimension of vector space \boldsymbol{V}.
Let $\overrightarrow{\mathbf{c}}_{1}, \ldots, \overrightarrow{\mathbf{c}}_{p}$ denote a second basis of the abstract vector space \boldsymbol{V}.
Definition. The coordinate map for the second basis is a linear map

$$
S: V \rightarrow R^{p}
$$

defined by the relation

$$
S\left(y_{1} \overrightarrow{\mathrm{c}}_{1}+\cdots+y_{p} \overrightarrow{\mathrm{c}}_{p}\right)=\left(\begin{array}{r}
y_{1} \\
\vdots \\
y_{p}
\end{array}\right) .
$$

Definition. The Change of Basis Matrix for first basis to the the second basis is the $\boldsymbol{p} \times \boldsymbol{p}$ augmented matrix of column vectors

$$
\left.A=\left\langle S\left(\overrightarrow{\mathrm{~b}}_{1}\right)\right| S\left(\overrightarrow{\mathrm{~b}}_{2}\right)|\cdots| S\left(\overrightarrow{\mathrm{~b}}_{p}\right)\right\rangle
$$

Change of Basis Matrix: Details

Let $\overrightarrow{\mathrm{v}}$ be any vector in \boldsymbol{V}. Then $\overrightarrow{\mathrm{v}}=\boldsymbol{x}_{1} \overrightarrow{\mathrm{~b}}_{1}+\cdots+\boldsymbol{x}_{p} \overrightarrow{\mathrm{~b}}_{p}$ for unique weights $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\boldsymbol{p}}$ and $\boldsymbol{T}(\overrightarrow{\mathrm{v}})=\left(\begin{array}{c}\boldsymbol{x}_{1} \\ \vdots \\ \boldsymbol{x}_{p}\end{array}\right)$. Compute the matrix product as follows

$$
A\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{p}
\end{array}\right)=x_{1} S\left(\overrightarrow{\mathrm{~b}}_{1}\right)+\cdots+x_{p} S\left(\overrightarrow{\mathrm{~b}}_{p}\right)=S\left(x_{1} b_{1}+\cdots+x_{p} \overrightarrow{\mathrm{~b}}_{p}\right)=S(\overrightarrow{\mathrm{v}})
$$

The computation means that $\boldsymbol{A T}(\overrightarrow{\mathrm{v}})=\boldsymbol{S}(\overrightarrow{\mathrm{v}})$ or that $\boldsymbol{A T}=\boldsymbol{S}$ where we think of \boldsymbol{A} as a linear transformation. Because $\overrightarrow{\mathbf{v}}=\boldsymbol{y}_{1} \overrightarrow{\mathbf{c}}_{\boldsymbol{1}}+\cdots+\boldsymbol{y}_{p} \overrightarrow{\mathbf{c}}_{\boldsymbol{p}}$ for some unique weights $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{p}$, then the computation means

$$
A\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{p}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{p}
\end{array}\right) .
$$

Example: Change of Basis Matrix

Define vectors $\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}$ by

$$
\begin{aligned}
& \overrightarrow{\mathrm{b}}_{1}: y=1 \quad \text { domain }(-\infty, \infty) \\
& \overrightarrow{\mathrm{b}}_{2}: y=x \quad \text { domain }(-\infty, \infty) \\
& \overrightarrow{\mathrm{b}}_{3}: y=x^{2} \quad \text { domain }(-\infty, \infty)
\end{aligned}
$$

Let $V=\operatorname{span}\left(\overrightarrow{\mathrm{b}}_{1}, \overrightarrow{\mathrm{~b}}_{2}, \overrightarrow{\mathrm{~b}}_{3}\right)$, a subspace of the vector space \boldsymbol{W} of all functions on $(-\infty, \infty)$. We know that these vectors are a basis for \boldsymbol{V} with coordinate map
$\boldsymbol{T}\left(a_{1}+a_{2} x+a_{3} x^{2}\right)=\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)$. Define a second set of vectors $\overrightarrow{\mathbf{c}}_{1}, \overrightarrow{\mathbf{c}}_{2}, \overrightarrow{\mathbf{c}}_{3}$ by

$$
\begin{aligned}
& \overrightarrow{\mathbf{c}}_{1}: y=1+\boldsymbol{y} \quad \text { domain }(-\infty, \infty) \\
& \overrightarrow{\mathbf{c}}_{2}: y=2+\boldsymbol{y} \quad \text { domain }(-\infty, \infty) \\
& \overrightarrow{\mathbf{c}}_{3}: y=3+\boldsymbol{x}^{2} \quad \text { domain }(-\infty, \infty)
\end{aligned}
$$

The isomorphism theorem applies to show that $\overrightarrow{\mathbf{c}}_{1}, \overrightarrow{\mathbf{c}}_{2}, \overrightarrow{\mathbf{c}}_{3}$ are independent, therefore they also span \boldsymbol{V} and are a second basis for \boldsymbol{V}. Details:

$$
T\left(\overrightarrow{\mathbf{c}}_{1}\right)=\left(\begin{array}{c}
1 \\
1 \\
0
\end{array}\right), T\left(\overrightarrow{\mathbf{c}}_{2}\right)=\left(\begin{array}{c}
2 \\
1 \\
0
\end{array}\right), T\left(\overrightarrow{\mathbf{c}}_{3}\right)=\left(\begin{array}{c}
3 \\
0 \\
1
\end{array}\right), \quad \operatorname{det}\left(\begin{array}{ccc}
1 & 2 & 3 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \neq 0
$$

Example: Change of Basis Matrix: continued

We compute the change of basis matrix for basis $\overrightarrow{\mathbf{b}}_{1}, \overrightarrow{\mathbf{b}}_{2}, \overrightarrow{\mathrm{~b}}_{3}$ to basis $\overrightarrow{\mathbf{c}}_{1}, \overrightarrow{\mathbf{c}}_{2}, \overrightarrow{\mathbf{c}}_{3}$ using the coordinate map

$$
S\left(y_{1} \overrightarrow{\mathrm{c}}_{1}+y_{2} \overrightarrow{\mathrm{c}}_{2}+y_{3} \overrightarrow{\mathrm{c}}_{3}\right)=\left(\begin{array}{l}
\boldsymbol{y}_{1} \\
y_{2} \\
\boldsymbol{y}_{3}
\end{array}\right),
$$

as follows:

$$
\begin{aligned}
& S\left(\overrightarrow{\mathrm{~b}}_{1}\right)=S(1)=S\left(\overrightarrow{\mathrm{c}}_{2}-\overrightarrow{\mathrm{c}}_{1}\right)=\left(\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right), \\
& S\left(\overrightarrow{\mathrm{~b}}_{2}\right)=S(x)=S\left(2 \overrightarrow{\mathrm{c}}_{1}-\overrightarrow{\mathrm{c}}_{2}\right)=\left(\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right), \\
& S\left(\overrightarrow{\mathrm{~b}}_{3}\right)=S\left(x^{2}\right)=S\left(-3\left(\overrightarrow{\mathrm{c}}_{2}-\overrightarrow{\mathrm{c}}_{1}\right)+\overrightarrow{\mathrm{c}}_{3}\right)=\left(\begin{array}{r}
3 \\
-3 \\
1
\end{array}\right) .
\end{aligned}
$$

Then

$$
A=\text { augmented matrix of answers }=\left(\begin{array}{rrr}
-1 & 2 & 3 \\
1 & -1 & -3 \\
0 & 0 & 1
\end{array}\right)
$$

How to quickly recover the formula for \boldsymbol{A}, the change of basis matrix

\qquad
Let $\boldsymbol{p}=3$. Recovery for any \boldsymbol{p} is similar. Recovery time is less than 1 minute.
Given one-to-one mappings $\boldsymbol{T}: \boldsymbol{V} \rightarrow \boldsymbol{R}^{3}$ and $\boldsymbol{S}: \boldsymbol{V} \rightarrow \boldsymbol{R}^{3}$, which are the coordinate maps for bases $\overrightarrow{\mathrm{b}}_{1}, \overrightarrow{\mathrm{~b}}_{2}, \overrightarrow{\mathrm{~b}}_{3}$ and $\overrightarrow{\mathbf{c}}_{1}, \overrightarrow{\mathbf{c}}_{2}, \overrightarrow{\mathbf{c}}_{3}$ respectively, then the mapping $\boldsymbol{S T} \boldsymbol{T}^{\mathbf{- 1}}$ is defined as a mapping from \boldsymbol{R}^{3} to \boldsymbol{R}^{3}. This mapping is linear, one-to-one and onto. The theory of linear transformations from \boldsymbol{R}^{n} into \boldsymbol{R}^{m} provides for some $\mathbf{3} \times \mathbf{3}$ matrix \boldsymbol{A} a matrix multiply identity

$$
S T^{-1}(\overrightarrow{\mathrm{x}})=A \overrightarrow{\mathrm{x}}
$$

Let $\overrightarrow{\mathrm{x}}=\boldsymbol{T}(\overrightarrow{\mathrm{v}})$, possible because \boldsymbol{T} is onto. The identity becomes

$$
S(\vec{v})=A T(\vec{v})
$$

To find the columns of the matrix A, first replace $T(\overrightarrow{\mathrm{v}})$ by $\left(\begin{array}{l}\mathbf{1} \\ 0 \\ \mathbf{0}\end{array}\right)$, which simply means $\overrightarrow{\mathrm{v}}=\overrightarrow{\mathrm{b}}_{1}$. Then column 1 of \boldsymbol{A} is $\boldsymbol{S}\left(\overrightarrow{\mathrm{b}}_{1}\right)$. Repeat by replacing $\boldsymbol{T}(\overrightarrow{\mathrm{v}})$ successively by the remaining columns of the identity matrix to determine the remaining columns of \boldsymbol{A} as $\boldsymbol{S}\left(\overrightarrow{\mathrm{b}}_{2}\right), \boldsymbol{S}\left(\overrightarrow{\mathrm{b}}_{3}\right)$. Then

$$
A=\left\langle S\left(\overrightarrow{\mathrm{~b}}_{1}\right)\right| S\left(\overrightarrow{\mathrm{~b}}_{2}\right)\left|S\left(\overrightarrow{\mathrm{~b}}_{3}\right)\right\rangle .
$$

